Newell's Method to Calculate Plane Equation of Concave Polygon - Improvements? - math

3 points are needed to define a plane. Newell's method is known to fail if the 3 points are chosen around a concave corner - the normal of the resulting plane will point in the direction opposite to the expected one.
Are there any improvements to Newell's method that help in choosing a valid starting point? Or is there an alternative algorithm that doesn't have this issue?

Since your only interest in the plane is whether a given point is "deeper" or "closer" than it, I suppose you expect the normal of the plane to point towards the viewpoint (or away from it, depending on your convention). So just calculate the dot-product of the normal and the vector from the viewpoint to one of the three points, and look at its sign; if it's positive when you generally expect negative (or vice-versa), then reverse the normal.

Just came across this after some Googling for Newell's Plane algorithm. I'm also interested in using the algorithm, but my reading of various literature leaves me thinking that it is the "three point" method that fails on the concave corner case, while Newell's Method will work correctly. Here is the relevant passage:
This technique, first suggested by Newell (Sutherland et al., 1974),
works for concave polygons and polygons containing collinear vertices,
as well as for nonplanar polygons, e.g., polygons resulting from
perturbed vertex locations...
Newell's method may seem inefficient for planar polygons, since it
uses all the vertices of a polygon when, in fact, only three
points are needed to define a plane. It should be noted, though, that
for arbitrary planar polygons, these three points must be chosen very
carefully:
Three points uniquely define a plane if and only if they are not
collinear; and
if the three points are chosen around a "concave" corner, the normal
of the resulting plane will point in the direction opposite to the
expected one.
Checking for the properties would reduce the efficiency of the
three-point method as well as making its coding rather inelegant. A
good strategy may be that of using the three-point method for polygons
that are already known to be planar and strictly convex (no collinear
vertices,) and using Newell's method for the rest.
Source: Filippo Tampieri. “Newell's Method for Computing the Plane Equation of a Polygon”. In Graphics Gems III, Academic Press, 1992, pp. 231–232.

Related

How best to triangulate a 5-point star polygon?

I've implemented the "ear-splitting" triangulation method for simple polygons. In testing it out, I see it crashes on the test case of a symmetrical 5-point star.
I think I understand why this polygon is "tricky" -- because it contains edges that are collinear....an ear-shaving diagonal which the algorithm chooses based on starting with a convex vertex (one of the 5 points), then inspecting the diagonal for no "X" edge intersections, and for no vertices intruding into the ear triangle) will blindly assign a diagonal which is collinear with 2 existing edges. After removing the ear's external vertex, the remaining polygon will no longer be "simple" -- it will have vertices having a straight angle (180 deg.), a violation of the simple polygon contract.
I'm chagrined that I've proven that ear-splitting faces this failure case. I thought from the literature that it was a general-purpose method (applicable to all simple polygons). Are those "inductive proofs" you find repeated everywhere overstated?
Has anyone successfully modified an ear-splitting triangulation method to handle the 5-point star?
Random Perturbation of Collinear Edge Endpoints
The "ear-splitting" triangulation algo suffers from a breakdown in the case of polygons which have edges that are collinear. As you can see in the 5-point star, all the edges have this problem.
A simple "patch" can rescue the "ear-splitting" triangulation algo:
1) Before beginning the triangulation, inspect the polygon's edge list (as LineSegs) for any pair of edges that share the same 2D extended line. Apply a tiny random perturbation to both endpoints of any such edge, (e.g., in the range -0.001..+0.001.) Save the original locations of these vertices, so they can be restored after the triangulation.
2) Now you can run ear-split triangulation, having removed the ill-conditioned situation of collinear edges.
3) Undo the perturbations you applied to the vertices.
I've tested this approach, and it works fine. It might seem a bit of a hack, but it's by far the easiest way to rescue the ear-split triangulation from its most noticeable flaw. The random perturbations want to be tiny compared to location coordinates in your app, but huge compared to the finite math EPSILON you're using to compare real-numbers for equal.

2d integration over non-uniform grid

I'm writing a data analysis program and part of it requires finding the volume of a shape. The shape information comes in the form of a lost of points, giving the radius and the angular coordinates of the point.
If the data points were uniformly distributed in coordinate space I would be able to perform the integral, but unfortunately the data points are basically randomly distributed.
My inefficient approach would be to find the nearest neighbours to each point and stitch the shape together like that, finding the volume of the stitched together parts.
Does anyone have a better approach to take?
Thanks.
IF those are surface points, one good way to do it would be to discretize the surface as triangles and convert the volume integral to a surface integral using Green's Theorem. Then you can use simple Gauss quadrature over the triangles.
Ok, here it is, along duffymo's lines I think.
First, triangulate the surface, and make sure you have consistent orientation of the triangles. Meaning that orientation of neighbouring triangle is such that the common edge is traversed in opposite directions.
Second, for each triangle ABC compute this expression: H*cross2D(B-A,C-A), where cross2D computes cross product using coordinates X and Y only, ignoring the Z coordinates, and H is the Z-coordinate of any convenient point in the triangle (although the barycentre would improve precision).
Third, sum up all the above expressions. The result would be the signed volume inside the surface (plus or minus depending on the choice of orientation).
Sounds like you want the convex hull of a point cloud. Fortunately, there are efficient ways of getting you there. Check out scipy.spatial.ConvexHull.

AABB vs Circle - Vise versa using separate axis theorem

Am following this tutorial for my 2d game collision handling , this tutorial explains about the collision used in one of my favorite game "N". How they used separate axis theorem more efficiently for collision between AABB vs AABB and AABB vs Circle. http://www.metanetsoftware.com/technique/tutorialA.html. I understand the implementation of AABB vs AABB collision handling but I couldn't understand AABB vs Circle collision detection especially voronoi regions.Totally confused how/where to start.
AABB vs AABB collision detection
Find the axis along all the edge by finding the normal of each edge.
Projection all the vertices to the
resultant Axis , final result should
be a scalar value.
The resultant scalar value in turn
is used to find whether collision is
present or not.
Can someone please explain how to handle collision AABB vc Circle - vise versa?
Since collisions with a circle always come down to a comparison against the radius (in your case, via projection), having the closest line segment (edge of the polygon) and the normal vector are the only building blocks you need. The normal vector is easily computed from the points of the line segment (something like unit(y2-y1, x1-x2) ... the negative reciprocal of the slope). Figuring out which edge is closest is the building block that remains. Voronoi regions give us the last building block.
You understand collisions between axis-aligned bounding boxes. I assume you also understand collisions between two circles. I'm assuming you don't understand voronoi regions. So, where to start? Voronoi diagrams. I highly suggest that you find a diagrammed explanation. This link is quite good. However, depending on how lost you are, perhaps a little additional background (seriously, though, no explanation can beat the visual):
A voronoi diagram is one of the ubiquitous data structures of computational geometry. Any computational geometry book will discuss the Voronoi diagram. It answers a simple question: where is the closest post office? Given a set of points in a plane (post offices), a voronoi diagram separates the plane into different regions, each containing one of the points. If you are in a particular region, you know which point (post office) is closest to you. If you were a circle, this would be nice for collision detection for a simple reason: the closest point is the most important one to test for collisions.
Note that if you want to mathematically derive a voronoi diagram, you simply consider all point pairs and calculate all bisecting lines. Then you intersect all of the bisecting lines and throw away the segments that are unimportant because some other point is closer to the point of interest (which happens at every intersection). This leads to a terribly inefficient algorithm, though. The efficient implementation involves another ubiquitous thing in computational geometry: the line-sweep algorithm. Its details can be found elsewhere; the important bit is that it provides a method of considering only the important points at any stage of the algorithm.
The voronoi regions in your tutorial are a little more complex. Instead of just points, we have line segments. Fortunately, the line-sweep algorithm handles this nicely. You mostly have to worry about the start or end of the line segments. Conceptually, not much changes once you have the basic algorithm down. Again, this is exceptionally helpful for collision detection with a circle: given the voronoi region, you know which line segment to test collisions against.
Does that even help? Feedback appreciated. I'll be happy to clarify anything. Explaining voronoi diagrams without visuals is probably a bad idea.

Sphere that surely encompass given list of points [points are with x, y and z co-ordinate]

I am trying to find sphere that surly encompasses given list of points.
Points will have x, y and z co-ordinate[Points are in 3D].
Actually I am trying to find new three points based on given list of points by some calculations like find MinX,MaxX ,MinY,MaxY,and MinZ and MaxZ and do some operation and find new three points
And I will draw sphere from these three points.
And I will also taking all these three points on the diameter of sphere so I have a unique sphere.
Is there any standard way for finding encompassing sphere of given list of points?
Yes, the standard algorithm is Welzl's algorithm (assuming you want the minimal sphere around your points). Particularly the improved version of Gaertner is very useful, robust and numerically stable! It handles all the degenerate cases well too.
At its core, the algorithm permutes the points (randomly) to find the 1-4 points that lie on the boundary of the sphere. It's basically a clever trial-and-error algorithm. From these points, you can find the center by finding a point that has the same distance to all those points. Gärtner's version uses an improved numerical device to find the center. Also, it employs an extra pivoting step that presumably makes the algorithm work better for a large number of input points.
If all you want is a sphere around three points, I suggest you still use Gärtners "device" to compute the circumsphere of the triangle. Otherwise, the method will probably degenerate easily (i.e. when the triangle is very flat).
Do you need 3 points, or any number of points?
If you only need the answer for 3 points, each pair of points defines a line segment. Take the longest line segment. Take a sphere centered at the middle of that line segment, whose radius is half the length of the line segment. There are two cases.
The third point is inside of that initial sphere. If so, then you have the smallest sphere.
The third point is outside of that initial sphere. Then the solution at Find Circum Center of Three point of Triangle [Not using Compass] will give you the center of the smallest sphere containing those 3 points.
If you need an arbitrary number of points, I'd do some sort of iterative approximation algorithm. Since you don't seem like you need that, I won't work out the details.

Optimal rotation of 3D model for 2D projection

I'm looking for a way to determine the optimal X/Y/Z rotation of a set of vertices for rendering (using the X/Y coordinates, ignoring Z) on a 2D canvas.
I've had a couple of ideas, one being pure brute-force involving performing a 3-dimensional loop ranging from 0..359 (either in steps of 1 or more, depending on results/speed requirements) on the set of vertices, measuring the difference between the min/max on both X/Y axis, storing the highest results/rotation pairs and using the most effective pair.
The second idea would be to determine the two points with the greatest distance between them in Euclidean distance, calculate the angle required to rotate the 'path' between these two points to lay along the X axis (again, we're ignoring the Z axis, so the depth within the result would not matter) and then repeating several times. The problem I can see with this is first by repeating it we may be overriding our previous rotation with a new rotation, and that the original/subsequent rotation may not neccesarily result in the greatest 2D area used. The second issue being if we use a single iteration, then the same problem occurs - the two points furthest apart may not have other poitns aligned along the same 'path', and as such we will probably not get an optimal rotation for a 2D project.
Using the second idea, perhaps using the first say 3 iterations, storing the required rotation angle, and averaging across the 3 would return a more accurate result, as it is taking into account not just a single rotation but the top 3 'pairs'.
Please, rip these ideas apart, give insight of your own. I'm intreaged to see what solutions you all may have, or algorithms unknown to me you may quote.
I would compute the principal axes of inertia, and take the axis vector v with highest corresponding moment. I would then rotate the vertices to align v with the z-axis. Let me know if you want more details about how to go about this.
Intuitively, this finds the axis about which it's hardest to rotate the points, ie, around which the vertices are the most "spread out".
Without a concrete definition of what you consider optimal, it's impossible to say how well this method performs. However, it has a few desirable properties:
If the vertices are coplanar, this method is optimal in that it will always align that plane with the x-y plane.
If the vertices are arranged into a rectangular box, the box's shortest dimension gets aligned to the z-axis.
EDIT: Here's more detailed information about how to implement this approach.
First, assign a mass to each vertex. I'll discuss options for how to do this below.
Next, compute the center of mass of your set of vertices. Then translate all of your vertices by -1 times the center of mass, so that the new center of mass is now (0,0,0).
Compute the moment of inertia tensor. This is a 3x3 matrix whose entries are given by formulas you can find on Wikipedia. The formulas depend only on the vertex positions and the masses you assigned them.
Now you need to diagonalize the inertia tensor. Since it is symmetric positive-definite, it is possible to do this by finding its eigenvectors and eigenvalues. Unfortunately, numerical algorithms for finding these tend to be complicated; the most direct approach requires finding the roots of a cubic polynomial. However finding the eigenvalues and eigenvectors of a matrix is an extremely common problem and any linear algebra package worth its salt will come with code that can do this for you (for example, the open-source linear algebra package Eigen has SelfAdjointEigenSolver.) You might also be able to find lighter-weight code specialized to the 3x3 case on the Internet.
You now have three eigenvectors and their corresponding eigenvalues. These eigenvalues will be positive. Take the eigenvector corresponding to the largest eigenvalue; this vector points in the direction of your new z-axis.
Now, about the choice of mass. The simplest thing to do is to give all vertices a mass of 1. If all you have is a cloud of points, this is probably a good solution.
You could also set each star's mass to be its real-world mass, if you have access to that data. If you do this, the z-axis you compute will also be the axis about which the star system is (most likely) rotating.
This answer is intended to be valid only for convex polyhedra.
In http://203.208.166.84/masudhasan/cgta_silhouette.pdf you can find
"In this paper, we study how to select view points of convex polyhedra such that the silhouette satisfies certain properties. Specifically, we give algorithms to find all projections of a convex polyhedron such that a given set of edges, faces and/or vertices appear on the silhouette."
The paper is an in-depth analysis of the properties and algorithms of polyhedra projections. But it is not easy to follow, I should admit.
With that algorithm at hand, your problem is combinatorics: select all sets of possible vertexes, check whether or not exist a projection for each set, and if it does exists, calculate the area of the convex hull of the silhouette.
You did not provide the approx number of vertex. But as always, a combinatorial solution is not recommended for unbounded (aka big) quantities.

Resources