Given this algorithm, I would like to know if there exists an iterative version. Also, I want to know if the iterative version can be faster.
This some kind of pseudo-python...
the algorithm returns a reference to root of the tree
make_tree(array a)
if len(a) == 0
return None;
node = pick a random point from the array
calculate distances of the point against the others
calculate median of such distances
node.left = make_tree(subset of the array, such that the distance of points is lower to the median of distances)
node.right = make_tree(subset, such the distance is greater or equal to the median)
return node
A recursive function with only one recursive call can usually be turned into a tail-recursive function without too much effort, and then it's trivial to convert it into an iterative function. The canonical example here is factorial:
# naïve recursion
def fac(n):
if n <= 1:
return 1
else:
return n * fac(n - 1)
# tail-recursive with accumulator
def fac(n):
def fac_helper(m, k):
if m <= 1:
return k
else:
return fac_helper(m - 1, m * k)
return fac_helper(n, 1)
# iterative with accumulator
def fac(n):
k = 1
while n > 1:
n, k = n - 1, n * k
return k
However, your case here involves two recursive calls, and unless you significantly rework your algorithm, you need to keep a stack. Managing your own stack may be a little faster than using Python's function call stack, but the added speed and depth will probably not be worth the complexity. The canonical example here would be the Fibonacci sequence:
# naïve recursion
def fib(n):
if n <= 1:
return 1
else:
return fib(n - 1) + fib(n - 2)
# tail-recursive with accumulator and stack
def fib(n):
def fib_helper(m, k, stack):
if m <= 1:
if stack:
m = stack.pop()
return fib_helper(m, k + 1, stack)
else:
return k + 1
else:
stack.append(m - 2)
return fib_helper(m - 1, k, stack)
return fib_helper(n, 0, [])
# iterative with accumulator and stack
def fib(n):
k, stack = 0, []
while 1:
if n <= 1:
k = k + 1
if stack:
n = stack.pop()
else:
break
else:
stack.append(n - 2)
n = n - 1
return k
Now, your case is a lot tougher than this: a simple accumulator will have difficulties expressing a partly-built tree with a pointer to where a subtree needs to be generated. You'll want a zipper -- not easy to implement in a not-really-functional language like Python.
Making an iterative version is simply a matter of using your own stack instead of the normal language call stack. I doubt the iterative version would be faster, as the normal call stack is optimized for this purpose.
The data you're getting is random so the tree can be an arbitrary binary tree. For this case, you can use a threaded binary tree, which can be traversed and built w/o recursion and no stack. The nodes have a flag that indicate if the link is a link to another node or how to get to the "next node".
From http://en.wikipedia.org/wiki/Threaded_binary_tree
Depending on how you define "iterative", there is another solution not mentioned by the previous answers. If "iterative" just means "not subject to a stack overflow exception" (but "allowed to use 'let rec'"), then in a language that supports tail calls, you can write a version using continuations (rather than an "explicit stack"). The F# code below illustrates this. It is similar to your original problem, in that it builds a BST out of an array. If the array is shuffled randomly, the tree is relatively balanced and the recursive version does not create too deep a stack. But turn off shuffling, and the tree gets unbalanced, and the recursive version stack-overflows whereas the iterative-with-continuations version continues along happily.
#light
open System
let printResults = false
let MAX = 20000
let shuffleIt = true
// handy helper function
let rng = new Random(0)
let shuffle (arr : array<'a>) = // '
let n = arr.Length
for x in 1..n do
let i = n-x
let j = rng.Next(i+1)
let tmp = arr.[i]
arr.[i] <- arr.[j]
arr.[j] <- tmp
// Same random array
let sampleArray = Array.init MAX (fun x -> x)
if shuffleIt then
shuffle sampleArray
if printResults then
printfn "Sample array is %A" sampleArray
// Tree type
type Tree =
| Node of int * Tree * Tree
| Leaf
// MakeTree1 is recursive
let rec MakeTree1 (arr : array<int>) lo hi = // [lo,hi)
if lo = hi then
Leaf
else
let pivot = arr.[lo]
// partition
let mutable storeIndex = lo + 1
for i in lo + 1 .. hi - 1 do
if arr.[i] < pivot then
let tmp = arr.[i]
arr.[i] <- arr.[storeIndex]
arr.[storeIndex] <- tmp
storeIndex <- storeIndex + 1
Node(pivot, MakeTree1 arr (lo+1) storeIndex, MakeTree1 arr storeIndex hi)
// MakeTree2 has all tail calls (uses continuations rather than a stack, see
// http://lorgonblog.spaces.live.com/blog/cns!701679AD17B6D310!171.entry
// for more explanation)
let MakeTree2 (arr : array<int>) lo hi = // [lo,hi)
let rec MakeTree2Helper (arr : array<int>) lo hi k =
if lo = hi then
k Leaf
else
let pivot = arr.[lo]
// partition
let storeIndex = ref(lo + 1)
for i in lo + 1 .. hi - 1 do
if arr.[i] < pivot then
let tmp = arr.[i]
arr.[i] <- arr.[!storeIndex]
arr.[!storeIndex] <- tmp
storeIndex := !storeIndex + 1
MakeTree2Helper arr (lo+1) !storeIndex (fun lacc ->
MakeTree2Helper arr !storeIndex hi (fun racc ->
k (Node(pivot,lacc,racc))))
MakeTree2Helper arr lo hi (fun x -> x)
// MakeTree2 never stack overflows
printfn "calling MakeTree2..."
let tree2 = MakeTree2 sampleArray 0 MAX
if printResults then
printfn "MakeTree2 yields"
printfn "%A" tree2
// MakeTree1 might stack overflow
printfn "calling MakeTree1..."
let tree1 = MakeTree1 sampleArray 0 MAX
if printResults then
printfn "MakeTree1 yields"
printfn "%A" tree1
printfn "Trees are equal: %A" (tree1 = tree2)
Yes it is possible to make any recursive algorithm iterative. Implicitly, when you create a recursive algorithm each call places the prior call onto the stack. What you want to do is make the implicit call stack into an explicit one. The iterative version won't necessarily be faster, but you won't have to worry about a stack overflow. (do I get a badge for using the name of the site in my answer?
While it is true in the general sense that directly converting a recursive algorithm into an iterative one will require an explicit stack, there is a specific sub-set of algorithms which render directly in iterative form (without the need for a stack). These renderings may not have the same performance guarantees (iterating over a functional list vs recursive deconstruction), but they do often exist.
Here is stack based iterative solution (Java):
public static Tree builtBSTFromSortedArray(int[] inputArray){
Stack toBeDone=new Stack("sub trees to be created under these nodes");
//initialize start and end
int start=0;
int end=inputArray.length-1;
//keep memoy of the position (in the array) of the previously created node
int previous_end=end;
int previous_start=start;
//Create the result tree
Node root=new Node(inputArray[(start+end)/2]);
Tree result=new Tree(root);
while(root!=null){
System.out.println("Current root="+root.data);
//calculate last middle (last node position using the last start and last end)
int last_mid=(previous_start+previous_end)/2;
//*********** add left node to the previously created node ***********
//calculate new start and new end positions
//end is the previous index position minus 1
end=last_mid-1;
//start will not change for left nodes generation
start=previous_start;
//check if the index exists in the array and add the left node
if (end>=start){
root.left=new Node(inputArray[((start+end)/2)]);
System.out.println("\tCurrent root.left="+root.left.data);
}
else
root.left=null;
//save previous_end value (to be used in right node creation)
int previous_end_bck=previous_end;
//update previous end
previous_end=end;
//*********** add right node to the previously created node ***********
//get the initial value (inside the current iteration) of previous end
end=previous_end_bck;
//start is the previous index position plus one
start=last_mid+1;
//check if the index exists in the array and add the right node
if (start<=end){
root.right=new Node(inputArray[((start+end)/2)]);
System.out.println("\tCurrent root.right="+root.right.data);
//save the created node and its index position (start & end) in the array to toBeDone stack
toBeDone.push(root.right);
toBeDone.push(new Node(start));
toBeDone.push(new Node(end));
}
//*********** update the value of root ***********
if (root.left!=null){
root=root.left;
}
else{
if (toBeDone.top!=null) previous_end=toBeDone.pop().data;
if (toBeDone.top!=null) previous_start=toBeDone.pop().data;
root=toBeDone.pop();
}
}
return result;
}
Related
As is shown below, the function "search" is recursive. I want to transform it into a form without recursion, but have trouble in dealing with the popping and pushing of the variable "path". What's its non-recursive form and the method of converting it?
path current search path (acts like a stack)
node current node (last node in current path)
g the cost to reach current node
f estimated cost of the cheapest path (root..node..goal)
h(node) estimated cost of the cheapest path (node..goal)
cost(node, succ) step cost function
is_goal(node) goal test
successors(node) node expanding function, expand nodes ordered by g + h(node)
ida_star(root) return either NOT_FOUND or a pair with the best path and its cost
procedure ida_star(root)
bound := h(root)
path := [root]
loop
t := search(path, 0, bound)
if t = FOUND then return (path, bound)
if t = ∞ then return NOT_FOUND
bound := t
end loop
end procedure
function search(path, g, bound)
node := path.last
f := g + h(node)
if f > bound then return f
if is_goal(node) then return FOUND
min := ∞
for succ in successors(node) do
if succ not in path then
path.push(succ)
t := search(path, g + cost(node, succ), bound)
if t = FOUND then return FOUND
if t < min then min := t
path.pop()
end if
end for
return min
end function
Iterative deepening A* pseudocode - Wikipedia
I am absolute OCaml beginner. I want to create a function that repeats characters 20 times.
This is the function, but it does not work because of an error.
let string20 s =
let n = 20 in
s ^ string20 s (n - 1);;
string20 "u";;
I want to run like this
# string20 "u"
- : string = "uuuuuuuuuuuuuuuuuuuu"
Your function string20 takes one parameter but you are calling it recursively with 2 parameters.
The basic ideas are in there, but not quite in the right form. One way to proceed is to separate out the 2-parameter function as a separate "helper" function. As #PierreG points out, you'll need to delcare the helper function as a recursive function.
let rec string n s =
if n = 0 then "" else s ^ string (n - 1) s
let string20 = string 20
It is a common pattern to separate a function into a "fixed" part and inductive part. In this case, a nested helper function is needed to do the real recursive work in a new scope while we want to fix an input string s as a constant so we can use to append to s2. s2 is an accumulator that build up the train of strings over time while c is an inductor counting down to 1 toward the base case.
let repeat s n =
let rec helper s1 n1 =
if n1 = 0 then s1 else helper (s1 ^ s) (n1 - 1)
in helper "" n
A non-tail call versions is more straightforward since you won't need a helper function at all:
let rec repeat s n =
if n = 0 then "" else s ^ repeat s (n - 1)
On the side note, one very fun thing about a functional language with first-class functions like Ocaml is currying (or partial application). In this case you can create a function named repeat that takes two arguments n of type int and s of type string as above and partially apply it to either n or s like this:
# (* top-level *)
# let repeat_foo = repeat "foo";;
# repeat_foo 5;;
- : bytes = "foofoofoofoofoo" (* top-level output *)
if the n argument was labeled as below:
let rec repeat ?(n = 0) s =
if n = 0 then "" else s ^ repeat s (n - 1)
The order of application can be exploited, making the function more flexible:
# (* top-level *)
# let repeat_10 = repeat ~n:10;;
# repeat_10 "foo";;
- : bytes = "foofoofoofoofoofoofoofoofoofoo" (* top-level output *)
See my post Currying Exercise in JavaScript (though it is in JavaScript but pretty simple to follow) and this lambda calculus primer.
Recursive functions in Ocaml are defined with let rec
As pointed out in the comments you've defined your function to take one parameter but you're trying to recursively call with two.
You probably want something like this:
let rec stringn s n =
match n with
1 -> s
| _ -> s ^ stringn s (n - 1)
;;
I'm trying to write some code in a functional paradigm for practice. There is one case I'm having some problems wrapping my head around. I am trying to create an array of 5 unique integers from 1, 100. I have been able to solve this without using functional programming:
let uniqueArray = [];
while (uniqueArray.length< 5) {
const newNumber = getRandom1to100();
if (uniqueArray.indexOf(newNumber) < 0) {
uniqueArray.push(newNumber)
}
}
I have access to lodash so I can use that. I was thinking along the lines of:
const uniqueArray = [
getRandom1to100(),
getRandom1to100(),
getRandom1to100(),
getRandom1to100(),
getRandom1to100()
].map((currentVal, index, array) => {
return array.indexOf(currentVal) > -1 ? getRandom1to100 : currentVal;
});
But this obviously wouldn't work because it will always return true because the index is going to be in the array (with more work I could remove that defect) but more importantly it doesn't check for a second time that all values are unique. However, I'm not quite sure how to functionaly mimic a while loop.
Here's an example in OCaml, the key point is that you use accumulators and recursion.
let make () =
Random.self_init ();
let rec make_list prev current max accum =
let number = Random.int 100 in
if current = max then accum
else begin
if number <> prev
then (number + prev) :: make_list number (current + 1) max accum
else accum
end
in
make_list 0 0 5 [] |> Array.of_list
This won't guarantee that the array will be unique, since its only checking by the previous. You could fix that by hiding a hashtable in the closure between make and make_list and doing a constant time lookup.
Here is a stream-based Python approach.
Python's version of a lazy stream is a generator. They can be produced in various ways, including by something which looks like a function definition but uses the key word yield rather than return. For example:
import random
def randNums(a,b):
while True:
yield random.randint(a,b)
Normally generators are used in for-loops but this last generator has an infinite loop hence would hang if you try to iterate over it. Instead, you can use the built-in function next() to get the next item in the string. It is convenient to write a function which works something like Haskell's take:
def take(n,stream):
items = []
for i in range(n):
try:
items.append(next(stream))
except StopIteration:
return items
return items
In Python StopIteration is raised when a generator is exhausted. If this happens before n items, this code just returns however much has been generated, so perhaps I should call it takeAtMost. If you ditch the error-handling then it will crash if there are not enough items -- which maybe you want. In any event, this is used like:
>>> s = randNums(1,10)
>>> take(5,s)
[6, 6, 8, 7, 2]
of course, this allows for repeats.
To make things unique (and to do so in a functional way) we can write a function which takes a stream as input and returns a stream consisting of unique items as output:
def unique(stream):
def f(s):
items = set()
while True:
try:
x = next(s)
if not x in items:
items.add(x)
yield x
except StopIteration:
raise StopIteration
return f(stream)
this creates an stream in a closure that contains a set which can keep track of items that have been seen, only yielding items which are unique. Here I am passing on any StopIteration exception. If the underlying generator has no more elements then there are no more unique elements. I am not 100% sure if I need to explicitly pass on the exception -- (it might happen automatically) but it seems clean to do so.
Used like this:
>>> take(5,unique(randNums(1,10)))
[7, 2, 5, 1, 6]
take(10,unique(randNums(1,10))) will yield a random permutation of 1-10. take(11,unique(randNums(1,10))) will never terminate.
This is a very good question. It's actually quite common. It's even sometimes asked as an interview question.
Here's my solution to generating 5 integers from 0 to 100.
let rec take lst n =
if n = 0 then []
else
match lst with
| [] -> []
| x :: xs -> x :: take xs (n-1)
let shuffle d =
let nd = List.map (fun c -> (Random.bits (), c)) d in
let sond = List.sort compare nd in
List.map snd sond
let rec range a b =
if a >= b then []
else a :: range (a+1) b;;
let _ =
print_endline
(String.concat "\t" ("5 random integers:" :: List.map string_of_int (take (shuffle (range 0 101)) 5)))
How's this:
const addUnique = (ar) => {
const el = getRandom1to100();
return ar.includes(el) ? ar : ar.concat([el])
}
const uniqueArray = (numberOfElements, baseArray) => {
if (numberOfElements < baseArray.length) throw 'invalid input'
return baseArray.length === numberOfElements ? baseArray : uniqueArray(numberOfElements, addUnique(baseArray))
}
const myArray = uniqueArray(5, [])
For an assignment, i have written the following code in recursion. It takes a list of a vector data type, and a vector and calculates to closeness of the two vectors. This method works fine, but i don't know how to do the recursive version.
let romulus_iter (x:vector list) (vec:vector) =
let vector_close_hash = Hashtbl.create 10 in
let prevkey = ref 10000.0 in (* Define previous key to be a large value since we intially want to set closefactor to prev key*)
if List.length x = 0 then
{a=0.;b=0.}
else
begin
Hashtbl.clear vector_close_hash;
for i = 0 to (List.length x)-1 do
let vecinquestion = {a=(List.nth x i).a;b=(List.nth x i).b} in
let closefactor = vec_close vecinquestion vec in
if (closefactor < !prevkey) then
begin
prevkey := closefactor;
Hashtbl.add vector_close_hash closefactor vecinquestion
end
done;
Hashtbl.find vector_close_hash !prevkey
end;;
The general recursive equivalent of
for i = 0 to (List.length x)-1 do
f (List.nth x i)
done
is this:
let rec loop = function
| x::xs -> f x; loop xs
| [] -> ()
Note that just like a for-loop, this function only returns unit, though you can define a similar recursive function that returns a meaningful value (and in fact that's what most do). You can also use List.iter, which is meant just for this situation where you're applying an impure function that doesn't return anything meaningful to each item in the list:
List.iter f x
I have a quite simple question, I think.
I've got this problem, which can be solved very easily with a recursive function, but which I wasn't able to solve iteratively.
Suppose you have any boolean matrix, like:
M:
111011111110
110111111100
001111111101
100111111101
110011111001
111111110011
111111100111
111110001111
I know this is not an ordinary boolean matrix, but it is useful for my example.
You can note there is sort of zero-paths in there...
I want to make a function that receives this matrix and a point where a zero is stored and that transforms every zero in the same area into a 2 (suppose the matrix can store any integer even it is initially boolean)
(just like when you paint a zone in Paint or any image editor)
suppose I call the function with this matrix M and the coordinate of the upper right corner zero, the result would be:
111011111112
110111111122
001111111121
100111111121
110011111221
111111112211
111111122111
111112221111
well, my question is how to do this iteratively...
hope I didn't mess it up too much
Thanks in advance!
Manuel
ps: I'd appreciate if you could show the function in C, S, python, or pseudo-code, please :D
There is a standard technique for converting particular types of recursive algorithms into iterative ones. It is called tail-recursion.
The recursive version of this code would look like (pseudo code - without bounds checking):
paint(cells, i, j) {
if(cells[i][j] == 0) {
cells[i][j] = 2;
paint(cells, i+1, j);
paint(cells, i-1, j);
paint(cells, i, j+1);
paint(cells, i, j-1);
}
}
This is not simple tail recursive (more than one recursive call) so you have to add some sort of stack structure to handle the intermediate memory. One version would look like this (pseudo code, java-esque, again, no bounds checking):
paint(cells, i, j) {
Stack todo = new Stack();
todo.push((i,j))
while(!todo.isEmpty()) {
(r, c) = todo.pop();
if(cells[r][c] == 0) {
cells[r][c] = 2;
todo.push((r+1, c));
todo.push((r-1, c));
todo.push((r, c+1));
todo.push((r, c-1));
}
}
}
Pseudo-code:
Input: Startpoint (x,y), Array[w][h], Fillcolor f
Array[x][y] = f
bool hasChanged = false;
repeat
for every Array[x][y] with value f:
check if the surrounding pixels are 0, if so:
Change them from 0 to f
hasChanged = true
until (not hasChanged)
For this I would use a Stack ou Queue object. This is my pseudo-code (python-like):
stack.push(p0)
while stack.size() > 0:
p = stack.pop()
matrix[p] = 2
for each point in Arround(p):
if matrix[point]==0:
stack.push(point)
The easiest way to convert a recursive function into an iterative function is to utilize the stack data structure to store the data instead of storing it on the call stack by calling recursively.
Pseudo code:
var s = new Stack();
s.Push( /*upper right point*/ );
while not s.Empty:
var p = s.Pop()
m[ p.x ][ p.y ] = 2
s.Push ( /*all surrounding 0 pixels*/ )
Not all recursive algorithms can be translated to an iterative algorithm. Normally only linear algorithms with a single branch can. This means that tree algorithm which have two or more branches and 2d algorithms with more paths are extremely hard to transfer into recursive without using a stack (which is basically cheating).
Example:
Recursive:
listsum: N* -> N
listsum(n) ==
if n=[] then 0
else hd n + listsum(tl n)
Iteration:
listsum: N* -> N
listsum(n) ==
res = 0;
forall i in n do
res = res + i
return res
Recursion:
treesum: Tree -> N
treesum(t) ==
if t=nil then 0
else let (left, node, right) = t in
treesum(left) + node + treesum(right)
Partial iteration (try):
treesum: Tree -> N
treesum(t) ==
res = 0
while t<>nil
let (left, node, right) = t in
res = res + node + treesum(right)
t = left
return res
As you see, there are two paths (left and right). It is possible to turn one of these paths into iteration, but to translate the other into iteration you need to preserve the state which can be done using a stack:
Iteration (with stack):
treesum: Tree -> N
treesum(t) ==
res = 0
stack.push(t)
while not stack.isempty()
t = stack.pop()
while t<>nil
let (left, node, right) = t in
stack.pop(right)
res = res + node + treesum(right)
t = left
return res
This works, but a recursive algorithm is much easier to understand.
If doing it iteratively is more important than performance, I would use the following algorithm:
Set the initial 2
Scan the matrix for finding a 0 near a 2
If such a 0 is found, change it to 2 and restart the scan in step 2.
This is easy to understand and needs no stack, but is very time consuming.
A simple way to do this iteratively is using a queue.
insert starting point into queue
get first element from queue
set to 2
put all neighbors that are still 0 into queue
if queue is not empty jump to 2.