Finding a reasonable (noise-free) maximum element in a vector - math

Consider a vector V riddled with noisy elements. What would be the fastest (or any) way to find a reasonable maximum element?
For e.g.,
V = [1 2 3 4 100 1000]
rmax = 4;
I was thinking of sorting the elements and finding the second differential {i.e. diff(diff(unique(V)))}.
EDIT: Sorry about the delay.
I can't post any representative data since it contains 6.15e5 elements. But here's a plot of the sorted elements.
By just looking at the plot, a piecewise linear function may work.
Anyway, regarding my previous conjecture about using differentials, here's a plot of diff(sort(V));
I hope it's clearer now.
EDIT: Just to be clear, the desired "maximum" value would be the value right before the step in the plot of the sorted elements.

NEW ANSWER:
Based on your plot of the sorted amplitudes, your diff(sort(V)) algorithm would probably work well. You would simply have to pick a threshold for what constitutes "too large" a difference between the sorted values. The first point in your diff(sort(V)) vector that exceeds that threshold is then used to get the threshold to use for V. For example:
diffThreshold = 2e5;
sortedVector = sort(V);
index = find(diff(sortedVector) > diffThreshold,1,'first');
signalThreshold = sortedVector(index);
Another alternative, if you're interested in toying with it, is to bin your data using HISTC. You would end up with groups of highly-populated bins at both low and high amplitudes, with sparsely-populated bins in between. It would then be a matter of deciding which bins you count as part of the low-amplitude group (such as the first group of bins that contain at least X counts). For example:
binEdges = min(V):1e7:max(V); % Create vector of bin edges
n = histc(V,binEdges); % Bin amplitude data
binThreshold = 100; % Pick threshold for number of elements in bin
index = find(n < binThreshold,1,'first'); % Find first bin whose count is low
signalThreshold = binEdges(index);
OLD ANSWER (for posterity):
Finding a "reasonable maximum element" is wholly dependent upon your definition of reasonable. There are many ways you could define a point as an outlier, such as simply picking a set of thresholds and ignoring everything outside of what you define as "reasonable". Assuming your data has a normal-ish distribution, you could probably use a simple data-driven thresholding approach for removing outliers from a vector V using the functions MEAN and STD:
nDevs = 2; % The number of standard deviations to use as a threshold
index = abs(V-mean(V)) <= nDevs*std(V); % Index of "reasonable" values
maxValue = max(V(index)); % Maximum of "reasonable" values

I would not sort then difference. If you have some reason to expect continuity or bounded change (the vector is of consecutive sensor readings), then sorting will destroy the time information (or whatever the vector index represents). Filtering by detecting large spikes isn't a bad idea, but you would want to compare the spike to a larger neighborhood (2nd difference effectively has you looking within a window of +-2).
You need to describe formally the expected information in the vector, and the type of noise.
You need to know the frequency and distribution of errors and non-errors. In the simplest model, the elements in your vector are independent and identically distributed, and errors are all or none (you randomly choose to store the true value, or an error). You should be able to figure out for each element the chance that it's accurate, vs. the chance that it's noise. This could be very easy (error data values are always in a certain range which doesn't overlap with non-error values), or very hard.
To simplify: don't make any assumptions about what kind of data an error produces (the worst case is: you can't rule out any of the error data points as ridiculous, but they're all at or above the maximum among non-error measurements). Then, if the probability of error is p, and your vector has n elements, then the chance that the kth highest element in the vector is less or equal to the true maximum is given by the cumulative binomial distribution - http://en.wikipedia.org/wiki/Binomial_distribution

First, pick your favorite method for identifying outliers...

If you expect the numbers to come from a normal distribution, you can use a say 2xsd (standard deviation) above the mean to determine your max.

Do you have access to bounds of your noise-free elements. For example, do you know that your noise-free elements are between -10 and 10 ?
In that case, you could remove noise, and then find the max
max( v( find(v<=10 & v>=-10) ) )

Related

Generating groups of skewed size but whose elements add to a fixed sum

I have some fixed number of people (e.g. 1000). I would like to split these 1000 people into some random number of classes Y (e.g. 5), but not equally. I want them to be distributed unevenly, according to some probability distribution that is heavily skewed (something like a power-law distribution).
My intuition is that I need to generate a distribution of probabilities that is (1) skewed and (2) which also adds up to 1.
My ad hoc solution was to generate random numbers from a power law distribution, multiply these by some scalar that ensures these add up to something close to my target number, adjust my target number to that new number, and then split accordingly.
But it seems awfully inelegant, and 'y_size' doesn't always sum to 1000, which requires looping through and trying again. What's a better approach?
require(poweRlaw)
x<-1000
y<-10
y_sizes<-rpldis(10,xmin=5,alpha=2,discrete_max=x)
y_sizes<-round(y_sizes * x/sum(y_sizes))
newx<-y_sizes #newx only approx = x rather than = x
people<-1:x
groups<-cut(
people,
c(0,cumsum(y_sizes))
) %>% as.numeric
data.frame(
people=people,
group=groups
)
The algorithm presented by Smith and Tromble in "Sampling Uniformly from the Unit Simplex" shows a solution. I have pseudocode on this algorithm in my section "Random Integers with a Given Positive Sum".

Automatically find the scaling factor of the x-axis using LsqFit (or other method)?

I have the following data: a vector B and a vector R. The vector B is the "independent" variable. For this pair, I have two data sets: One is an experimental measurement of Bex, Rex and the other is a simulation produced by me Bsim, Rsim. The simulation does not have any "scale" for the x-axis (the B vector). Therefore when I am trying to fit my curve to the experiment, I have to find out a scaling parameter B0 "by eye", and with this number B0 I multiply the entire Bsim vector and simply plot(Bsim, Rsim, Bex, Rex).
I wanted to use the package LsqFit to make the procedure automatic and more accurate. However I am having trouble in understanding how I could use it to find the scaling on the independent variable.
My first thought was to just "invert" the roles of B and R. However, there are two issues that I think make matters worse: 1) the R curve/data is not monotonous, 2) the experimental data are much more "dense" (they have more data-points: my simulation has 120 points in total, the experiments have some thousands).
Below I give an example if what I am trying to accomplish (of course, the answer need not use LsqFit). I also attach two figures that demonstrate everything very clearly.
#= stuff happened before this point =#
Bsim, Rsim = load(simulation)
Bex, Rex = load(experiment)
#this is what I want to do:
some_model(x, p) = ???
fit = curve_fit(some_model, Bex, Rex, [3.5])
B0 = fit.param[1]
#this is what I currently do by trail and error:
B0 = 3.85 #this is what I currently do by trial and error
plot(B0*Bsim, Rsim, Bex, Rex)
P.S.: The R curves (dependent variables) are both normalized by their maximum value because their scaling is not important.
A simple approach iff you can always expect both your experiment and simulation to feature one high peak, and you're sure that there's only a scaling factor rather than also an offset, is to simply multiply your Bsim vector by mode_rex / mode_rsim (e.g. in your example, mode_rsim = 1, and mode_rex = 4, so multiply Bsim by 4. But I'm sure you've thought of this already.
For a more general approach, one way is as follows:
add and load Interpolations package
Create a grid to interpolate over, e.g. Grid = 0:0.01:Bex[end]
interpolate Rex over that grid, e.g.
RexInterp = interpolate( (Bex,), Rex, Gridded(Linear()));
RexGridVec = RexInterp[Grid];
interpolate Rsim over the same grid, but introduce your multiplier on the Bsim "knots", e.g.
Multiplier = 0.1;
RsimInterp = interpolate( (Multiplier * Bsim,), Rsim, Gridded(Linear()));
RsimGridVec = RsimInterp[Grid]
Now you can calculate a square error value between RsimGridVec and RexGridVec, e.g.
SqErr = sum((RsimGridVec - RexGridVec).^2)
If you follow this technique, then if you create a loop for a multiplier range (say 0:0.01:10), and get the square error associated with each multiplier, you can find out the multiplier for which the square error is the minimum.
In theory if you wanted to find the optimal for a particular offset too, you can make it the outer loop for a range of offsets. Mind you this is a brute force approach, but it be reasonably efficient judging by the vectors in your graph.

Mathematical representation of a set of points in N dimensional space?

Given some x data points in an N dimensional space, I am trying to find a fixed length representation that could describe any subset s of those x points? For example the mean of the s subset could describe that subset, but it is not unique for that subset only, that is to say, other points in the space could yield the same mean therefore mean is not a unique identifier. Could anyone tell me of a unique measure that could describe the points without being number of points dependent?
In short - it is impossible (as you would achieve infinite noiseless compression). You have to either have varied length representation (or fixed length with length being proportional to maximum number of points) or dealing with "collisions" (as your mapping will not be injective). In the first scenario you simply can store coordinates of each point. In the second one you approximate your point clouds with more and more complex descriptors to balance collisions and memory usage, some posibilities are:
storing mean and covariance (so basically perofming maximum likelihood estimation over Gaussian families)
performing some fixed-complexity density estimation like Gaussian Mixture Model or training a generative Neural Network
use set of simple geometrical/algebraical properties such as:
number of points
mean, max, min, median distance between each pair of points
etc.
Any subset can be identified by a bit mask of length ceiling(lg(x)), where bit i is 1 if the corresponding element belongs to the subset. There is no fixed-length representation that is not a function of x.
EDIT
I was wrong. PCA is a good way to perform dimensionality reduction for this problem, but it won't work for some sets.
However, you can almost do it. Where "almost" is formally defined by the Johnson-Lindenstrauss Lemma, which states that for a given large dimension N, there exists a much lower dimension n, and a linear transformation that maps each point from N to n, while keeping the Euclidean distance between every pair of points of the set within some error ε from the original. Such linear transformation is called the JL Transform.
In other words, your problem is only solvable for sets of points where each pair of points are separated by at least ε. For this case, the JL Transform gives you one possible solution. Moreover, there exists a relationship between N, n and ε (see the lemma), such that, for example, if N=100, the JL Transform can map each point to a point in 5D (n=5), an uniquely identify each subset, if and only if, the minimum distance between any pair of points in the original set is at least ~2.8 (i.e. the points are sufficiently different).
Note that n depends only on N and the minimum distance between any pair of points in the original set. It does not depend on the number of points x, so it is a solution to your problem, albeit some constraints.

Simple 2 or 3 parameters float PRNG formula that changes faster than the float resolution and produces white noise?

I'm looking for a 2 or 3 parameters math formula with the following characteristics:
Simple (the fewest amount of operations the better)
Random output (non-periodic)
Normalized (Meaning the output will never be outside a given range; doesn't matter the range since once I know the range I can just divide and add/subtract to get it into the 0 to 1 range I'm looking for)
White noise (the more samples you get the more evenly distributed the outputs get across the range of possible output values, with no gaps or hotspots, to the extent permitted by the floating-point standard)
Random all the way down (no gradual changes between output values even if the inputs are changed by the smallest amount the float standard will allow. I understand that given the nature of randomness, it is possible two output values might be close together once in a while, but that must only happen by coincidence, and not because of smoothness or periodicity)
Uses only the operations listed bellow (but of course, any operations that can be done by a combination of the ones listed bellow are also allowed)
I need this because I need a good source of controllable randomness for some experiments I'm doing with Cycles material nodes in Blender. And since that is where the formula will be implemented, the only operations I have available are:
Addition
Subtraction
Multiplication
Division
Power (X to the power of Y)
Logarithm (I think it's X Log Y; I'm not very familiar with the logarithm operation, so I'm not 100% sure if that is enough to specify which type of logarithm it is; let me know if you need more information about it)
Sine
Cosine
Tangent
Arcsine
Arccosine
Arctangent (not Atan2, but that can be created by combining operations if necessary)
Minimum (Returns the lowest of 2 numbers)
Maximum (Returns the highest of 2 numbers)
Round (Returns the closest round number to the input)
Less-than (Returns 1 if X is less than Y, zero otherwise)
Greater-than (Returns 1 if X is more than Y, zero otherwise)
Modulo (Produces a sawtooth pattern of period Y; for positive X values it's in the 0 to Y range, and for negative values of X it's in the -Y to zero range)
Absolute (strips the sign of the input value, makes it positive if it was negative, doesn't do anything if it's already positive)
There is no iteration nor looping functionality available (and of course, branching can only be done by calculating all the branches and then doing something like multiplying the results of the branches not meant to be taken by zero and then adding the results of all of them together).

How can I measure volatility?

I am trying to determine the volatility of a rank.
More specifically, the rank can be from 1 to 16 over X data points (the number of data points varies with a maximum of 30).
I'd like to be able to measure this volatility and then map it to a percentage somehow.
I'm not a math geek so please don't spit out complex formulas at me :)
I just want to code this in the simplest manner possible.
I think the easiest first pass would be Standard Deviation over X data points.
I think that Standard Deviation is what you're looking for. There are some formulas to deal with, but it's not hard to calculate.
Given that you have a small sample set (you say a maximum of 30 data points) and that the standard deviation is easily affected by outliers, I would suggest using the interquartile range as a measure of volatility. It is a trivial calculation and would give a meaningful representation of the data spread over your small sample set.
If you want something really simple you could take the average of the absolute differences between successive ranks as volatility. This has the added bonus of being recursive. Us this for initialisation:
double sum=0;
for (int i=1; i<N; i++)
{
sum += abs(ranks[i]-ranks[i-1]);
}
double volatility = sum/N;
Then for updating the volatility if a new rank at time N+1 is available you introduce the parameter K where K determines the speed with which your volatility measurement adapts to changes in volatility. Higher K means slower adaption, so K can be though of as a "decay time" or somesuch:
double K=14 //higher = slower change in volatility over time.
double newvolatility;
newvolatility = (oldvolatility * (K-1) + abs(rank[N+1] - rank[N]))/K;
This is also known as a moving average (of the absolute differences in ranks in this case).

Resources