spline for non differentiable function? - apache-flex

I have a function that sometimes is non-differentiable at a point. When I now use a spline (Bezierspline in degrafa) for interpolation the interpolation at this point does not work as expected (at this point my function has a kink). Now when interpolating with a spline it draws some kind of loop around this point. I think this happens because the spline needs the derivatives of the functions which is not unique at this point.
Is that right? What would you advise me to do in this case?
Thanks in advance
Sebastian

You can't calculate the gradient of a "kink" (as you so eloquently put it). If you really need a gradient at such a point (x), I'd just average the gradient at (x-d) and (x+d) where d is a small enough delta. It's as mathematically valid as any other single answer you're likely to get.
For example, the function:
f(x) = |x|
will produce:
\ | /
\ | /
\ | /
\|/
----+----
where there is no gradient at the origin (0,0). However, averaging the gradients at -0.0001 (gradient = -1) and +0.0001 (gradient = +1) will give you a gradient of zero (flat line).
This should give a half-decent answer for other equations that produce non-symmetrical gradients at (x-d) and (x+d) as well.
What I would do, since it's licensed under MIT, is to modify the source to allow an option for the Bezierspline to use that +/- delta method to calculate gradients at the non-continuous points. Maybe even push back the source changes to the developers if you think it's a worthwhile addition.

That sounds right. It's been a while since I've looked at splines, but I'm pretty sure if the function is not continuous, your spline should also be discontinuous at the same points. Although I have seen interpolations that give an approximate curve at such a point... I'll check my text-books if no one else comes up with a better answer.
But a loop is a pretty good attempt. kudos to your function.

Related

Mathematical indicator for the "flattness" of a curve?

I am currently working on a computer science project where I have to evaluate charts. The charts are simple lines in an x-y-coordinate-system, given by CSV files. the flatter the curve, the better for me. Now I am looking for an indicator for the "flatness" of these curves.
My first idea was to calculate the first derivative of the function and then calculate the average between two points. If this value is near 0, then the function is pretty flat.
Is that a good idea? Is there any better solution?
Edit:
Here is a picture as an example. Which curve is flatter between x1 and x2?
You might consider using the standard deviation as a measure of distance from a perfectly flat line. First do a simple linear regression to find the ideally fitting flat line, then compute the standard deviation of the residues.
if the values are all positive you could try calculating the integral.
So basically the surface below the line.
The lower the integral, the better. Just like you need it.
If you also expect negative values, you could basically do the same after changing the sign.
If the quickness of change is important to the answer (that is, many small zig-zags are considered flatter than a gradual rise), the slope of the autocorrelation function might be interesting.
Compare max(abs(d)) where d is the (numerical) derivative of the curve. That'll give you how steep the curve is compared to the flat curve (y = CONSTANT), but won't tell you how far away from the flat curve you'll get.
The peakedness of a statistical distribution is called "kurtosis".
Kurtosis = [[E[(mu-x)^4]]/[E[(mu-x)^2]]^2]-3
mu = average value of x in the population
E[y] = the expected value of y
Since this is usually used with probability functions, I would suggest you divide all values in the curve by the area under it.
1.First apply the linear regression to find the ideally fitting flat line
2.Measure the least square of the residues.

Fitting an ellipsoid to 3D data points

I have a large set of 3D data points to which I want to fit to an ellipsoid.
My maths is pretty poor, so I'm having trouble implementing the least squares method without any math libraries.
Does anyone know of or have a piece of code that can fit an ellipsoid to data which I can plug straight into my project? In C would be best, but it should be no problem for me to convert from C++, Java, C#, python etc.
EDIT: Just being able to find the centre would be a huge help too. Note that the points aren't evenly spaced so taking the mean won't result in the centre.
here you go:
This paper describes fitting an ellipsoid to multiple dimensions AS WELL AS finding the center for the ellipois. Hope this helps,
http://www.physics.smu.edu/~scalise/SMUpreprints/SMU-HEP-10-14.pdf
(btw, I'm assuming this answer is a bit late, but I figured I would add this solution for anyone who stumbles across your question in search for the same thing :)
If you want the minimum-volume enclosing ellipsoid, check out this SO answer for a bounding ellipsoid.
If you want the best fitting ellipse in a least-squares sense, check out this MATLAB code for error ellipsoids where you find the covariance matrix of your mean-shifted 3D points and use that to construct the ellipsoid.
Least Squares data fitting is probably a good methodology give the nature of the data you describe. The GNU Scientific Library contains linear and non-linear least squares data fitting routines. In your case, you may be able to transform your data into a linear space and use linear least-squares, but that would depend on your actual use case. Otherwise, you'll need to use non-linear methods.
I could not find a good Java based algorithm for fitting an ellipsoid, so I ended up writing it myself. There were some good algorithms for an ellipse with 2D points, but not for an ellipsoid with 3D points. I experimented with a few different MATLAB scripts and eventually settled on Yury Petrov's Ellipsoid Fit. It fits an ellipsoid to the polynomial Ax^2 + By^2 + Cz^2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Iz = 1. It doesn't use any constraints to force an ellipsoid, so you have to have a fairly large number of points to prevent a random quardic from being fit instead of the ellipsoid. Other than that, it works really well. I wrote a small Java library using Apache Commons Math that implements Yury Petrov's script in Java. The GIT repository can be found at https://github.com/BokiSoft/EllipsoidFit.
We developed a set of Matlab and Java codes to fit ellipsoids here:
https://github.com/pierre-weiss
You can also check our open-source Icy plugin. The following tutorial can be helpful:
https://www.youtube.com/endscreen?video_referrer=watch&v=nXnPOG_YCxw
Note: most of the existing codes fit a generic quadric and do not impose an ellipsoidal shape. To get more robustness, you need to go to convex programming rather than just linear algebra. This is what is done in the indicated sources.
Cheers,
Pierre
Here is unstrict solution with fast and simple random search approach*. Best side - no heavy linear algebra library required**. Seems it worked fine for mesh collision detection.
Is assumes that ellipsoid center matches cloud center and then uses some sort of mirrored average to search for main axis.
Full working code is slightly bigger and placed on git, idea of main axis search is here:
np.random.shuffle(pts)
pts_len = len(pts)
pt_average = np.sum(pts, axis = 0) / pts_len
vec_major = pt_average * 0
minor_max, major_max = 0, 0
# may be improved with overlapped pass,
for pt_cur in pts:
vec_cur = pt_cur - pt_average
proj_len, rej_len = proj_length(vec_cur, vec_major)
if proj_len < 0:
vec_cur = -vec_cur
vec_major += (vec_cur - vec_major) / pts_len
major_max = max(major_max, abs(proj_len))
minor_max = max(minor_max, rej_len)
It can be improved/optimized even more at some points. Examples what it will produce:
And full experiment code with plots
*i.e. adjusting code lines randomly until they work
**was actually reason to figure out this solution
I have an idea. Approximately solution, not the best but will keep points inside. In XY plane find the radius R1 that will obtain all points. Same do for the XZ plane (R2) and YZ plane (R3). Then use the maximums on each axes. A=max(R1,R2), B=max(R1,R3) and C=max(R2,R3).
But, first of all find the average (center) of all points and align it to origin.
I have just gone through the same process.
Here is a python module which is based on work by Nima Moshtagh. Referenced in many places but also in this question about a Bounding ellipse
This module also handles plotting of the final ellipsoid. Enjoy!
https://github.com/minillinim/ellipsoid/blob/master/ellipsoid.py
I ported Yury Petrov's least-squares Matlab fitter to Java some time ago, it only needs JAMA: https://github.com/mdoube/BoneJ/blob/master/src/org/doube/geometry/FitEllipsoid.java

Math function to find saturation point of a curve

Does anybody know an algorithm in c to find the saturation point in a curve of saturation?
The curve could change its increasing speed in a sharp or in a smooth way, and have noise included, so it's not as simple as I thought.
I tried calculating the derivative of atan(delta_y/delta_x), but it doesn't work fine for all the curves.
It appears you're trying to ascertain, numerically, when the gradient of a function, fitted to some data points from a chemistry experiment, is less than one. It also seems like your data is noisy and you want to determine when the gradient would be less than one if the noise wasn't there.
Firstly, let's forget about the noise. You do not want to do this:
atan(((y(i)-y(i-1))/(x(i)-x(i-1)))*180/PI
There is no need to compute the angle of the gradient when you have the gradient is right there. Just compare (y(i)-y(i-1))/(x(i)-x(i-1)) to 1.
Secondly, if there is noise you can't trust derivatives computed like that. But to do better we really need to know more about your problem. There are infinitely many ways to interpret your data. Is there noise in the x values, or just in the y values? Do we expect this curve to have a characteristic shape or can it do anything.
I'll make a guess: This is some kind of chemistry thing where the y values rapidly increase but then the rate of increase slows down, so that in the absence of noise we have y = A(1-exp(-B*x)) for some A and B. If that's the case then you can use a non-linear regression algorithm to fit such a curve to your points and then test when the gradient of the fitted curve is less than 1.
But without more data, your question will be hard to answer. If you really are unwilling to give more information I'd suggest a quick and dirty filtering of your data. Eg. at any time estimate the true value of y by using a weighted average of the previous y values using weights that drop off exponentially the further back in time you go. Eg. instead of using y[i] use z[i] where
z[i] = sum over j = 0 to i of w[i,j]*y[j] / sum over j = 0 to i of w[i,j]
where
w[i,j] = exp(A*(x[j]-x[i]))
and A is some number that you tune by hand until you get the results you want. Try this, and plotting the z[i] as you tweak A. See if it does what you want.
We can get the maxima or minima of a curve quite easily from the function parameters of the curve.Can't see whats the reason why you getting inconsistent results.
I think the problem might be while trying to include the noise curve with the original .So make sure that you mixes these curves in a proper way.There is nothing wrong with the atan or any other math function you used. The problem is with your implementation which you haven't specified here.

Generating the function of the plane/surface that a given set of coordinates lie on

This is something related with Mathematics as well. But this is useful in computing as well.
Lets say you have 10 coordinates. (x1,y1)(x2,y2)..... in 2D Space. (i.e on a X-Y Plane). Can we find a single smooth curve going across the each coordinate.
While expanding the question, If the space is 3D, then can we find an equation of a smooth surface that going across a given set of spacial coordinates?
Are there any Libraries (Any language) \ tools to perform such calculations?
What you should be looking for is some library implementing NURBS (or Non Uniform Rational B-Splines). This will solve your problem in both 2d and 3d, since 2d is just a special case of the 3d.
Roughly speaking, you are not interested in the actual equation, you are only interested in getting the points approximated with smooth curves or surfaces. This is done by finding "control points" in 2d or 3d space, which are multiplied with B-spline base functions. A NURBS library will do this for you.
Cheers !
Edit:
Have a look at this one
you can always fit an order-10 polynomial through the points. that's not necessarily what you want to do, though - fitting a smooth curve via a series of splines will give you a better-looking result. the curve-fitting article on wikipedia gives you a good overview of the various options.
In the 2D case you are asking for curve fitting. This actually exists in excel, where you plot your points (I usually use XY scatter if you have x and y listed) and then right-click on the curve. Select Add Trendline. There you can choose which kind of function you want to fit to and you can ask excel to display it in the image (Tab named Options, check the box "Display equation on chart"). Nice and quick.
Otherwise you can use matlab and use the lsqr (least square method). If you want to find the polynomial closest that best describes your data you could use the polyfit function. It uses the least square method, but returns coefficients. Matlab has a whole set of other algorithms for solving/finding "best" approximations to systems of linear equations. I mention lsqr because it is one of the simplest to implement yourself if you don't have matlab. On the other hand it is for solving sets of linear equations - I don't know anything about your data.
Have a look at splines
in wiki
an interactive introduction
Searching for 'spline interpolation library' might give some useful hints for implementations.

Point Sequence Interpolation

Given an arbitrary sequence of points in space, how would you produce a smooth continuous interpolation between them?
2D and 3D solutions are welcome. Solutions that produce a list of points at arbitrary granularity and solutions that produce control points for bezier curves are also appreciated.
Also, it would be cool to see an iterative solution that could approximate early sections of the curve as it received the points, so you could draw with it.
The Catmull-Rom spline is guaranteed to pass through all the control points. I find this to be handier than trying to adjust intermediate control points for other types of splines.
This PDF by Christopher Twigg has a nice brief introduction to the mathematics of the spline. The best summary sentence is:
Catmull-Rom splines have C1
continuity, local control, and
interpolation, but do not lie within
the convex hull of their control
points.
Said another way, if the points indicate a sharp bend to the right, the spline will bank left before turning to the right (there's an example picture in that document). The tightness of those turns in controllable, in this case using his tau parameter in the example matrix.
Here is another example with some downloadable DirectX code.
One way is Lagrange polynominal, which is a method for producing a polynominal which will go through all given data points.
During my first year at university, I wrote a little tool to do this in 2D, and you can find it on this page, it is called Lagrange solver. Wikipedia's page also has a sample implementation.
How it works is thus: you have a n-order polynominal, p(x), where n is the number of points you have. It has the form a_n x^n + a_(n-1) x^(n-1) + ...+ a_0, where _ is subscript, ^ is power. You then turn this into a set of simultaneous equations:
p(x_1) = y_1
p(x_2) = y_2
...
p(x_n) = y_n
You convert the above into a augmented matrix, and solve for the coefficients a_0 ... a_n. Then you have a polynomial which goes through all the points, and you can now interpolate between the points.
Note however, this may not suit your purpose as it offers no way to adjust the curvature etc - you are stuck with a single solution that can not be changed.
You should take a look at B-splines. Their advantage over Bezier curves is that each part is only dependent on local points. So moving a point has no effect on parts of the curve that are far away, where "far away" is determined by a parameter of the spline.
The problem with the Langrange polynomial is that adding a point can have extreme effects on seemingly arbitrary parts of the curve; there's no "localness" like described above.
Have you looked at the Unix spline command? Can that be coerced into doing what you want?
There are several algorithms for interpolating (and exrapolating) between an aribtrary (but final) set of points. You should check out numerical recipes, they also include C++ implementations of those algorithms.
Unfortunately the Lagrange or other forms of polynomial interpolation will not work on an arbitrary set of points. They only work on a set where in one dimension e.g. x
xi < xi+1
For an arbitary set of points, e.g. an aeroplane flight path, where each point is a (longitude, latitude) pair, you will be better off simply modelling the aeroplane's journey with current longitude & latitude and velocity. By adjusting the rate at which the aeroplane can turn (its angular velocity) depending on how close it is to the next waypoint, you can achieve a smooth curve.
The resulting curve would not be mathematically significant nor give you bezier control points. However the algorithm would be computationally simple regardless of the number of waypoints and could produce an interpolated list of points at arbitrary granularity. It would also not require you provide the complete set of points up front, you could simply add waypoints to the end of the set as required.
I came up with the same problem and implemented it with some friends the other day. I like to share the example project on github.
https://github.com/johnjohndoe/PathInterpolation
Feel free to fork it.
Google "orthogonal regression".
Whereas least-squares techniques try to minimize vertical distance between the fit line and each f(x), orthogonal regression minimizes the perpendicular distances.
Addendum
In the presence of noisy data, the venerable RANSAC algorithm is worth checking out too.
In the 3D graphics world, NURBS are popular. Further info is easily googled.

Resources