My solution to exercise 1.11 of SICP is:
(define (f n)
(if (< n 3)
n
(+ (f (- n 1)) (* 2 (f (- n 2))) (* 3 (f (- n 3))))
))
As expected, a evaluation such as (f 100) takes a long time. I was wondering if there was a way to improve this code (without foregoing the recursion), and/or take advantage of multi-core box. I am using 'mit-scheme'.
The exercise tells you to write two functions, one that computes f "by means of a recursive process", and another that computes f "by means of an iterative process". You did the recursive one. Since this function is very similar to the fib function given in the examples of the section you linked to, you should be able to figure this out by looking at the recursive and iterative examples of the fib function:
; Recursive
(define (fib n)
(cond ((= n 0) 0)
((= n 1) 1)
(else (+ (fib (- n 1))
(fib (- n 2))))))
; Iterative
(define (fib n)
(fib-iter 1 0 n))
(define (fib-iter a b count)
(if (= count 0)
b
(fib-iter (+ a b) a (- count 1))))
In this case you would define an f-iter function which would take a, b, and c arguments as well as a count argument.
Here is the f-iter function. Notice the similarity to fib-iter:
(define (f-iter a b c count)
(if (= count 0)
c
(f-iter (+ a (* 2 b) (* 3 c)) a b (- count 1))))
And through a little trial and error, I found that a, b, and c should be initialized to 2, 1, and 0 respectively, which also follows the pattern of the fib function initializing a and b to 1 and 0. So f looks like this:
(define (f n)
(f-iter 2 1 0 n))
Note: f-iter is still a recursive function but because of the way Scheme works, it runs as an iterative process and runs in O(n) time and O(1) space, unlike your code which is not only a recursive function but a recursive process. I believe this is what the author of Exercise 1.1 was looking for.
I'm not sure how best to code it in Scheme, but a common technique to improve speed on something like this would be to use memoization. In a nutshell, the idea is to cache the result of f(p) (possibly for every p seen, or possibly the last n values) so that next time you call f(p), the saved result is returned, rather than being recalculated. In general, the cache would be a map from a tuple (representing the input arguments) to the return type.
Well, if you ask me, think like a mathematician. I can't read scheme, but if you're coding a Fibonacci function, instead of defining it recursively, solve the recurrence and define it with a closed form. For the Fibonacci sequence, the closed form can be found here for example. That'll be MUCH faster.
edit: oops, didn't see that you said forgoing getting rid of the recursion. In that case, your options are much more limited.
See this article for a good tutorial on developing a fast Fibonacci function with functional programming. It uses Common LISP, which is slightly different from Scheme in some aspects, but you should be able to get by with it. Your implementation is equivalent to the bogo-fig function near the top of the file.
To put it another way:
To get tail recursion, the recursive call has to be the very last thing the procedure does.
Your recursive calls are embedded within the * and + expressions, so they are not tail calls (since the * and + are evaluated after the recursive call.)
Jeremy Ruten's version of f-iter is tail-recursive rather than iterative (i.e. it looks like a recursive procedure but is as efficient as the iterative equivalent.)
However you can make the iteration explicit:
(define (f n)
(let iter
((a 2) (b 1) (c 0) (count n))
(if (<= count 0)
c
(iter (+ a (* 2 b) (* 3 c)) a b (- count 1)))))
or
(define (f n)
(do
((a 2 (+ a (* 2 b) (* 3 c)))
(b 1 a)
(c 0 b)
(count n (- count 1)))
((<= count 0) c)))
That particular exercise can be solved by using tail recursion - instead of waiting for each recursive call to return (as is the case in the straightforward solution you present), you can accumulate the answer in a parameter, in such a way that the recursion behaves exactly the same as an iteration in terms of the space it consumes. For instance:
(define (f n)
(define (iter a b c count)
(if (zero? count)
c
(iter (+ a (* 2 b) (* 3 c))
a
b
(- count 1))))
(if (< n 3)
n
(iter 2 1 0 n)))
Related
I am writing the square of sums in racket/scheme recursively. The code sums the numbers right, but it doesn't square it right. I don't know what I am doing wrong. If I pass 10, it should be 3025.
(define (squareOfSums n)
(if (= n 0)
0
(expt (+ n (squareOfSums (- n 1))) 2)))
You should do the squaring only once, at the end of the recursion. Currently, your code squares at every iteration. One way to solve this problem would be to separate the sum part into a helper procedure, and square the result of calling it. Like this:
(define (squareOfSums n)
(define (sum n)
(if (= n 0)
0
(+ n (sum (- n 1)))))
(sqr (sum n)))
Also, did you know that there's a formula to add all natural numbers up to n? This is a nicer solution, with no recursion needed:
(define (squareOfSums n)
(sqr (/ (* n (+ n 1)) 2)))
Either way, it works as expected:
(squareOfSums 10)
=> 3025
Here's a version which I think is idiomatic but which I hope no-one who knows any maths would write:
(define (square-of-sums n)
(let loop ([m n] [sum 0])
(if (> m 0)
(loop (- m 1) (+ sum m))
(* sum sum))))
Here's the version someone who knows some maths would write:
(define (square-of-sums n)
(expt (/ (* n (+ n 1)) 2) 2))
I wish people would not ask homework questions with well-known closed-form solutions: it's actively encouraging people to program badly.
If you start out with your function by writing out some examples, it will be easier to visualize how your function will work.
Here are three examples:
(check-expect (SquareOfSums 0) 0)
(check-expect (SquareOfSums 2) (sqr (+ 2 1))) ;9
(check-expect (SquareOfSums 10) (sqr (+ 10 9 8 7 6 5 4 3 2 1))) ;3025
As we can see clearly, there are two operators we are using, which should indicate that we need to use some sort of helper function to help us out.
We can start with out main function squareOfSums:
(define (squareOfSums n)
(sqr (sum n)))
Now, we have to create the helper function.
The amount of times that you use the addition operator depends on the number that you use. Because of this reason, we're going to have to use natural recursion.
The use of natural recursion requires some sort of base case in order for the function to 'end' somewhere. In this case, this is the value 0.
Now that we have identified the base case, we can create our helper function with little issue:
(define (sum n)
(if (= 0 n)
0
(+ n (sum (sub1 n)))))
I'll illustrate what I want to do using Python (I want to write this in Clojure). I have this function:
def f(n):
s=0
for d in range(1,n+1):
s+=d*(n//d)
return(s)
Which is basically looping from d=1 to n inclusive, and summing up the values of d times the floor of n/d.
In Clojure I want to make this a recursive function. Python equivalent:
def f(d, n):
if d == 0: return 0
else: return d*(n//d) + f(d-1, n)
and then I'd call the function with f(n, n).
I am trying this:
(defn f
([n] (f n n))
([d n]
(if (> d 0)
(recur (dec d) n)
0)))
But I don't know if this is right so far or where to slip in the sum or how to do it, etc.
If you look at your Clojure f function, the [d n] arity recurs with
d decremented and
n unchanged
... until d is zero, when it returns 0.
If we write this arity as a distinct local function, using letfn, we can drop the unchanging n argument, picking it up from the f argument:
(defn f [n]
(letfn [(g [d]
(if (> d 0)
(recur (dec d))
0))]
(g n)))
This produces the wrong answer of course, always returning 0:
(f 10)
=> 0
But we can see where to put the sum in:
(defn f [n]
(letfn [(g [d]
(if (> d 0)
(+ (* d (quot n d)) (g (dec d)))
0))]
(g n)))
We have to revert the recur to an explicit recursive call to g, as it is surrounded by the +.
But at least it works:
(f 10)
=> 87
In Clojure I want to make this a recursive function.
Don't. I've done it above just to show you where the calculation fits in.
Explicit recursion is rare in idiomatic Clojure. Better use the functions that encapsulate its common patterns. I won't repeat what Carciginate has given, but once you get used to threading macros, I think you'll find the following clear and concise:
(defn f [n]
(->> (range 1 (inc n))
(map (fn [d] (* d (quot n d))))
(reduce +)))
By the way, a reasonable analogue of your Python code is
(defn f [n]
(loop [s 0, d 1]
(if (> d n)
s
(recur (+ s (* d (quot n d))) (inc d)))))
I managed to get 3 ways working. Unfortunately, this algorithm doesn't seem to lend itself to nice recursion.
To get safe recursion, I had to introduce a third parameter. I just couldn't get it arranged so the recur was in the tail position. I also decided to count up instead of down. I don't think there's anything left field here, although it did get quite long unfortunately.
(defn f3
([n] (f3 n 1 0))
([n d s]
(if (> d (inc n))
s
(recur n (inc d)
(+ s (* d (quot n d)))))))
(f3 10)
If unsafe recursion is ok, this can be simplified quite a bit. Instead of adding multiple argument lists, I decided to allow d to be defaultable using & [d?]] and a check later down. I tend to avoid adding multiple argument lists since par-infer has a difficult time handling the indentation required to make it work. This trick isn't possible with the first way due to how recur handles var args. It only works if you're not using recur, or you do use recur, but only destructure 1 var-arg.
(defn f2 [n & [d?]]
(let [d (or d? 1)]
(if (> d (inc n))
0
(+ (f2 n (inc d)) (* d (quot n d))))))
(f2 10)
Unless you really need recursion though, I'd just write it as a map and reduction:
(defn f1 [n]
(reduce + 0
(map #(* % (quot n %)))
(range 1 (inc n)))))
(f1 10)
Which to me is about as neat as it gets (without using a threading macro. See Thumbnail's answer).
Try this:
(defn f
([n] (f n n))
([d n]
(if (> d 0)
(+ (* d (quot n d)) (recur (dec d) n))
0)))
I've built a recursive function in scheme, which will repeat a given function f, n times on some input.
(define (recursive-repeated f n)
(cond ((zero? n) identity)
((= n 1) f)
(else (compose f (recursive-repeated f (- n 1))))))
I need to build an iterative version of this function with tail recursion, which I think I've done right if I understand tail recursion correctly.
(define (iter-repeated f n)
(define (iter count total)
(if (= count 0)
total
(iter (- count 1) (compose f total))))
(iter n identity))
My question is, is this actually iterative? I believe I have it built correctly using tail recursion, but it's still technically deferring a bunch of operations until count = 0, where it executes however many compositions it's stacked up.
You pose a good question. You went from a recursive process (recursive-repeated) which builds a recursive process ((f (f (f ...)))) to an iterative process (iter-repeated) that builds the same recursive process.
You're right in thinking that you've basically done the same thing because the end result is the same. You just constructed the same chain in two different ways. This is the "consequence" of using compose in your implementation.
Consider this approach
(define (repeat n f)
(λ (x)
(define (iter n x)
(if (zero? n)
x
(iter (- n 1) (f x))))
(iter n x)))
Here, instead of building up an entire chain of function calls ahead of time, we'll return a single lambda that waits for the input argument. When the input argument is specified, we will loop inside the lambda in an iterative way for n times.
Let's see it work
(define (add1 x) (+ x 1))
;; apply add1 5 times to 3
(print ((repeat 5 add1) 3)) ;; → 8
I am still new in racket language.
I am implementing a switch case in racket but it is not working.
So, I shift into using the equal and condition. I want to know how can i call a function that takes input. for example: factorial(n) function
I want to call it in :
(if (= c 1) (factorial (n))
There are two syntax problems with this snippet:
(if (= c 1) (factorial (n)))
For starters, an if expression in Racket needs three parts:
(if <condition> <consequent> <alternative>)
The first thing to fix would be to provide an expression that will be executed when c equals 1, and another that will run if c is not equal to 1. Say, something like this:
(if (= c 1) 1 (factorial (n)))
Now the second problem: in Scheme, when you surround a symbol with parentheses it means that you're trying to execute a function. So if you write (n), the interpreter believes that n is a function with no arguments and that you're trying to call it. To fix this, simply remove the () around n:
(if (= c 1) 1 (factorial n))
Now that the syntax problems are out of the way, let's examine the logic. In Scheme, we normally use recursion to express solutions, but a recursion has to advance at some point, so it will eventually end. If you keep passing the same parameter to the recursion, without modifying it, you'll get caught in an infinite loop. Here's the proper way to write a recursive factorial procedure:
(define (factorial n)
(if (<= n 0) ; base case: if n <= 0
1 ; then return 1
(* n (factorial (- n 1))))) ; otherwise multiply and advance recursion
Notice how we decrement n at each step, to make sure that it will eventually reach zero, ending the recursion. Once you get comfortable with this solution, we can think of making it better. Read about tail recursion, see how the compiler will optimize our loops as long as we write them in such a way that the last thing done on each execution path is the recursive call, with nothing left to do after it. For instance, the previous code can be written more efficiently as follows, and see how we pass the accumulated answer in a parameter:
(define (factorial n)
(let loop ([n n] [acc 1])
(if (<= n 0)
acc
(loop (- n 1) (* n acc)))))
UPDATE
After taking a look at the comments, I see that you want to implement a switchcase procedure. Once again, there are problems with the way you're declaring functions. This is wrong:
(define fact(x)
The correct way is this:
(define (fact x)
And for actually implementing switchcase, it's possible to use nested ifs as you attempted, but that's not the best way. Learn how to use the cond expression or the case expression, either one will make your solution simpler. And anyway you have to provide an additional condition, in case c is neither 1 nor 2. Also, you're confounding the parameter name - is it c or x? With all the recommendations in place, here's how your code should look:
(define (switchcase c)
(cond ((= c 1) (fact c))
((= c 2) (triple c))
(else (error "unknown value" c))))
In racket-lang, conditionals with if has syntax:
(if <expr> <expr> <expr>)
So in your case, you have to provide another <expr>.
(define (factorial n)
(if (= n 1) 1 (* n (factorial (- n 1)))))
;^exp ^exp ^exp
(factorial 3)
The results would be 6
Update:
(define (factorial n)
(if (= n 1) 1 (* n (factorial (- n 1)))))
(define (triple x)
(* 3 x))
(define (switchcase c)
(if (= c 1)
(factorial c)
(if(= c 2)
(triple c) "c is not 1 or 2")))
(switchcase 2)
If you want something a lot closer to a switch case given you can return procedures.
(define (switch input cases)
(let ((lookup (assoc input cases)))
(if lookup
(cdr lookup)
(error "Undefined case on " input " in " cases))))
(define (this-switch c)
(let ((cases (list (cons 1 triple)
(cons 2 factorial))))
((switch c cases) c)))
I'm unsure of how to turn count-forwards into a tail-recursive program. It takes a non-negative number, n, and returns the list of integers from 0 to n (including n).
Edit: Okay, I finally got this one to work. The problem wasn't that my current program was recursive and I needed to make it tail-recursive- It was just plain wrong. The actual answer is really short and clean. So if anyone else is stuck on this and is also a total programming noob, here's a few hints that might help:
1) Your helper program is designed to keep track of the list so far.
2) Its base case is.. If x = 0.. what do you do? add 0 onto.. something.
3) Recur on x - 1, and then add x onto your list so far.
4) When you get to your actual program, count-forwards, all you need is the helper. But remember that it takes two arguments!
The only recursive function here is list-reverse. It is tail-recursive, because the call to itself is the last operation in the function body.
Your function for generating a nondecreasing sequence from zero to m, which contains the successive results of adding 1 to the previous element, would look something like:
(define (my-reverse lst)
(define (rev-do xs ys)
(if (empty? xs)
ys
(rev-do (cdr xs) (cons (car xs) ys))))
(rev-do lst empty))
(define (seq m n)
(seq-do m n (list m)))
(define (seq-do m n xs)
(if (= m n)
(my-reverse xs)
(let ((next (add1 m)))
(seq-do next n (cons next xs)))))
(define (seq-from-zero m)
(seq 0 m))
Test:
> (seq-from-zero 10)
(0 1 2 3 4 5 6 7 8 9 10)
seq-do is a general function for generating nondecreasing sequences from m to n; it is tail-recursive, because the last operation is the call to itself.
I've also implemented reverse from scratch, so that you can use it in your homework problems.