Matrix multiplication - view/projection, world/projection, etc - math

In HLSL there's a lot of matrix multiplication and while I understand how and where to use them I'm not sure about how they are derived or what their actual goals are.
So I was wondering if there was a resource online that explains this, I'm particularly curious about what is the purpose behind multiplying a world matrix by a view matrix and a world+view matrix by a projection matrix.

You can get some info, from a mathematical viewpoint, on this wikipedia article or on msdn.
Essentially, when you render a 3d model to the screen, you start with a simple collection of vertices scattered in 3d space. These vertices all have their own positions expressed in "object space". That is, they usually have coordinates which have no meaning in the scene that is being rendered, but only express the relations between one vertex and the other of the same model.
For instance, the positions of the vertices of a model could only range from -1 to 1 (or similar, it depends on how the model has been created).
In order to render the model in the correct position, you have to scale, rotate and translate it to the "real" position in your scene. This position you are moving to is expressed in "world space" coordinates which also express the real relationships between vertices in your scene. To do so, you simply multiply each vertex' position with its World matrix. This matrix must be created to include the translation/rotation/scale parameters you need to apply, in order for the object to appear in the correct position in the scene.
At this point (after multiplying all vertices of all your models with a world matrix) your vertices are expressed in world coordinates, but you still cannot render them correctly because their position is not relative to your "view" (i.e. your camera). So, this time you multiply everything using a View matrix which reflects the position and orientation of the viewpoint from which you are rendering the scene.
All vertices are now in the correct position, but in order to simulate perspective you still have to multiply everything with a Projection matrix. This last multiplication determines how the position of the vertices changes based on distance from the camera.
And now finally all vertices, starting from their position in "object space", have been moved to the final position on the screen, where they will be rendered, rasterized and then presented.

Online resources: Direct3D Matrices , Projection Metrices, Direct3D Transformation, The Importance of Matrices in the DirectX API.

Related

In a TBN Matrix are the normal, tangent, and bitangent vectors always perpendicular?

This is related to a problem described in another question (images there):
Opengl shader problems - weird light reflection artifacts
I have a .obj importer that creates a data structure and calculates the tangents and bitangents. Here is the data for the first triangle in my object:
My understanding of tangent space is that the normal points outward from the vertex, the tangent is perpendicular (orthogonal?) to the normal vector and points in the direction of positive S in the texture, and the bitangent is perpendicular to both. I'm not sure what you call it but I thought that these 3 vectors formed what would look like a rotated or transformed x,y,z axis. They wouldn't be 3 randomly oriented vectors, right?
Also my understanding: The normals in a normal map provide a new normal vector. But in tangent space texture maps there is no built in orientation between the rgb encoded normal and the per vertex normal. So you use a TBN matrix to bridge the gap and get them in the same space (or get the lighting in the right space).
But then I saw the object data... My structure has 270 vertices and all of them have a 0 for the Tangent Y. Is that correct for tangent data? Are these tangents in like a vertex normal space or something? Or do they just look completely wrong? Or am I confused about how this works and my data is right?
To get closer to solving my problem in the other question I need to make sure my data is right and my understanding on how tangent space lighting math works.
The tangent and bitangent vectors point in the direction of the S and T components of the texture coordinate (U and V for people not used to OpenGL terms). So the tangent vector points along S and the bitangent points along T.
So yes, these do not have to be orthogonal to either the normal or each other. They follow the direction of the texture mapping. Indeed, that's their purpose: to allow you to transform normals from model space into the texture's space. They define a mapping from model space into the space of the texture.
The tangent and bitangent will only be orthogonal to each other if the S and T components at that vertex are orthogonal. That is, if the texture mapping has no sheering. And while most texture mapping algorithms will try to minimize sheering, they can't eliminate it. So if you want an accurate matrix, you need a non-orthogonal tangent and bitangent.

Vector projection in game development

Where would you use a vector projection in game development. I know that it projects one vector to another, but I don't know where would I use that.
Regards
Here are a few examples:
Vector projection is common in computer graphics, which many games depend on.
In 3D games, during the rendering process the renderer has access to the 3D coordinates of every vertex of every mesh in the game world. These vertices need to be mapped onto a 2D rectangle that's the same shape as your screen. A projection matrix coincidentally called the Projection Matrix does this.
Sometimes projection matrices are used make objects cast shadows onto the surfaces of other objects.
Or suppose you're making a homing missile with a 60-degree field of view. You could say that the missile sees the world through a circular screen, and it loses track of its target if its target goes off the screen. You could use a projection matrix to map the 3D position of the target onto the homing missile's screen, and then decide whether the missile can see the target.

Generating a 3D prism from any 2D polygon

I am creating a 2D sprite game in Unity, which is a 3D game development environment.
I have constrained all translation of objects to the XY-plane and rotation to the Z-axis.
My problem is that the meshes that are used to detect collisions between objects must still be in 3D. I have the need to detect collisions between the player object (a capsule collider) and a sprite (that has its collision volume defined by a polygonal prism).
I am currently writing the level editor and I have the need to let the user define the collision area for any given tile. In the image below the user clicks the points P1, P2, P3, P4 in that order.
Obviously the points join up to form a quadrilateral. This is the collision area I want, however I must then convert that to a 3D mesh. Basically I need to generate an extrusion of the polygon, then assign the vertex winding and triangles etc. The vertex positions is not a problem to figure out as it is merely a translation of the polygon down the z-axis.
I am having trouble creating an algorithm for assigning the winding order of the vertices, especially since the mesh must consist only of triangles.
Obviously the structure I have illustrated is not important, the polygon may be any 2d shape and will always need to form a prism.
Does anyone know any methods for this?
Thank you all very much for your time.
A simple algorithm that comes to mind is something like this:
extrudedNormal = faceNormal.multiplyScale(sizeOfExtrusion);//multiply the face normal by the extrusion amt. = move along normal
for each(vertex in face){
vPrime = vertex.clone();//copy the position of each vertex to a new object to be modified later
vPrime.addSelf(extrudedNormal);//add translation in the direction of the normal, with the amt. used in the
}
So the idea is basic:
clone the face normal and move it in
the same direction by the amt. you
want to extrude by
clone the face vertices and move them
using the moved(extruded) normal
position
For a more complete, feature rich example, refer to the Procedural Modeling Unity samples. They include a nice Mesh extrusion sample too (see ExtrudedMeshTrail.js which uses MeshExtrusion.cs).
Goodluck!
To create the extruded walls:
For each vertex a (with coordinates ax, ay) in your polygon:
- call the next vertex 'b' (with coordinates bx, by)
- create the extruded rectangle corresponding to the line from 'a' to 'b':
- The rectangle has vertices (ax,ay,z0), (ax,ay,z1), (bx,by,z0), (bx,by,z1)
- This rectangle can be created from two triangles:
- (ax,ay,z0), (ax,ay,z1), (bx,by,z0) and (ax,ay,z1), (bx,by,z0), (bx,by,z1)
If you want to create a triangle strip instead, it's even simpler. For each vertex a, just add (ax,ay,z0) and (ax,ay,z1). Whichever vertex you processed first will also need to be processed again after looping over all other vertices.
To create the end-caps:
This step is probably unnecessary for collision purposes. But, one simple technique is here: http://www.siggraph.org/education/materials/HyperGraph/scanline/outprims/polygon1.htm
Each resulting triangle should be added at depth z0 and z1.

Optimal rotation of 3D model for 2D projection

I'm looking for a way to determine the optimal X/Y/Z rotation of a set of vertices for rendering (using the X/Y coordinates, ignoring Z) on a 2D canvas.
I've had a couple of ideas, one being pure brute-force involving performing a 3-dimensional loop ranging from 0..359 (either in steps of 1 or more, depending on results/speed requirements) on the set of vertices, measuring the difference between the min/max on both X/Y axis, storing the highest results/rotation pairs and using the most effective pair.
The second idea would be to determine the two points with the greatest distance between them in Euclidean distance, calculate the angle required to rotate the 'path' between these two points to lay along the X axis (again, we're ignoring the Z axis, so the depth within the result would not matter) and then repeating several times. The problem I can see with this is first by repeating it we may be overriding our previous rotation with a new rotation, and that the original/subsequent rotation may not neccesarily result in the greatest 2D area used. The second issue being if we use a single iteration, then the same problem occurs - the two points furthest apart may not have other poitns aligned along the same 'path', and as such we will probably not get an optimal rotation for a 2D project.
Using the second idea, perhaps using the first say 3 iterations, storing the required rotation angle, and averaging across the 3 would return a more accurate result, as it is taking into account not just a single rotation but the top 3 'pairs'.
Please, rip these ideas apart, give insight of your own. I'm intreaged to see what solutions you all may have, or algorithms unknown to me you may quote.
I would compute the principal axes of inertia, and take the axis vector v with highest corresponding moment. I would then rotate the vertices to align v with the z-axis. Let me know if you want more details about how to go about this.
Intuitively, this finds the axis about which it's hardest to rotate the points, ie, around which the vertices are the most "spread out".
Without a concrete definition of what you consider optimal, it's impossible to say how well this method performs. However, it has a few desirable properties:
If the vertices are coplanar, this method is optimal in that it will always align that plane with the x-y plane.
If the vertices are arranged into a rectangular box, the box's shortest dimension gets aligned to the z-axis.
EDIT: Here's more detailed information about how to implement this approach.
First, assign a mass to each vertex. I'll discuss options for how to do this below.
Next, compute the center of mass of your set of vertices. Then translate all of your vertices by -1 times the center of mass, so that the new center of mass is now (0,0,0).
Compute the moment of inertia tensor. This is a 3x3 matrix whose entries are given by formulas you can find on Wikipedia. The formulas depend only on the vertex positions and the masses you assigned them.
Now you need to diagonalize the inertia tensor. Since it is symmetric positive-definite, it is possible to do this by finding its eigenvectors and eigenvalues. Unfortunately, numerical algorithms for finding these tend to be complicated; the most direct approach requires finding the roots of a cubic polynomial. However finding the eigenvalues and eigenvectors of a matrix is an extremely common problem and any linear algebra package worth its salt will come with code that can do this for you (for example, the open-source linear algebra package Eigen has SelfAdjointEigenSolver.) You might also be able to find lighter-weight code specialized to the 3x3 case on the Internet.
You now have three eigenvectors and their corresponding eigenvalues. These eigenvalues will be positive. Take the eigenvector corresponding to the largest eigenvalue; this vector points in the direction of your new z-axis.
Now, about the choice of mass. The simplest thing to do is to give all vertices a mass of 1. If all you have is a cloud of points, this is probably a good solution.
You could also set each star's mass to be its real-world mass, if you have access to that data. If you do this, the z-axis you compute will also be the axis about which the star system is (most likely) rotating.
This answer is intended to be valid only for convex polyhedra.
In http://203.208.166.84/masudhasan/cgta_silhouette.pdf you can find
"In this paper, we study how to select view points of convex polyhedra such that the silhouette satisfies certain properties. Specifically, we give algorithms to find all projections of a convex polyhedron such that a given set of edges, faces and/or vertices appear on the silhouette."
The paper is an in-depth analysis of the properties and algorithms of polyhedra projections. But it is not easy to follow, I should admit.
With that algorithm at hand, your problem is combinatorics: select all sets of possible vertexes, check whether or not exist a projection for each set, and if it does exists, calculate the area of the convex hull of the silhouette.
You did not provide the approx number of vertex. But as always, a combinatorial solution is not recommended for unbounded (aka big) quantities.

Polygon math

Given a list of points that form a simple 2d polygon oriented in 3d space and a normal for that polygon, what is a good way to determine which points are specific 'corner' points?
For example, which point is at the lower left, or the lower right, or the top most point? The polygon may be oriented in any 3d orientation, so I'm pretty sure I need to do something with the normal, but I'm having trouble getting the math right.
Thanks!
You would need more information in order to make that decision. A set of (co-planar) points and a normal is not enough to give you a concept of "lower left" or "top right" or any such relative identification.
Viewing the polygon from the direction of the normal (so that it appears as a simple 2D shape) is a good start, but that shape could be rotated to any arbitrary angle.
Is there some other information in the 3D world that you can use to obtain a coordinate-system reference?
What are you trying to accomplish by knowing the extreme corners of the shape?
Are you looking for a bounding box?
I'm not sure the normal has anything to do with what you are asking.
To get a Bounding box, keep 4 variables: MinX, MaxX, MinY, MaxY
Then loop through all of your points, checking the X values against MaxX and MinX, and your Y values against MaxY and MinY, updating them as needed.
When looping is complete, your box is defined as MinX,MinY as the upper left, MinX, MaxY as upper right, and so on...
Response to your comment:
If you want your box after a projection, what you need is to get the "transformed" points. Then apply bounding box loop as stated above.
Transformed usually implies 2D screen coordinates after a projection(scene render) but it could also mean the 2D points on any plane that you projected on to.
A possible algorithm would be
Find the normal, which you can do by using the cross product of vectors connecting two pairs of different corners
Create a transformation matrix to rotate the polygon so that it is planer in XY space (i.e. normal alligned along the Z axis)
Calculate the coordinates of the bounding box or whatever other definition of corners you are using (as the polygon is now aligned in 2D space this is a considerably simpler problem)
Apply the inverse of the transformation matrix used in step 2 to transform these coordinates back to 3D space.
I believe that your question requires some additional information - namely the coordinate system with respect to which any point could be considered "topmost", or "leftmost".
Don't forget that whilst the normal tells you which way the polygon is facing, it doesn't on its own tell you which way is "up". It's possible to rotate (or "roll") around the normal vector and still be facing in the same direction.
This is why most 3D rendering systems have a camera which contains not only a "view" vector, but also "up" and "right" vectors. Changes to the latter two achieve the effect of the camera "rolling" around the view vector.
Project it onto a plane and get the bounding box.
I have a silly idea, but at the risk of gaining a negative a point, I'll give it a try:
Get the minimum/maximum value from
each three-dimensional axis of each
point on your 2d polygon. A single pass with a loop/iterator over the list of values for every point will suffice, simply replacing the minimum and maximum values as you go. The end result is a list that has the "lowest" X, Y, Z coordinates and "highest" X, Y, Z coordinates.
Iterate through this list of min/max
values to create each point
("corner") of a "bounding box"
around the object. The result
should be a box that always contains
the object regardless of axis
examined or orientation (no point on
the polygon will ever exceed the
maximum or minimums you collect).
Then get the distance of each "2d
polygon" point to each corner
location on the "bounding box"; the
shorter the distance between points,
the "closer" it is to that "corner".
Far from optimal, certainly crummy, but certainly quick. You could probably post-capture this during the object's rotation, by simply looking for the min/max of each rotated x/y/z value, and retaining a list of those values ahead of time.
If you can assume that there is some constraints regarding the shapes, then you might be able to get away with knowing less information. For example, if your shape was the composition of a small square with a long thin triangle on one side (i.e. a simple symmetrical geometry), then you could compare the distance from each list point to the "center of mass." The largest distance would identify the tip of the cone, the second largest would be the two points farthest from the tip of the cone, etc... If there was some order to the list, like points are entered in counter clockwise order (about the normal), you could identify all the points. This sounds like a bit of computation, so it might be reasonable to try to include some extra info with your shapes, like the "center of mass" and a reference point that is located "up" above the COM (but not along the normal). This will give you an "up" vector that you can cross with the normal to define some body coordinates, for example. Also, the normal can be defined by an ordering of the point list. If you can't assume anything about the shapes (or even if the shapes were symmetrical, for example), then you will need more data. It depends on your constraints.
If you know that the polygon in 3D is "flat" you can use the normal to transform all 3D-points of the vertices to a 2D-representation (of the points with respect to the plan in which the polygon is located) - but this still leaves you with defining the origin of this coordinate-system (but this don't really matter for your problem) and with the orientation of at least one of the axes (if you want orthogonal axes you can still rotate them around your choosen origin) - and this is where the trouble starts.
I would recommend using the Y-axis of your 3D-coordinate system, project this on your plane and use the resulting direction as "up" - but then you are in trouble in case your plan is orthogonal to the Y-axis (now you might want to use the projected Z-Axis as "up").
The math is rather simple (you can use the inner product (a.k.a. scalar product) for projection to your plane and some matrix stuff to convert to the 2D-coordinate system - you can get all of it by googling for raytracer algorithms for polygons.

Resources