Importing Functions into Current Namespace - r

Let's say I have an R source file comprised of some functions, doesn't matter what they are, e.g.,
fnx = function(x){(x - mean(x))/sd(x)}
I would like to be able to access them in my current R session (without typing them in obviously). It would be nice if library("/path/to/file/my_fn_lib1.r") worked, as "import" works in Python, but it doesn't. One obvious solution is to create an R Package, but i want to avoid that overhead just to import a few functions.

Use the source() command. In your case:
source("/path/to/file/my_fn_lib1.r")
Incidentally, creating a package is fairly easy with the package.skeleton() function (if you're planning to reuse this frequently).

Related

Read a package NAMESPACE file

I am looking for a fast R solution to read a package NAMESPACE file. The solution should contain already preprocessed (and aggregated) records and separated imports and exports.
Unfortunately I can’t use getNamespaceExports("dplyr")/getNamespaceImports("dplyr") as they need the package to be loaded to the R session, which is too slow.
I need a solution which simply process a text from the NAMESPACE file. Any solutions using external packages as well as partial solutions would still be welcome.
The raw data we could grabbed with a call like readLines("https://raw.githubusercontent.com/cran/dplyr/master/NAMESPACE"). roxygen2 generated files are formatted properly, but this will be not true for all manually generated files.
EDIT:
Thanks to Konrad R. answer I could develop such functionality in my new CRAN package - pacs. I recommended to check pacs::pac_namespace function. There is even one function which goes one step further, comparing NAMESPACE files between different package versions pacs::pac_comapre_namespace.
The function is included in R as base::parseNamespaceFile. Unfortunately the function does not directly take a path as an argument. Instead it constructs the path from a package name and the library location. However, armed with this knowledge you should be able to call it; e.g.:
parseNamespaceFile('dplyr', .libPaths()[1L])
EDIT
Somebody has to remember that the whole packages imports (like import(rlang)) have to be still invoked with the same function and the exports for them extracted. Two core elements are using parse on NAMESPACE code and then using the recursive extract function parseDirective.

Are there any good resources/best-practices to "industrialize" code in R for a data science project?

I need to "industrialize" an R code for a data science project, because the project will be rerun several times in the future with fresh data. The new code should be really easy to follow even for people who have not worked on the project before and they should be able to redo the whole workflow quite quickly. Therefore I am looking for tips, suggestions, resources and best-practices on how to achieve this objective.
Thank you for your help in advance!
You can make an R package out of your project, because it has everything you need for a standalone project that you want to share with others :
Easy to share, download and install
R has a very efficient documentation system for your functions and objects when you work within R Studio. Combined with roxygen2, it enables you to document precisely every function, and makes the code clearer since you can avoid commenting with inline comments (but please do so anyway if needed)
You can specify quite easily which dependancies your package will need, so that every one knows what to install for your project to work. You can also use packrat if you want to mimic python's virtualenv
R also provide a long format documentation system, which are called vignettes and are similar to a printed notebook : you can display code, text, code results, etc. This is were you will write guidelines and methods on how to use the functions, provide detailed instructions for a certain method, etc. Once the package is installed they are automatically included and available for all users.
The only downside is the following : since R is a functional programming language, a package consists of mainly functions, and some other relevant objects (data, for instance), but not really scripts.
More details about the last point if your project consists in a script that calls a set of functions to do something, it cannot directly appear within the package. Two options here : a) you make a dispatcher function that runs a set of functions to do the job, so that users just have to call one function to run the whole method (not really good for maintenance) ; b) you make the whole script appear in a vignette (see above). With this method, people just have to write a single R file (which can be copy-pasted from the vignette), which may look like this :
library(mydatascienceproject)
library(...)
...
dothis()
dothat()
finishwork()
That enables you to execute the whole work from a terminal or a distant machine with Rscript, with the following (using argparse to add arguments)
Rscript myautomatedtask.R --arg1 anargument --arg2 anotherargument
And finally if you write a bash file calling Rscript, you can automate everything !
Feel free to read Hadley Wickham's book about R packages, it is super clear, full of best practices and of great help in writing your packages.
One can get lost in the multiple files in the project's folder, so it should be structured properly: link
Naming conventions that I use: first, second.
Set up the random seed, so the outputs should be reproducible.
Documentation is important: you can use the Roxygen skeleton in rstudio (default ctrl+alt+shift+r).
I usually separate the code into smaller, logically cohesive scripts, and use a main.R script, that uses the others.
If you use a special set of libraries, you can consider using packrat. Once you set it up, you can manage the installed project-specific libraries.

What is the difference between library()/require() and source() in r?

Looked around and still not sure what is the difference between library()/require() and source() in r? According to this SO question: What is the difference between require() and library()? it looks like library() and require() are the same thing, maybe one is legacy. Is source() for lazy developers that don't want to create a library? When do you use each of these constructs?
The differences between library and require are already well documented in What is the difference between require() and library()?.
So, I will focus on how source differs from these. In fact they are fundamentally quite different commands. Neither library nor require actually execute any code. They simply attach a namespace, in a lazy fashion, meaning that individual functions in the package are not run unless they are actually called later. Source on the other hand does something quite different which is to execute all of the code in the file at that time.
A small caveat: packages can be made to actually run some code at the time of package loading or attaching, via the .onLoad and .onAttach functions. Have a look here: https://stat.ethz.ch/R-manual/R-devel/library/base/html/ns-hooks.html
source runs the code in a .R file, line by line.
library and require load and attach R packages.
Is source() for lazy developers that don't want to create a library?
You're correct that source is for the cases when you don't have a package. Laziness is not the only reason, sometimes packages are not appropriate---packages provide functionality, but don't do things. Perhaps I have a script that pulls data from a database, fits a model, and makes some predictions. A package may provide functions to help me do that, but it does not actually do it. A script saved in a .R file and run with source() could run the commands and complete the task.
I do want to address this:
it looks like library() and require() are the same thing, maybe one is legacy.
They both do the same thing (load and attach a package). The main difference is that library() will throw an error and stop the script if the package is not available, whereas require() will return TRUE or FALSE depending on its success. The general consensus is that library is better so that your script stops with a nice clear error and you can install the missing package before proceeeding. The question linked has a more thorough discussion which I won't try to replicate here.

How to keep various-topic R script at hand?

I have written and collected R code on various topics that solve particular problems at hand. I stored the R script/code in .txt files. I have now 100s of them.
How do you keep your R code at hand efficiently?
#Manetheran has the right idea: write a package. It's easy to do (especially with RStudio). Read "Writing R Extensions" and then on top of that learn about roxygen2 (which allows you to document each function in-line and avoid writing .Rd files).
Then you can use devtools to load your package locally, or once it's stable if you think other people can use the functions you can submit your package to CRAN.
I prefer to keep it simple. I use Total Commander and when I need an example which uses some R function, I just do Alt-F7 and search for *.R files which contain the desired string.
I use RStudio and have created two or three basic scripts. I save my much-used functions in the basic script that is most appropriate. Then, at the start of an RStudio script for a project, I source one or more of the basic scripts as is appropriate.

Organizing R's work in functions and subfuctions

My aim is to better organize the work done by a R code.
In particular it could be useful to split the R code I have written in different R files, perhaps with each R file accomplishing to a different task. I have in mind what we can do in Matlab with different M files, where we can easily call functions written in different M files directly from the main code.
Is it useful to write this R files in the form of functions?
How can we call these R files /functions in the main code?
Thanks
You can use source("filename.R") to include the file in your main script.
I am not sure if there is a ready function to include an entire directory, but it is straightforward to write using list.files() and then call source dynamicly for each filename. You can also filter files to only list *.R for example.
Unless you intend to write an R package, you should rethink your organization. R is not Matlab, thank goodness! You can place as many functions as you wish into a single file, and make them all available in your environment with source foo.r . If you are writing a collection of generic functions and don't want to build a package, this really is the cleaner way to go.
As a side thought, consider making some of your tools more flexible by adding more input arguments. You may find that you don't really need so many separate functions/files. As a trivial example, if you have some function do_it_double , another do_it_integer , and yet another do_it_character , all of which do basically the same thing, just merge them into a single do_it_all(x,y,datatype='double') and override the default datatype as desired. (I know this can be done with internal input validation. I'm just giving an example)
Your approach might be working good. I would recommend to wrap the code in a function and use one R file for one R function.
It might be interesting to look at the packages devtools and ProjectTemplate which aim to help organizing R code.

Resources