----------Updated ------------
codymanix and moonshadow have been a big help thus far. I was able to solve my problem using the equations and instead of using right shift I divided by 29. Because with 32bits signed 2^31 = overflows to 29. Which works!
Prototype in PHP
$r = $x - (($x - $y) & (($x - $y) / (29)));
Actual code for LEADS (you can only do one math function PER LINE!!! AHHHH!!!)
DERIVDE1 = IMAGE1 - IMAGE2;
DERIVED2 = DERIVED1 / 29;
DERIVED3 = DERIVED1 AND DERIVED2;
MAX = IMAGE1 - DERIVED3;
----------Original Question-----------
I don't think this is quite possible with my application's limitations but I figured it's worth a shot to ask.
I'll try to make this simple. I need to find the max values between two numbers without being able to use a IF or any conditional statement.
In order to find the the MAX values I can only perform the following functions
Divide, Multiply, Subtract, Add, NOT, AND ,OR
Let's say I have two numbers
A = 60;
B = 50;
Now if A is always greater than B it would be simple to find the max value
MAX = (A - B) + B;
ex.
10 = (60 - 50)
10 + 50 = 60 = MAX
Problem is A is not always greater than B. I cannot perform ABS, MAX, MIN or conditional checks with the scripting applicaiton I am using.
Is there any way possible using the limited operation above to find a value VERY close to the max?
finding the maximum of 2 variables:
max = a-((a-b)&((a-b)>>31))
where >> is bitwise right-shift (also called SHR or ASR depeding on signedness).
Instead of 31 you use the number of bits your numbers have minus one.
I guess this one would be the most simplest if we manage to find difference between two numbers (only the magnitude not sign)
max = ((a+b)+|a-b|)/2;
where |a-b| is a magnitude of difference between a and b.
If you can't trust your environment to generate the appropriate branchless operations when they are available, see this page for how to proceed. Note the restriction on input range; use a larger integer type for the operation if you cannot guarantee your inputs will fit.
Solution without conditionals. Cast to uint then back to int to get abs.
int abs (a) { return (int)((unsigned int)a); }
int max (a, b) { return (a + b + abs(a - b)) / 2; }
int max3 (a, b, c) { return (max(max(a,b),c); }
Using logical operations only, short circuit evaluation and assuming the C convention of rounding towards zero, it is possible to express this as:
int lt0(int x) {
return x && (!!((x-1)/x));
}
int mymax(int a, int b) {
return lt0(a-b)*b+lt0(b-a)*a;
}
The basic idea is to implement a comparison operator that will return 0 or 1. It's possible to do a similar trick if your scripting language follows the convention of rounding toward the floor value like python does.
function Min(x,y:integer):integer;
Var
d:integer;
abs:integer;
begin
d:=x-y;
abs:=d*(1-2*((3*d) div (3*d+1)));
Result:=(x+y-abs) div 2;
end;
Hmmm. I assume NOT, AND, and OR are bitwise? If so, there's going to be a bitwise expression to solve this. Note that A | B will give a number >= A and >= B. Perhaps there's a pruning method for selecting the number with the most bits.
To extend, we need the following to determine whether A (0) or B (1) is greater.
truth table:
0|0 = 0
0|1 = 1
1|0 = 0
1|1 = 0
!A and B
therefore, will give the index of the greater bit. Ergo, compare each bit in both numbers, and when they are different, use the above expression (Not A And B) to determine which number was greater. Start from the most significant bit and proceed down both bytes. If you have no looping construct, manually compare each bit.
Implementing "when they are different":
(A != B) AND (my logic here)
try this, (but be aware for overflows)
(Code in C#)
public static Int32 Maximum(params Int32[] values)
{
Int32 retVal = Int32.MinValue;
foreach (Int32 i in values)
retVal += (((i - retVal) >> 31) & (i - retVal));
return retVal;
}
You can express this as a series of arithmetic and bitwise operations, e.g.:
int myabs(const int& in) {
const int tmp = in >> ((sizeof(int) * CHAR_BIT) - 1);
return tmp - (in ^ tmp(;
}
int mymax(int a, int b) {
return ((a+b) + myabs(b-a)) / 2;
}
//Assuming 32 bit integers
int is_diff_positive(int num)
{
((num & 0x80000000) >> 31) ^ 1; // if diff positive ret 1 else 0
}
int sign(int x)
{
return ((num & 0x80000000) >> 31);
}
int flip(int x)
{
return x ^ 1;
}
int max(int a, int b)
{
int diff = a - b;
int is_pos_a = sign(a);
int is_pos_b = sign(b);
int is_diff_positive = diff_positive(diff);
int is_diff_neg = flip(is_diff_positive);
// diff (a - b) will overflow / underflow if signs are opposite
// ex: a = INT_MAX , b = -3 then a - b => INT_MAX - (-3) => INT_MAX + 3
int can_overflow = is_pos_a ^ is_pos_b;
int cannot_overflow = flip(can_overflow);
int res = (cannot_overflow * ( (a * is_diff_positive) + (b *
is_diff_negative)) + (can_overflow * ( (a * is_pos_a) + (b *
is_pos_b)));
return res;
}
This is my implementation using only +, -, *, %, / operators
using static System.Console;
int Max(int a, int b) => (a + b + Abs(a - b)) / 2;
int Abs(int x) => x * ((2 * x + 1) % 2);
WriteLine(Max(-100, -2) == -2); // true
WriteLine(Max(2, -100) == 2); // true
I just came up with an expression:
(( (a-b)-|a-b| ) / (2(a-b)) )*b + (( (b-a)-|b-a| )/(2(b-a)) )*a
which is equal to a if a>b and is equal to b if b>a
when a>b:
a-b>0, a-b = |a-b|, (a-b)-|a-b| = 0 so the coeficcient for b is 0
b-a<0, b-a = -|b-a|, (b-a)-|b-a| = 2(b-a)
so the coeficcient for a is 2(b-a)/2(b-a) which is 1
so it would ultimately return 0*b+1*a if a is bigger and vice versa
Find MAX between n & m
MAX = ( (n/2) + (m/2) + ( ((n/2) - (m/2)) * ( (2*((n/2) - (m/2)) + 1) % 2) ) )
Using #define in c:
#define MAX(n, m) ( (n/2) + (m/2) + ( ((n/2) - (m/2)) * ( (2*((n/2) - (m/2)) + 1) % 2) ) )
or
#define ABS(n) ( n * ( (2*n + 1) % 2) ) // Calculates abs value of n
#define MAX(n, m) ( (n/2) + (m/2) + ABS((n/2) - (m/2)) ) // Finds max between n & m
#define MIN(n, m) ( (n/2) + (m/2) - ABS((n/2) - (m/2)) ) // Finds min between n & m
please look at this program.. this might be the best answer till date on this page...
#include <stdio.h>
int main()
{
int a,b;
a=3;
b=5;
printf("%d %d\n",a,b);
b = (a+b)-(a=b); // this line is doing the reversal
printf("%d %d\n",a,b);
return 0;
}
If A is always greater than B .. [ we can use] .. MAX = (A - B) + B;
No need. Just use: int maxA(int A, int B){ return A;}
(1) If conditionals are allowed you do max = a>b ? a : b.
(2) Any other method either use a defined set of numbers or rely on the implicit conditional checks.
(2a) max = a-((a-b)&((a-b)>>31)) this is neat, but it only works if you use 32 bit numbers. You can expand it arbitrary large number N, but the method will fail if you try to find max(N-1, N+1). This algorithm works for finite state automata, but not a Turing machine.
(2b) Magnitude |a-b| is a condition |a-b| = a-b>0 a-b : b-a
What about:
Square root is also a condition. Whenever c>0 and c^2 = d we have second solution -c, because (-c)^2 = (-1)^2*c^2 = 1*c^2 = d. Square root returns the greatest in the pair. I comes with a build in int max(int c1, int c2){return max(c1, c2);}
Without comparison operator math is very symmetric as well as limited in power. Positive and negative numbers cannot be distinguished without if of some sort.
It depends which language you're using, but the Ternary Operator might be useful.
But then, if you can't perform conditional checks in your 'scripting application', you probably don't have the ternary operator.
using System;
namespace ConsoleApp2
{
class Program
{
static void Main(string[] args)
{
float a = 101, b = 15;
float max = (a + b) / 2 + ((a > b) ? a - b : b - a) / 2;
}
}
}
#region GetMaximumNumber
/// <summary>
/// Provides method to get maximum values.
/// </summary>
/// <param name="values">Integer array for getting maximum values.</param>
/// <returns>Maximum number from an array.</returns>
private int GetMaximumNumber(params int[] values)
{
// Declare to store the maximum number.
int maximumNumber = 0;
try
{
// Check that array is not null and array has an elements.
if (values != null &&
values.Length > 0)
{
// Sort the array in ascending order for getting maximum value.
Array.Sort(values);
// Get the last value from an array which is always maximum.
maximumNumber = values[values.Length - 1];
}
}
catch (Exception ex)
{
throw ex;
}
return maximumNumber;
}
#endregion
Related
for example, why don't we do n/3 instead of n/2
Some Maths
The recurrence relation for a binary search using n/2 is
T(n) = T(n/2) + C
which can be simplified to
log2(m) = n
and n/3
T(n) = T(n/3) + C
which can be simplified to
log3(m) = n
so my question is: since log3(m) < log2(m) why do we use n/2
It is true that Ternary search has fewer recursive calls than Binary search (log3(m) < log2(m)) however Ternary search has more comparisons in the worst case than Binary search.
To examine a bit more let's compare Binary and Ternary search algorithms in C++
Binary Search
// A recursive binary search function. It returns location of x in
// given array arr[l..r] is present, otherwise -1
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l)
{
int mid = l + (r - l)/2;
// If the element is present at the middle itself
if (arr[mid] == x) return mid;
// If element is smaller than mid, then it can only be present
// in left subarray
if (arr[mid] > x) return binarySearch(arr, l, mid-1, x);
// Else the element can only be present in right subarray
return binarySearch(arr, mid+1, r, x);
}
// We reach here when element is not present in array
return -1;
}
Ternary Search
// A recursive ternary search function. It returns location of x in
// given array arr[l..r] is present, otherwise -1
int ternarySearch(int arr[], int l, int r, int x)
{
if (r >= l)
{
int mid1 = l + (r - l)/3;
int mid2 = mid1 + (r - l)/3;
// If x is present at the mid1
if (arr[mid1] == x) return mid1;
// If x is present at the mid2
if (arr[mid2] == x) return mid2;
// If x is present in left one-third
if (arr[mid1] > x) return ternarySearch(arr, l, mid1-1, x);
// If x is present in right one-third
if (arr[mid2] < x) return ternarySearch(arr, mid2+1, r, x);
// If x is present in middle one-third
return ternarySearch(arr, mid1+1, mid2-1, x);
}
// We reach here when element is not present in array
return -1;
}
In the worst case, Binary search does 2log2(n) + 1 comparisons where Ternary search does 4log3(n) + 1 comparisons
The comparisons boil down to log2(n) and 2log3(n)
Changing bases, 2log3(n) = (2 / log2(3)) * log2(n)
Since (2 / log2(3)) > 1 Ternay search does more comparisons in the worst case
Source
As we all know, the simplest algorithm to generate Fibonacci sequence is as follows:
if(n<=0) return 0;
else if(n==1) return 1;
f(n) = f(n-1) + f(n-2);
But this algorithm has some repetitive calculation. For example, if you calculate f(5), it will calculate f(4) and f(3). When you calculate f(4), it will again calculate both f(3) and f(2). Could someone give me a more time-efficient recursive algorithm?
I have read about some of the methods for calculating Fibonacci with efficient time complexity following are some of them -
Method 1 - Dynamic Programming
Now here the substructure is commonly known hence I'll straightly Jump to the solution -
static int fib(int n)
{
int f[] = new int[n+2]; // 1 extra to handle case, n = 0
int i;
f[0] = 0;
f[1] = 1;
for (i = 2; i <= n; i++)
{
f[i] = f[i-1] + f[i-2];
}
return f[n];
}
A space-optimized version of above can be done as follows -
static int fib(int n)
{
int a = 0, b = 1, c;
if (n == 0)
return a;
for (int i = 2; i <= n; i++)
{
c = a + b;
a = b;
b = c;
}
return b;
}
Method 2- ( Using power of the matrix {{1,1},{1,0}} )
This an O(n) which relies on the fact that if we n times multiply the matrix M = {{1,1},{1,0}} to itself (in other words calculate power(M, n )), then we get the (n+1)th Fibonacci number as the element at row and column (0, 0) in the resultant matrix. This solution would have O(n) time.
The matrix representation gives the following closed expression for the Fibonacci numbers:
fibonaccimatrix
static int fib(int n)
{
int F[][] = new int[][]{{1,1},{1,0}};
if (n == 0)
return 0;
power(F, n-1);
return F[0][0];
}
/*multiplies 2 matrices F and M of size 2*2, and
puts the multiplication result back to F[][] */
static void multiply(int F[][], int M[][])
{
int x = F[0][0]*M[0][0] + F[0][1]*M[1][0];
int y = F[0][0]*M[0][1] + F[0][1]*M[1][1];
int z = F[1][0]*M[0][0] + F[1][1]*M[1][0];
int w = F[1][0]*M[0][1] + F[1][1]*M[1][1];
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
/*function that calculates F[][] raise to the power n and puts the
result in F[][]*/
static void power(int F[][], int n)
{
int i;
int M[][] = new int[][]{{1,1},{1,0}};
// n - 1 times multiply the matrix to {{1,0},{0,1}}
for (i = 2; i <= n; i++)
multiply(F, M);
}
This can be optimized to work in O(Logn) time complexity. We can do recursive multiplication to get power(M, n) in the previous method.
static int fib(int n)
{
int F[][] = new int[][]{{1,1},{1,0}};
if (n == 0)
return 0;
power(F, n-1);
return F[0][0];
}
static void multiply(int F[][], int M[][])
{
int x = F[0][0]*M[0][0] + F[0][1]*M[1][0];
int y = F[0][0]*M[0][1] + F[0][1]*M[1][1];
int z = F[1][0]*M[0][0] + F[1][1]*M[1][0];
int w = F[1][0]*M[0][1] + F[1][1]*M[1][1];
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
static void power(int F[][], int n)
{
if( n == 0 || n == 1)
return;
int M[][] = new int[][]{{1,1},{1,0}};
power(F, n/2);
multiply(F, F);
if (n%2 != 0)
multiply(F, M);
}
Method 3 (O(log n) Time)
Below is one more interesting recurrence formula that can be used to find nth Fibonacci Number in O(log n) time.
If n is even then k = n/2:
F(n) = [2*F(k-1) + F(k)]*F(k)
If n is odd then k = (n + 1)/2
F(n) = F(k)*F(k) + F(k-1)*F(k-1)
How does this formula work?
The formula can be derived from the above matrix equation.
fibonaccimatrix
Taking determinant on both sides, we get
(-1)n = Fn+1Fn-1 – Fn2
Moreover, since AnAm = An+m for any square matrix A, the following identities can be derived (they are obtained from two different coefficients of the matrix product)
FmFn + Fm-1Fn-1 = Fm+n-1
By putting n = n+1,
FmFn+1 + Fm-1Fn = Fm+n
Putting m = n
F2n-1 = Fn2 + Fn-12
F2n = (Fn-1 + Fn+1)Fn = (2Fn-1 + Fn)Fn (Source: Wiki)
To get the formula to be proved, we simply need to do the following
If n is even, we can put k = n/2
If n is odd, we can put k = (n+1)/2
public static int fib(int n)
{
if (n == 0)
return 0;
if (n == 1 || n == 2)
return (f[n] = 1);
// If fib(n) is already computed
if (f[n] != 0)
return f[n];
int k = (n & 1) == 1? (n + 1) / 2
: n / 2;
// Applyting above formula [See value
// n&1 is 1 if n is odd, else 0.
f[n] = (n & 1) == 1? (fib(k) * fib(k) +
fib(k - 1) * fib(k - 1))
: (2 * fib(k - 1) + fib(k))
* fib(k);
return f[n];
}
Method 4 - Using a formula
In this method, we directly implement the formula for the nth term in the Fibonacci series. Time O(1) Space O(1)
Fn = {[(√5 + 1)/2] ^ n} / √5
static int fib(int n) {
double phi = (1 + Math.sqrt(5)) / 2;
return (int) Math.round(Math.pow(phi, n)
/ Math.sqrt(5));
}
Reference: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html
Look here for implementation in Erlang which uses formula
. It shows nice linear resulting behavior because in O(M(n) log n) part M(n) is exponential for big numbers. It calculates fib of one million in 2s where result has 208988 digits. The trick is that you can compute exponentiation in O(log n) multiplications using (tail) recursive formula (tail means with O(1) space when used proper compiler or rewrite to cycle):
% compute X^N
power(X, N) when is_integer(N), N >= 0 ->
power(N, X, 1).
power(0, _, Acc) ->
Acc;
power(N, X, Acc) ->
if N rem 2 =:= 1 ->
power(N - 1, X, Acc * X);
true ->
power(N div 2, X * X, Acc)
end.
where X and Acc you substitute with matrices. X will be initiated with and Acc with identity I equals to .
One simple way is to calculate it iteratively instead of recursively. This will calculate F(n) in linear time.
def fib(n):
a,b = 0,1
for i in range(n):
a,b = a+b,a
return a
Hint: One way you achieve faster results is by using Binet's formula:
Here is a way of doing it in Python:
from decimal import *
def fib(n):
return int((Decimal(1.6180339)**Decimal(n)-Decimal(-0.6180339)**Decimal(n))/Decimal(2.236067977))
you can save your results and use them :
public static long[] fibs;
public long fib(int n) {
fibs = new long[n];
return internalFib(n);
}
public long internalFib(int n) {
if (n<=2) return 1;
fibs[n-1] = fibs[n-1]==0 ? internalFib(n-1) : fibs[n-1];
fibs[n-2] = fibs[n-2]==0 ? internalFib(n-2) : fibs[n-2];
return fibs[n-1]+fibs[n-2];
}
F(n) = (φ^n)/√5 and round to nearest integer, where φ is the golden ratio....
φ^n can be calculated in O(lg(n)) time hence F(n) can be calculated in O(lg(n)) time.
// D Programming Language
void vFibonacci ( const ulong X, const ulong Y, const int Limit ) {
// Equivalent : if ( Limit != 10 ). Former ( Limit ^ 0xA ) is More Efficient However.
if ( Limit ^ 0xA ) {
write ( Y, " " ) ;
vFibonacci ( Y, Y + X, Limit + 1 ) ;
} ;
} ;
// Call As
// By Default the Limit is 10 Numbers
vFibonacci ( 0, 1, 0 ) ;
EDIT: I actually think Hynek Vychodil's answer is superior to mine, but I'm leaving this here just in case someone is looking for an alternate method.
I think the other methods are all valid, but not optimal. Using Binet's formula should give you the right answer in principle, but rounding to the closest integer will give some problems for large values of n. The other solutions will unnecessarily recalculate the values upto n every time you call the function, and so the function is not optimized for repeated calling.
In my opinion the best thing to do is to define a global array and then to add new values to the array IF needed. In Python:
import numpy
fibo=numpy.array([1,1])
last_index=fibo.size
def fib(n):
global fibo,last_index
if (n>0):
if(n>last_index):
for i in range(last_index+1,n+1):
fibo=numpy.concatenate((fibo,numpy.array([fibo[i-2]+fibo[i-3]])))
last_index=fibo.size
return fibo[n-1]
else:
print "fib called for index less than 1"
quit()
Naturally, if you need to call fib for n>80 (approximately) then you will need to implement arbitrary precision integers, which is easy to do in python.
This will execute faster, O(n)
def fibo(n):
a, b = 0, 1
for i in range(n):
if i == 0:
print(i)
elif i == 1:
print(i)
else:
temp = a
a = b
b += temp
print(b)
n = int(input())
fibo(n)
Have you tried the latest Codility test?
I felt like there was an error in the definition of what a K-Sparse number is that left me confused and I wasn't sure what the right way to proceed was. So it starts out by defining a K-Sparse Number:
In the binary number "100100010000" there are at least two 0s between
any two consecutive 1s. In the binary number "100010000100010" there
are at least three 0s between any two consecutive 1s. A positive
integer N is called K-sparse if there are at least K 0s between any
two consecutive 1s in its binary representation. (My emphasis)
So the first number you see, 100100010000 is 2-sparse and the second one, 100010000100010, is 3-sparse. Pretty simple, but then it gets down into the algorithm:
Write a function:
class Solution { public int sparse_binary_count(String S,String T,int K); }
that, given:
string S containing a binary representation of some positive integer A,
string T containing a binary representation of some positive integer B,
a positive integer K.
returns the number of K-sparse integers within the range [A..B] (both
ends included)
and then states this test case:
For example, given S = "101" (A = 5), T = "1111" (B=15) and K=2, the
function should return 2, because there are just two 2-sparse integers
in the range [5..15], namely "1000" (i.e. 8) and "1001" (i.e. 9).
Basically it is saying that 8, or 1000 in base 2, is a 2-sparse number, even though it does not have two consecutive ones in its binary representation. What gives? Am I missing something here?
Tried solving that one. The assumption that the problem makes about binary representations of "power of two" numbers being K sparse by default is somewhat confusing and contrary.
What I understood was 8-->1000 is 2 power 3 so 8 is 3 sparse. 16-->10000 2 power 4 , and hence 4 sparse.
Even we assume it as true , and if you are interested in below is my solution code(C) for this problem. Doesn't handle some cases correctly, where there are powers of two numbers involved in between the two input numbers, trying to see if i can fix that:
int sparse_binary_count (const string &S,const string &T,int K)
{
char buf[50];
char *str1,*tptr,*Sstr,*Tstr;
int i,len1,len2,cnt=0;
long int num1,num2;
char *pend,*ch;
Sstr = (char *)S.c_str();
Tstr = (char *)T.c_str();
str1 = (char *)malloc(300001);
tptr = str1;
num1 = strtol(Sstr,&pend,2);
num2 = strtol(Tstr,&pend,2);
for(i=0;i<K;i++)
{
buf[i] = '0';
}
buf[i] = '\0';
for(i=num1;i<=num2;i++)
{
str1 = tptr;
if( (i & (i-1))==0)
{
if(i >= (pow((float)2,(float)K)))
{
cnt++;
continue;
}
}
str1 = myitoa(i,str1,2);
ch = strstr(str1,buf);
if(ch == NULL)
continue;
else
{
if((i % 2) != 0)
cnt++;
}
}
return cnt;
}
char* myitoa(int val, char *buf, int base){
int i = 299999;
int cnt=0;
for(; val && i ; --i, val /= base)
{
buf[i] = "0123456789abcdef"[val % base];
cnt++;
}
buf[i+cnt+1] = '\0';
return &buf[i+1];
}
There was an information within the test details, showing this specific case. According to this information, any power of 2 is considered K-sparse for any K.
You can solve this simply by binary operations on integers. You are even able to tell, that you will find no K-sparse integers bigger than some specific integer and lower than (or equal to) integer represented by T.
As far as I can see, you must pay also a lot of attention to the performance, as there are sometimes hundreds of milions of integers to be checked.
My own solution, written in Python, working very efficiently even on large ranges of integers and being successfully tested for many inputs, has failed. The results were not very descriptive, saying it does not work as required within question (although it meets all the requirements in my opinion).
/////////////////////////////////////
solutions with bitwise operators:
no of bits per int = 32 on 32 bit system,check for pattern (for K=2,
like 1001, 1000) in each shift and increment the count, repeat this
for all numbers in range.
///////////////////////////////////////////////////////
int KsparseNumbers(int a, int b, int s) {
int nbits = sizeof(int)*8;
int slen = 0;
int lslen = pow(2, s);
int scount = 0;
int i = 0;
for (; i < s; ++i) {
slen += pow(2, i);
}
printf("\n slen = %d\n", slen);
for(; a <= b; ++a) {
int num = a;
for(i = 0 ; i < nbits-2; ++i) {
if ( (num & slen) == 0 && (num & lslen) ) {
scount++;
printf("\n Scount = %d\n", scount);
break;
}
num >>=1;
}
}
return scount;
}
int main() {
printf("\n No of 2-sparse numbers between 5 and 15 = %d\n", KsparseNumbers(5, 15, 2));
}
Project Euler problem 14:
The following iterative sequence is
defined for the set of positive
integers:
n → n/2 (n is even) n → 3n + 1 (n is
odd)
Using the rule above and starting with
13, we generate the following
sequence: 13 → 40 → 20 → 10 → 5 → 16 →
8 → 4 → 2 → 1
It can be seen that this sequence
(starting at 13 and finishing at 1)
contains 10 terms. Although it has not
been proved yet (Collatz Problem), it
is thought that all starting numbers
finish at 1.
Which starting number, under one
million, produces the longest chain?
My first instinct is to create a function to calculate the chains, and run it with every number between 1 and 1 million. Obviously, that takes a long time. Way longer than solving this should take, according to Project Euler's "About" page. I've found several problems on Project Euler that involve large groups of numbers that a program running for hours didn't finish. Clearly, I'm doing something wrong.
How can I handle large groups of numbers quickly?
What am I missing here?
Have a read about memoization. The key insight is that if you've got a sequence starting A that has length 1001, and then you get a sequence B that produces an A, you don't to repeat all that work again.
This is the code in Mathematica, using memoization and recursion. Just four lines :)
f[x_] := f[x] = If[x == 1, 1, 1 + f[If[EvenQ[x], x/2, (3 x + 1)]]];
Block[{$RecursionLimit = 1000, a = 0, j},
Do[If[a < f[i], a = f[i]; j = i], {i, Reverse#Range#10^6}];
Print#a; Print[j];
]
Output .... chain length´525´ and the number is ... ohhhh ... font too small ! :)
BTW, here you can see a plot of the frequency for each chain length
Starting with 1,000,000, generate the chain. Keep track of each number that was generated in the chain, as you know for sure that their chain is smaller than the chain for the starting number. Once you reach 1, store the starting number along with its chain length. Take the next biggest number that has not being generated before, and repeat the process.
This will give you the list of numbers and chain length. Take the greatest chain length, and that's your answer.
I'll make some code to clarify.
public static long nextInChain(long n) {
if (n==1) return 1;
if (n%2==0) {
return n/2;
} else {
return (3 * n) + 1;
}
}
public static void main(String[] args) {
long iniTime=System.currentTimeMillis();
HashSet<Long> numbers=new HashSet<Long>();
HashMap<Long,Long> lenghts=new HashMap<Long, Long>();
long currentTry=1000000l;
int i=0;
do {
doTry(currentTry,numbers, lenghts);
currentTry=findNext(currentTry,numbers);
i++;
} while (currentTry!=0);
Set<Long> longs = lenghts.keySet();
long max=0;
long key=0;
for (Long aLong : longs) {
if (max < lenghts.get(aLong)) {
key = aLong;
max = lenghts.get(aLong);
}
}
System.out.println("number = " + key);
System.out.println("chain lenght = " + max);
System.out.println("Elapsed = " + ((System.currentTimeMillis()-iniTime)/1000));
}
private static long findNext(long currentTry, HashSet<Long> numbers) {
for(currentTry=currentTry-1;currentTry>=0;currentTry--) {
if (!numbers.contains(currentTry)) return currentTry;
}
return 0;
}
private static void doTry(Long tryNumber,HashSet<Long> numbers, HashMap<Long, Long> lenghts) {
long i=1;
long n=tryNumber;
do {
numbers.add(n);
n=nextInChain(n);
i++;
} while (n!=1);
lenghts.put(tryNumber,i);
}
Suppose you have a function CalcDistance(i) that calculates the "distance" to 1. For instance, CalcDistance(1) == 0 and CalcDistance(13) == 9. Here is a naive recursive implementation of this function (in C#):
public static int CalcDistance(long i)
{
if (i == 1)
return 0;
return (i % 2 == 0) ? CalcDistance(i / 2) + 1 : CalcDistance(3 * i + 1) + 1;
}
The problem is that this function has to calculate the distance of many numbers over and over again. You can make it a little bit smarter (and a lot faster) by giving it a memory. For instance, lets create a static array that can store the distance for the first million numbers:
static int[] list = new int[1000000];
We prefill each value in the list with -1 to indicate that the value for that position is not yet calculated. After this, we can optimize the CalcDistance() function:
public static int CalcDistance(long i)
{
if (i == 1)
return 0;
if (i >= 1000000)
return (i % 2 == 0) ? CalcDistance(i / 2) + 1 : CalcDistance(3 * i + 1) + 1;
if (list[i] == -1)
list[i] = (i % 2 == 0) ? CalcDistance(i / 2) + 1: CalcDistance(3 * i + 1) + 1;
return list[i];
}
If i >= 1000000, then we cannot use our list, so we must always calculate it. If i < 1000000, then we check if the value is in the list. If not, we calculate it first and store it in the list. Otherwise we just return the value from the list. With this code, it took about ~120ms to process all million numbers.
This is a very simple example of memoization. I use a simple list to store intermediate values in this example. You can use more advanced data structures like hashtables, vectors or graphs when appropriate.
Minimize how many levels deep your loops are, and use an efficient data structure such as IList or IDictionary, that can auto-resize itself when it needs to expand. If you use plain arrays they need to be copied to larger arrays as they expand - not nearly as efficient.
This variant doesn't use an HashMap but tries only to not repeat the first 1000000 numbers. I don't use an hashmap because the biggest number found is around 56 billions, and an hash map could crash.
I have already done some premature optimization. Instead of / I use >>, instead of % I use &. Instead of * I use some +.
void Main()
{
var elements = new bool[1000000];
int longestStart = -1;
int longestRun = -1;
long biggest = 0;
for (int i = elements.Length - 1; i >= 1; i--) {
if (elements[i]) {
continue;
}
elements[i] = true;
int currentStart = i;
int currentRun = 1;
long current = i;
while (current != 1) {
if (current > biggest) {
biggest = current;
}
if ((current & 1) == 0) {
current = current >> 1;
} else {
current = current + current + current + 1;
}
currentRun++;
if (current < elements.Length) {
elements[current] = true;
}
}
if (currentRun > longestRun) {
longestStart = i;
longestRun = currentRun;
}
}
Console.WriteLine("Longest Start: {0}, Run {1}", longestStart, longestRun);
Console.WriteLine("Biggest number: {0}", biggest);
}
What is the most efficient way to calculate the least common multiple of two integers?
I just came up with this, but it definitely leaves something to be desired.
int n=7, m=4, n1=n, m1=m;
while( m1 != n1 ){
if( m1 > n1 )
n1 += n;
else
m1 += m;
}
System.out.println( "lcm is " + m1 );
The least common multiple (lcm) of a and b is their product divided by their greatest common divisor (gcd) ( i.e. lcm(a, b) = ab/gcd(a,b)).
So, the question becomes, how to find the gcd? The Euclidean algorithm is generally how the gcd is computed. The direct implementation of the classic algorithm is efficient, but there are variations that take advantage of binary arithmetic to do a little better. See Knuth's "The Art of Computer Programming" Volume 2, "Seminumerical Algorithms" § 4.5.2.
Remember
The least common multiple is the least whole number that is a multiple of each of two or more numbers.
If you are trying to figure out the LCM of three integers, follow these steps:
**Find the LCM of 19, 21, and 42.**
Write the prime factorization for each number. 19 is a prime number. You do not need to factor 19.
21 = 3 × 7
42 = 2 × 3 × 7
19
Repeat each prime factor the greatest number of times it appears in any of the prime factorizations above.
2 × 3 × 7 × 19 = 798
The least common multiple of 21, 42, and 19 is 798.
I think that the approach of "reduction by the greatest common divider" should be faster. Start by calculating the GCD (e.g. using Euclid's algorithm), then divide the product of the two numbers by the GCD.
Best solution in C++ below without overflowing
#include <iostream>
using namespace std;
long long gcd(long long int a, long long int b){
if(b==0)
return a;
return gcd(b,a%b);
}
long long lcm(long long a,long long b){
if(a>b)
return (a/gcd(a,b))*b;
else
return (b/gcd(a,b))*a;
}
int main()
{
long long int a ,b ;
cin>>a>>b;
cout<<lcm(a,b)<<endl;
return 0;
}
First of all, you have to find the greatest common divisor
for(int i=1; i<=a && i<=b; i++) {
if (i % a == 0 && i % b == 0)
{
gcd = i;
}
}
After that, using the GCD you can easily find the least common multiple like this
lcm = a / gcd * b;
I don't know whether it is optimized or not, but probably the easiest one:
public void lcm(int a, int b)
{
if (a > b)
{
min = b;
max = a;
}
else
{
min = a;
max = b;
}
for (i = 1; i < max; i++)
{
if ((min*i)%max == 0)
{
res = min*i;
break;
}
}
Console.Write("{0}", res);
}
Here is a highly efficient approach to find the LCM of two numbers in python.
def gcd(a, b):
if min(a, b) == 0:
return max(a, b)
a_1 = max(a, b) % min(a, b)
return gcd(a_1, min(a, b))
def lcm(a, b):
return (a * b) // gcd(a, b)
Using Euclidean algorithm to find gcd and then calculating the lcm dividing a by the product of gcd and b worked for me.
int euclidgcd(int a, int b){
if(b==0)
return a;
int a_rem = a % b;
return euclidgcd(b, a_rem);
}
long long lcm(int a, int b) {
int gcd=euclidgcd(a, b);
return (a/gcd*b);
}
int main() {
int a, b;
std::cin >> a >> b;
std::cout << lcm(a, b) << std::endl;
return 0;
}
Take successive multiples of the larger of the two numbers until the result is a multiple of the smaller.
this might work..
public int LCM(int x, int y)
{
int larger = x>y? x: y,
smaller = x>y? y: x,
candidate = larger ;
while (candidate % smaller != 0) candidate += larger ;
return candidate;
}
C++ template. Compile time
#include <iostream>
const int lhs = 8, rhs = 12;
template<int n, int mod_lhs=n % lhs, int mod_rhs=n % rhs> struct calc {
calc() { }
};
template<int n> struct calc<n, 0, 0> {
calc() { std::cout << n << std::endl; }
};
template<int n, int mod_rhs> struct calc<n, 0, mod_rhs> {
calc() { }
};
template<int n, int mod_lhs> struct calc <n, mod_lhs, 0> {
calc() { }
};
template<int n> struct lcm {
lcm() {
lcm<n-1>();
calc<n>();
}
};
template<> struct lcm<0> {
lcm() {}
};
int main() {
lcm<lhs * rhs>();
}
Euclidean GCD code snippet
int findGCD(int a, int b) {
if(a < 0 || b < 0)
return -1;
if (a == 0)
return b;
else if (b == 0)
return a;
else
return findGCD(b, a % b);
}
Product of 2 numbers is equal to LCM * GCD or HCF. So best way to find LCM is to find GCD and divide the product with GCD. That is, LCM(a,b) = (a*b)/GCD(a,b).
There is no way more efficient than using a built-in function!
As of Python 3.8 lcm() function has been added in math library. And can be called with folowing signature:
math.lcm(*integers)
Returns the least common multiple of the specified integer arguments. If all arguments are nonzero, then the returned value is the smallest positive integer that is a multiple of all arguments. If any of the arguments is zero, then the returned value is 0. lcm() without arguments returns 1.
Extending #John D. Cook answer that is also marked answer for this question. ( https://stackoverflow.com/a/3154503/13272795), I am sharing algorithm to find LCM of n numbers, it maybe LCM of 2 numbers or any numbers. Source for this code is this
int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
// Returns LCM of array elements
ll findlcm(int arr[], int n)
{
// Initialize result
ll ans = arr[0];
// ans contains LCM of arr[0], ..arr[i]
// after i'th iteration,
for (int i = 1; i < n; i++)
ans = arr[i] * ans/gcd(arr[i], ans);
return ans;
}
Since we know the mathematic property which states that "product of LCM and HCF of any two numbers is equal to the product of the two numbers".
lets say X and Y are two integers,
then
X * Y = HCF(X, Y) * LCM(X, Y)
Now we can find LCM by knowing the HCF, which we can find through Euclidean Algorithm.
LCM(X, Y) = (X * Y) / HCF(X, Y)
Hope this will be efficient.
import java.util.*;
public class Hello {
public static int HCF(int X, int Y){
if(X == 0)return Y;
return HCF(Y%X, X);
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int X = scanner.nextInt(), Y = scanner.nextInt();
System.out.print((X * Y) / HCF(X, Y));
}
}
Yes, there are numerous way to calculate LCM such as using GCD (HCF).
You can apply prime decomposition such as (optimized/naive) Sieve Eratosthenes or find factor of prime number to compute GCD, which is way more faster than calculate LCM directly. Then as all said above, LCM(X, Y) = (X * Y) / GCD(X, Y)
I googled the same question, and found this Stackoverflow page,
however I come up with another simple solution using python
def find_lcm(numbers):
h = max(numbers)
lcm = h
def check(l, numbers):
remainders = [ l%n==0 for n in numbers]
return all(remainders)
while (check(lcm, numbers) == False):
lcm = lcm + h
return lcm
for
numbers = [120,150,135,225]
it will return 5400
numbers = [120,150,135,225]
print(find_lcm(numbers)) # will print 5400