I want to store data which is dynamic in nature. The user can create forms for capturing data. The data can be stored in various formats as per the configuration. The major ones are a RDBMS and a XML file. XML file format is pretty easy to store dynamic data and load it back.
I am not able to devise a data structure for a RDBMS. I currently store data in a key-value format and do a PIVOT for fetching it. For fields which have multiple values I store them as CSV in the value column.
Is there a better way for storing such dynamic data which helps in performance and extensibility?
Without knowing more about your application it is hard to say.
You could save the data as XML in a BLOB in the database. That would mean all your data was (sorta) handled the same way (as XML).
The other approach would be to change your database structure to hold nested data (which appears to be your problem). So instead of a straight key-value table you might hace a table structure that could reference itself (e.g. parent - key - value) and have a header table to hold the top level keys.
The real question though is why you want to use a database to hold the data. It seems the real problem is trying to fit a round peg into a square hole (or vice versa).
Related
I have some data contained in a CSV file, I need to efficiently access that information and want to importing it into my existing database.
I am wondering if I can make a pre-loaded database with the tables I need and then build the rest of the database on top of it (or make a second separate connection), or load the database from the CSV files on first startup.
What would be the preferred method and either way how would can I achieve it efficiently?
p.s 2 files are about 1000 lines long and 2 columns wide which seems to me to be considered fairly small... and the other ones really shouldn't be more then 10 lines long and 6-7 columns wide
Edit: realised I have a bunch of tables that need to be updated yearly, so any form that risks the user input data is unacceptable so using the existing DB is a not an option...
I have multiple flatfiles (CSV) (with multiple records) where files will be received randomly. I have to combine them (records) with unique ID fields.
How can I combine them, if there is no common unique field for all files, and I don't know which one will be received first?
Here are some files examples:
In real there are 16 files.
Fields and records are much more then in this example.
I would avoid trying to do this purely in XSLT/BizTalk orchestrations/C# code. These are fairly simple flat files. Load them into SQL, and create a view to join your data up.
You can still use BizTalk to pickup/load the files. You can also still use BizTalk to execute the view or procedure that joins the data up and sends your final message.
There are a few questions that might help guide how this would work here:
When do you want to join the data together? What triggers that (a time of day, a certain number of messages received, a certain type of message, a particular record, etc)? How will BizTalk know when it's received enough/the right data to join?
What does a canonical version of this data look like? Does all of the data from all of these files truly get correlated into one entity (e.g. a "Trade" or a "Transfer" etc.)?
I'd probably start with defining my canonical entity, and then look towards the path of getting a "complete" picture of that canonical entity by using SQL for this kind of case.
I'm currently trying to design a database and I'm not too sure about the best way to approach a dynamically sized array field of one of my objects. My first thought is to use a column in my object to store an array of integers. However the more I read, the more I think this isn't the best option. Concrete example wise, I have a player object that stores 0 to many items, which are represented by an integer. What is the best way to represent this?
If that collection of values is atomic, store them together. Meaning, if you always care about the entire group, if you never search for nested values and never sort by nested values, then they should be stored together as a single field value.
If not, they should be stored in a separate table, each value bring a row , each assigned the parent ID (foreign key) of a record on the other table that "owns" them as a group.
For example, a clump of readings from a scientific instrument that are only ever used together as a collection for analysis should be stored together in a field. In contrast, a list of phone numbers for a customer that may often need to be queried for an individual number should probably be broken up into single phone number per row in a related child table.
For more info, search on the term "database normalization".
Some databases, support an array as a data type. For example, Postgres allows you to define a column as a one-dimension array, or even a two dimension array.
If your database does not support array as a type of column definition, then you may have three alternatives:
XML/JSONTransform you data collection into an XML or JSON document if your database your database supports that type. For example, Postgres has basic support for storing, retrieving, and non-indexed searching of XML using XPath. And Postgres offers excellent industry-leading support for JSON as a data type including indexed support on nested values with its jsonb data type where incoming JSON is parsed and stored in an internally-defined binary format. This feature addresses one of the main reasons people consider using the so-called “NoSQL” systems, looking to store and search semi-structured data.
TextCreate a string representation of your data to store as text.
BLOBCreate a binary value to store as a binary large object (BLOB).
This is a more in depth follow up to a question I asked yesterday about storing historical data ( Storing data in a side table that may change in its main table ) and I'm trying to narrow down my question.
If you have a table that represents a data object at the application level and need that table for historical purposes is it considered bad practice to set it up to where the information can't be deleted. Basically I have a table representing safety requirements for a worker and I want to make it so that these requirements can never be deleted or changed. So if a change needs to made a new record is created.
Is this not a good idea? What are the best practice to deal with data like this? I have a table with historical safety training data and it points to the table with requirement data (as well as some other key tables) so I can't let the requirements be changed or the historical table will be pointing to the wrong information.
Is this not a good idea?
Your scenario sounds perfectly valid to me. If you have historical data that you need to keep there are various ways to meeting that requirement.
Option 1:
Store all historical data and current data in one table (make sure you store a creation date so you know what's old and what's new). When you need to retrieve the most recent record for someone, just base it on the most recent date that exists in the table.
Option 2:
Store all historical data in a separate table and keep current data in another. This might be beneficial if you're working with millions of records so you don't degrade performance of any applications built on top of it. Either at the time of creating a new record or through some nightly job you can move old data into the other table to keep your current table lightweight.
Here is one alternative, that is not necessarily "better" but is something to keep in mind...
You could have separate "active" and "historical" tables, then create a trigger so whenever a row in the active table is modified or deleted, the old row values are copied to the historical table, together with the timestamp.
This way, the application can work with the active table in a natural way, while the accurate history of changes is automatically generated in the historical table. And since this works at the DBMS level, you'll be more resistant to application bugs.
Of course, things can get much messier if you need to maintain a history of the whole graph of objects (i.e. several tables linked via FOREIGN KEYs). Probably the simplest option is to simply forgo referential integrity for historical tables and just keep it for active tables.
If that's not enough for your project's needs, you'll have to somehow represent a "snapshot" of the whole graph at the moment of change. One way to do it is to treat the connections as versioned objects too. Alternatively, you could just copy all the connections with each version of the endpoint object. Either case will complicate your logic significantly.
I have an ASP.NET data entry application that is used by multiple clients. The application consists of multiple data entry modules that are common to all clients.
I now have multiple clients that want their own custom module added which will typically consist of a dozen or so data points. Some values will be text, others numeric, some will be dropdown selections, etc.
I'm in need of suggestions for handling the data model for this. I have two thoughts on how to handle. First would be to create a new table for each new module for each client. This is pretty clean but I don't particular like it. My other thought is to have one table with columns for each custom data point for each client. This table would end up with a lot of columns and a lot of NULL values. I don't really like either solution and suspect there's a better way to do this, so any feedback you have will be appreciated.
I'm using SQL Server 2008.
As always with these questions, "it depends".
The dreaded key-value table.
This approach relies on a table which lists the fields and their values as individual records.
CustomFields(clientId int, fieldName sysname, fieldValue varbinary)
Benefits:
Infinitely flexible
Easy to implement
Easy to index
non existing values take no space
Disadvantage:
Showing a list of all records with complete field list is a very dirty query
The Microsoft way
The Microsoft way of this kind of problem is "sparse columns" (introduced in SQL 2008)
Benefits:
Blessed by the people who design SQL Server
records can be queried without having to apply fancy pivots
Fields without data don't take space on disk
Disadvantage:
Many technical restrictions
a new field requires DML
The xml tax
You can add an xml field to the table which will be used to store all the "extra" fields.
Benefits:
unlimited flexibility
can be indexed
storage efficient (when it fits in a page)
With some xpath gymnastics the fields can be included in a flat recordset.
schema can be enforced with schema collections
Disadvantages:
not clearly visible what's in the field
xquery support in SQL Server has gaps which makes getting your data a real nightmare sometimes
There are maybe more solutions, but to me these are the main contenders. Which one to choose:
key-value seems appropriate when the number of extra fields is limited. (say no more than 10-20 or so)
Sparse columns is more suitable for data with many properties which are filled out infrequent. Sounds more appropriate when you can have many extra fields
xml column is very flexible, but a pain to query. Appropriate for solutions that write rarely and query rarely. ie: don't run aggregates etc on the data stored in this field.
I'd suggest you go with the first option you described. I wouldn't over think it. The second option you outlined would be a bad idea in my opinion.
If there are fields common to all the modules you're adding to the system you should consider keeping those in a single table then have other tables with the fields specific to a particular module related back to the primary key in the common table. This is basically table inheritance (http://www.sqlteam.com/article/implementing-table-inheritance-in-sql-server) and will centralize the common module data and make it easier to query across modules.