How to plot implicit equations - graph

What is the usual method or algorithm used to plot implicit equations of 2 variables?
I am talking about equations such as,
sin(x*y)*y = 20
x*x - y*y = 1
Etc.
Does anyone know how Maple or Matlab do this? My target language is C#.
Many thanks!

One way to do this is to sample the function on a regular, 2D grid. Then you can run an algorithm like marching squares on the resulting 2D grid to draw iso-contours.
In a related question, someone also linked to the gnuplot source code. It's fairly complex, but might be worth going through. You can find it here: http://www.gnuplot.info/

Iterate the value of x across the range you want to plot. For each fixed value of x, solve the equation numerically using a method such as interval bisection or the Newton-Raphson method (for which you can calculate the derivative using implicit differentiation, or perhaps differentiate numerically). This will give you the corresponding value of y for a given x. In most cases, you won't need too many iterations to get a very precise result, and it's very efficient anyway.
Note that you will need to transform the equation into the form f(x) = 0, though this is always trivial. The nice thing about this method is that it works just as well the other way round (i.e. taking a fixed range of y and computing x per value).

There're multiple methods. The easiest algorithm I could find is descripted here:
https://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1986b-implicit-fns.pdf and describes what Noldorin has described you.
The most complex one, and seems to be the one that can actually solve a lot of special cases is described here:
https://academic.oup.com/comjnl/article/33/5/402/480353

i think,
in matlab you give array as input for x.
then for every x, it calculates y.
then draws line from x0,y0 to x1, y1
then draws line from x1,y1 to x2, y2
...
...

Related

Recursive arc-length reparameterization of an arbitrary curve

I have a 3D parametric curve defined as P(t) = [x(t), y(t), z(t)].
I'm looking for a function to reparametrize this curve in terms of arc-length. I'm using OpenSCAD, which is a declarative language with no variables (constants only), so the solution needs to work recursively (and with no variables aside from global constants and function arguments).
More precisely, I need to write a function Q(s) that gives the point on P that is (approximately) distance s along the arc from the point where t=0. I already have functions for numeric integration and derivation that can be incorporated into the answer.
Any suggestions would be greatly appreciated!
p.s It's not possible to pass functions as a parameter in OpenSCAD, I usually get around this by just using global declarations.
The length of an arc sigma between parameter values t=0 and t=T can be computed by solving the following integral:
sigma(T) = Integral[ sqrt[ x'(t)^2 + y'(t)^2 + z'(t)^2 ],{t,0,T}]
If you want to parametrize your curve with the arc-length, you have to invert this formula. This is unfortunately rather difficult from a mathematics point of view. The simplest method is to implement a simple bisection method as a numeric solver. The computation method quickly becomes heavy so reusing previous results is ideal. The secant method is also useful as the derivative of sigma(t) is already known and equals
sigma'(t) = sqrt[ x'(t)^2 + y'(t)^2 + z'(t)^2]
Maybe not really the most helpful answer, but I hope it gives you some ideas. I cannot help you with the OpenSCad implementation.

How do I efficiently find the maximum value in an array containing values of a smooth function?

I have a function that takes a floating point number and returns a floating point number. It can be assumed that if you were to graph the output of this function it would be 'n' shaped, ie. there would be a single maximum point, and no other points on the function with a zero slope. We also know that input value that yields this maximum output will lie between two known points, perhaps 0.0 and 1.0.
I need to efficiently find the input value that yields the maximum output value to some degree of approximation, without doing an exhaustive search.
I'm looking for something similar to Newton's Method which finds the roots of a function, but since my function is opaque I can't get its derivative.
I would like to down-thumb all the other answers so far, for various reasons, but I won't.
An excellent and efficient method for minimizing (or maximizing) smooth functions when derivatives are not available is parabolic interpolation. It is common to write the algorithm so it temporarily switches to the golden-section search (Brent's minimizer) when parabolic interpolation does not progress as fast as golden-section would.
I wrote such an algorithm in C++. Any offers?
UPDATE: There is a C version of the Brent minimizer in GSL. The archives are here: ftp://ftp.club.cc.cmu.edu/gnu/gsl/ Note that it will be covered by some flavor of GNU "copyleft."
As I write this, the latest-and-greatest appears to be gsl-1.14.tar.gz. The minimizer is located in the file gsl-1.14/min/brent.c. It appears to have termination criteria similar to what I implemented. I have not studied how it decides to switch to golden section, but for the OP, that is probably moot.
UPDATE 2: I googled up a public domain java version, translated from FORTRAN. I cannot vouch for its quality. http://www1.fpl.fs.fed.us/Fmin.java I notice that the hard-coded machine efficiency ("machine precision" in the comments) is 1/2 the value for a typical PC today. Change the value of eps to 2.22045e-16.
Edit 2: The method described in Jive Dadson is a better way to go about this. I'm leaving my answer up since it's easier to implement, if speed isn't too much of an issue.
Use a form of binary search, combined with numeric derivative approximations.
Given the interval [a, b], let x = (a + b) /2
Let epsilon be something very small.
Is (f(x + epsilon) - f(x)) positive? If yes, the function is still growing at x, so you recursively search the interval [x, b]
Otherwise, search the interval [a, x].
There might be a problem if the max lies between x and x + epsilon, but you might give this a try.
Edit: The advantage to this approach is that it exploits the known properties of the function in question. That is, I assumed by "n"-shaped, you meant, increasing-max-decreasing. Here's some Python code I wrote to test the algorithm:
def f(x):
return -x * (x - 1.0)
def findMax(function, a, b, maxSlope):
x = (a + b) / 2.0
e = 0.0001
slope = (function(x + e) - function(x)) / e
if abs(slope) < maxSlope:
return x
if slope > 0:
return findMax(function, x, b, maxSlope)
else:
return findMax(function, a, x, maxSlope)
Typing findMax(f, 0, 3, 0.01) should return 0.504, as desired.
For optimizing a concave function, which is the type of function you are talking about, without evaluating the derivative I would use the secant method.
Given the two initial values x[0]=0.0 and x[1]=1.0 I would proceed to compute the next approximations as:
def next_x(x, xprev):
return x - f(x) * (x - xprev) / (f(x) - f(xprev))
and thus compute x[2], x[3], ... until the change in x becomes small enough.
Edit: As Jive explains, this solution is for root finding which is not the question posed. For optimization the proper solution is the Brent minimizer as explained in his answer.
The Levenberg-Marquardt algorithm is a Newton's method like optimizer. It has a C/C++ implementation levmar that doesn't require you to define the derivative function. Instead it will evaluate the objective function in the current neighborhood to move to the maximum.
BTW: this website appears to be updated since I last visited it, hope it's even the same one I remembered. Apparently it now also support other languages.
Given that it's only a function of a single variable and has one extremum in the interval, you don't really need Newton's method. Some sort of line search algorithm should suffice. This wikipedia article is actually not a bad starting point, if short on details. Note in particular that you could just use the method described under "direct search", starting with the end points of your interval as your two points.
I'm not sure if you'd consider that an "exhaustive search", but it should actually be pretty fast I think for this sort of function (that is, a continuous, smooth function with only one local extremum in the given interval).
You could reduce it to a simple linear fit on the delta's, finding the place where it crosses the x axis. Linear fit can be done very quickly.
Or just take 3 points (left/top/right) and fix the parabola.
It depends mostly on the nature of the underlying relation between x and y, I think.
edit this is in case you have an array of values like the question's title states. When you have a function take Newton-Raphson.

Function for returning a list of points on a Bezier curve at equal arclength

Someone somewhere has had to solve this problem. I can find many a great website explaining this problem and how to solve it. While I'm sure they are well written and make sense to math whizzes, that isn't me. And while I might understand in a vague sort of way, I do not understand how to turn that math into a function that I can use.
So I beg of you, if you have a function that can do this, in any language, (sure even fortran or heck 6502 assembler) - please help me out.
prefer an analytical to iterative solution
EDIT: Meant to specify that its a cubic bezier I'm trying to work with.
What you're asking for is the inverse of the arc length function. So, given a curve B, you want a function Linv(len) that returns a t between 0 and 1 such that the arc length of the curve between 0 and t is len.
If you had this function your problem is really easy to solve. Let B(0) be the first point. To find the next point, you'd simply compute B(Linv(w)) where w is the "equal arclength" that you refer to. To get the next point, just evaluate B(Linv(2*w)) and so on, until Linv(n*w) becomes greater than 1.
I've had to deal with this problem recently. I've come up with, or come across a few solutions, none of which are satisfactory to me (but maybe they will be for you).
Now, this is a bit complicated, so let me just give you the link to the source code first:
http://icedtea.classpath.org/~dlila/webrevs/perfWebrev/webrev/raw_files/new/src/share/classes/sun/java2d/pisces/Dasher.java. What you want is in the LengthIterator class. You shouldn't have to look at any other parts of the file. There are a bunch of methods that are defined in another file. To get to them just cut out everything from /raw_files/ to the end of the URL. This is how you use it. Initialize the object on a curve. Then to get the parameter of a point with arc length L from the beginning of the curve just call next(L) (to get the actual point just evaluate your curve at this parameter, using deCasteljau's algorithm, or zneak's suggestion). Every subsequent call of next(x) moves you a distance of x along the curve compared to your last position. next returns a negative number when you run out of curve.
Explanation of code: so, I needed a t value such that B(0) to B(t) would have length LEN (where LEN is known). I simply flattened the curve. So, just subdivide the curve recursively until each curve is close enough to a line (you can test for this by comparing the length of the control polygon to the length of the line joining the end points). You can compute the length of this sub-curve as (controlPolyLength + endPointsSegmentLen)/2. Add all these lengths to an accumulator, and stop the recursion when the accumulator value is >= LEN. Now, call the last subcurve C and let [t0, t1] be its domain. You know that the t you want is t0 <= t < t1, and you know the length from B(0) to B(t0) - call this value L0t0. So, now you need to find a t such that C(0) to C(t) has length LEN-L0t0. This is exactly the problem we started with, but on a smaller scale. We could use recursion, but that would be horribly slow, so instead we just use the fact that C is a very flat curve. We pretend C is a line, and compute the point at t using P=C(0)+((LEN-L0t0)/length(C))*(C(1)-C(0)). This point doesn't actually lie on the curve because it is on the line C(0)->C(1), but it's very close to the point we want. So, we just solve Bx(t)=Px and By(t)=Py. This is just finding cubic roots, which has a closed source solution, but I just used Newton's method. Now we have the t we want, and we can just compute C(t), which is the actual point.
I should mention that a few months ago I skimmed through a paper that had another solution to this that found an approximation to the natural parameterization of the curve. The author has posted a link to it here: Equidistant points across Bezier curves

FFT in MATLAB ( I need help)

Could anybody please tell me whether I can perform this integration with FFT in MATLAB? How?
Please answer as soon as possible with the details.
Suppose there exists 2 rectangular planes, say, input accessed by x1 and y1 variables and the resulting plane is output accessed by tetax and tetay variables.
This is the integral in pseudo-code:
output(tetax,tetay)=double integral of [input(x1,y1)*exp(-j*k*((tetax*x1)+(tetay*y1)))](dx1)(dy1)
where: -1<= x1 <= 1 and -1<= y1 <= 1
tetax and tetay should change so they can span the final rectangular plane.
I would really appreciate a prompt and detailed answer.
Since this looks like homework, I'll just give some hints. The trick is to rewrite the integral to look like a normal 2D Fourier integral of a function.
There are two issues:
1) You need to combine k and your tetax, tetay to look like a normal wavenumber (and compensate for this in the appropriate way).
2) You need to deal with the limits being in the range (-1,1) whereas the Fourier integral needs them in the range (-inf, +inf). To do this, pick a function to go inside the Fourier integral that will make this work.
Then it will be obvious how to do this in Matlab. It's a cute problem and I hope this doesn't ruin it (and if people think it does, let me know and I'll delete this answer, or delete it for me if you can).
Your problem looks like a Fourier transform, not a discrete Fourier transform (DFT). A FFT calculates the latter type of transform.
Briefly, a Fourier transform involves an integral, while a DFT involves a sum.

Approximating nonparametric cubic Bezier

What is the best way to approximate a cubic Bezier curve? Ideally I would want a function y(x) which would give the exact y value for any given x, but this would involve solving a cubic equation for every x value, which is too slow for my needs, and there may be numerical stability issues as well with this approach.
Would this be a good solution?
Just solve the cubic.
If you're talking about Bezier plane curves, where x(t) and y(t) are cubic polynomials, then y(x) might be undefined or have multiple values. An extreme degenerate case would be the line x= 1.0, which can be expressed as a cubic Bezier (control point 2 is the same as end point 1; control point 3 is the same as end point 4). In that case, y(x) has no solutions for x != 1.0, and infinite solutions for x == 1.0.
A method of recursive subdivision will work, but I would expect it to be much slower than just solving the cubic. (Unless you're working with some sort of embedded processor with unusually poor floating-point capacity.)
You should have no trouble finding code that solves a cubic that has already been thoroughly tested and debuged. If you implement your own solution using recursive subdivision, you won't have that advantage.
Finally, yes, there may be numerical stablility problems, like when the point you want is near a tangent, but a subdivision method won't make those go away. It will just make them less obvious.
EDIT: responding to your comment, but I need more than 300 characters.
I'm only dealing with bezier curves where y(x) has only one (real) root. Regarding numerical stability, using the formula from http://en.wikipedia.org/wiki/Cubic_equation#Summary, it would appear that there might be problems if u is very small. – jtxx000
The wackypedia article is math with no code. I suspect you can find some cookbook code that's more ready-to-use somewhere. Maybe Numerical Recipies or ACM collected algorithms link text.
To your specific question, and using the same notation as the article, u is only zero or near zero when p is also zero or near zero. They're related by the equation:
u^^6 + q u^^3 == p^^3 /27
Near zero, you can use the approximation:
q u^^3 == p^^3 /27
or p / 3u == cube root of q
So the computation of x from u should contain something like:
(fabs(u) >= somesmallvalue) ? (p / u / 3.0) : cuberoot (q)
How "near" zero is near? Depends on how much accuracy you need. You could spend some quality time with Maple or Matlab looking at how much error is introduced for what magnitudes of u. Of course, only you know how much accuracy you need.
The article gives 3 formulas for u for the 3 roots of the cubic. Given the three u values, you can get the 3 corresponding x values. The 3 values for u and x are all complex numbers with an imaginary component. If you're sure that there has to be only one real solution, then you expect one of the roots to have a zero imaginary component, and the other two to be complex conjugates. It looks like you have to compute all three and then pick the real one. (Note that a complex u can correspond to a real x!) However, there's another numerical stability problem there: floating-point arithmetic being what it is, the imaginary component of the real solution will not be exactly zero, and the imaginary components of the non-real roots can be arbitrarily close to zero. So numeric round-off can result in you picking the wrong root. It would be helpfull if there's some sanity check from your application that you could apply there.
If you do pick the right root, one or more iterations of Newton-Raphson can improve it's accuracy a lot.
Yes, de Casteljau algorithm would work for you. However, I don't know if it will be faster than solving the cubic equation by Cardano's method.

Resources