I have created an multiple linear regression model and would now like to plot it. But I can't seem to figure it out. Any help would be greatly appreciated! I used baruto to find the feature attributes and then used train() to get the model. When I try to plot model_lm I get the error:
There are no tuning parameters with more than 1 value.
Here is my code at what I have attempted so far:
rt_train <- rttotal2
rt_train$year <- NULL
#rt_train$box_office <- NULL
#impute na and address multicoliniearity
preproc <- preProcess(rt_train, method = c("knnImpute","center",
"scale"))
rt_proc <- predict(preproc, rt_train)
rt_proc$box_office <- rt_train$box_office
sum(is.na(rt_proc))
titles <- rt_proc$titles
rt_proc$titles <- NULL
#rt_train$interval <- as.factor(rt_train$interval)
dmy <- dummyVars(" ~ .", data = rt_proc,fullRank = T)
rt_transform <- data.frame(predict(dmy, newdata = rt_proc))
index <- createDataPartition(rt_transform$interval, p =.75, list = FALSE)
train_m <- rt_transform[index, ]
rt_test <- rt_transform[-index, ]
str(rt_train)
y_train <- train_m$box_office
y_test <-rt_test$box_office
train_m$box_office <- NULL
rt_test$box_office <- NULL
#selected feature attributes
boruta.train <- Boruta(interval~., train_m, doTrace =1)
#graph to see most important var to interval
lz<-lapply(1:ncol(boruta.train$ImpHistory),function(i)
boruta.train$ImpHistory[is.finite(boruta.train$ImpHistory[,i]),i])
names(lz) <- colnames(boruta.train$ImpHistory)
plot(boruta.train, xlab = "", xaxt = "n")
Labels <- sort(sapply(lz,median))
axis(side = 1,las=2,labels = names(Labels),
at = 1:ncol(boruta.train$ImpHistory), cex.axis = 0.7)
#get most important attributes
final.boruta <- TentativeRoughFix(boruta.train)
print(final.boruta)
getSelectedAttributes(final.boruta, withTentative = F)
boruta.rt_df <- attStats(final.boruta)
boruta.rt_df
boruta.rt_df <- setDT(boruta.rt_df, keep.rownames = TRUE)[]
predictors <- boruta.rt_df %>%
filter(., decision =="Confirmed") %>%
select(., rn)
predictors <- unlist(predictors)
control <- trainControl(method="repeatedcv",
number=10,
repeats=6)
#look at residuals
#p-value is very small so reject H0 that predictors have no effect so
#we can use rotten tomatoes to predict box_office ranges
train_m$interval <- NULL
model_lm <- train(train_m[,predictors],
y_train, method='lm',
trControl = control, tuneLength = 10)
model_lm #.568
#
plot(model_lm)
plot(model_lm)
z <- varImp(object=model_lm)
z <- setDT(z, keep.rownames = TRUE)
z$model <- NULL
z$calledFrom <- NULL
row.names(z)
plot(varImp(object=model_lm),main="Linear Model Variable Importance")
predictions<-predict.train(object=model_lm,rt_test[,predictors],type="raw")
table(predictions)
#get coeff
interc <- coef(model_lm$finalModel)
slope <- coef(model_lm$finalModel)
ggplot(data = rt_train, aes(y = box_office)) +
geom_point() +
geom_abline(slope = slope, intercept = interc, color = 'red')
This is what some of my input looks like. Thank you!!
Here is an example using the inbuilt data set cars:
data(cars, package = "datasets")
library(caret)
build the model
control <- trainControl(method = "repeatedcv",
number = 10,
repeats = 6)
model_lm <- train(dist ~ speed, data = cars, method='lm',
trControl = control, tuneLength = 10)
I will assume you would like to plot the final model.
You can use the caret predict.train function to get the predictions from the model and plot them:
pred <- predict(model_lm, cars)
pred <- data.frame(pred = pred, speed = cars$speed)
additionally you can provide the cars data set to geom point and plot the observations:
library(ggplot2)
ggplot(data = pred)+
geom_line(aes(x = speed, y = pred))+
geom_point(data = cars, aes(x=speed, y = dist))
if you would like to obtain the confidence or prediction interval you can use the predict.lm function on model_lm$finalModel:
Here is an example for the prediction interval:
pred <- predict(model_lm$finalModel, cars, se.fit = TRUE, interval = "prediction")
pred <- data.frame(pred = pred$fit[,1], speed = cars$speed, lwr = pred$fit[,2], upr = pred$fit[,3])
pred_int <- ggplot(data = pred)+
geom_line(aes(x = speed, y = pred))+
geom_point(data = cars, aes(x = speed, y = dist)) +
geom_ribbon(aes(ymin = lwr, ymax = upr, x = speed), alpha = 0.2)
or the confidence interval:
pred <- predict(model_lm$finalModel, cars, se.fit = TRUE, interval = "confidence")
pred <- data.frame(pred = pred$fit[,1], speed = cars$speed, lwr = pred$fit[,2], upr = pred$fit[,3])
pred_conf <- ggplot(data = pred)+
geom_line(aes(x = speed, y = pred))+
geom_point(data = cars, aes(x = speed, y = dist)) +
geom_ribbon(aes(ymin = lwr, ymax = upr, x = speed), alpha = 0.2)
plotting them side by side:
library(cowplot)
plot_grid(pred_int, pred_conf)
to plot the linear dependence on two variables you can use a 3D plot, for more than 3 it will be a problem.
Related
I'm running a glmmTMB with truncated count distributions, and am interested in predicting on the link scale and back-transforming the result. This is a follow-up to this question. The answer to the linked question addressed predicting from a glmmTMB with a truncated distribution on the response scale. I'm interested in predicting on the link scale and back-transforming, since my sample size is not large and the variability is high, so predicting on response scale results in lower CIs below 0.
As shown in the toy example, a simple exp() obviously is the wrong way to back-transform, since the resulting values do not account for the truncation. Any help would be appreciated!
library(dplyr)
library(extraDistr)
library(glmmTMB)
library(ggplot2)
set.seed(1)
df <- data.frame(Group = rep(c("a", "b"), each = 20),
N = rtpois(40, 1, a = 0))
m <- glmmTMB(N ~ Group, data = df, family = "truncated_poisson")
preds <- predict(m, type = "response", se.fit = TRUE)
df$PredResponse <- preds$fit
df$PredResponseLower <- preds$fit - 1.98*preds$se.fit
df$PredResponseUpper <- preds$fit + 1.98*preds$se.fit
preds <- predict(m, type = "link", se.fit = TRUE)
df$PredLink <- exp(preds$fit)
df$PredLinkLower <- exp(preds$fit - 1.98*preds$se.fit)
df$PredLinkUpper <- exp(preds$fit + 1.98*preds$se.fit)
df %>%
group_by(Group) %>%
mutate(Mean = mean(N)) %>%
ggplot() +
geom_point(aes(x = Group, y = Mean), size = 5) +
geom_point(aes(x = Group, y = PredLink, colour = "Link")) +
geom_point(aes(x = Group, y = PredResponse, colour = "Response")) +
geom_errorbar(aes(x = Group, ymin = PredLinkLower, ymax = PredLinkUpper, colour = "Link")) +
geom_errorbar(aes(x = Group, ymin = PredResponseLower, ymax = PredResponseUpper, colour = "Response"))
I generate some random data and am trying to overlay a decision boundary based upon fitting using random forests and boosting. I can recreate the problem below. I generate the data, and using regression trees I can easily overlay the decision boundary using the following code:
library(tidyverse)
# set seed and generate some random data
set.seed(123)
Dat <- tibble(
x1 = rnorm(100),
x2 = rnorm(100)
) %>% mutate(y = as_factor(ifelse(x1^2 + x2^2 > 1.39, "A", "B")))
circlepts <- tibble(theta = seq(0, 2*pi, length = 100)) %>%
mutate(x = sqrt(1.39) * sin(theta), y = sqrt(1.39) * cos(theta))
# graph the data and draw the boundary
p <- ggplot(Dat) + geom_point(aes(x1, x2, color = y)) + coord_fixed() +
geom_polygon(data = circlepts, aes(x, y), color = "blue", fill = NA)
# convert character to binary inputs making classification easier
binVec = as.vector(Dat$y)
binVec[which(binVec =="A")] = 1
binVec[which(binVec == "B")] = 0
binVec = as.numeric(binVec)
Dat$y = binVec
# split the data up
datasplit <- initial_split(Dat, prop = 0.7)
training_set <- as_tibble(training(datasplit))
testing_set <- as_tibble(testing(datasplit))
tree_fit <- tree(y~ ., training_set)
grid <- crossing(x1 = modelr::seq_range(testing_set$x1, 50), x2 = modelr::seq_range(testing_set$x1, 50)) %>%
modelr::add_predictions(tree_fit)
# plot the data with the decision overlay of the tree fit
p + geom_contour(data = grid, aes(x2, x1, z = as.numeric(pred)), binwidth = 1)
Now if I try doing so with random forests or gradient boosting, add_predictions doesn't cooperate that well...
rf_fit <- randomForest(y ~ ., data=training_set, mtry = 2, ntree=500)
grid <- crossing(x1 = modelr::seq_range(testing_set$x1, 50), x2 = modelr::seq_range(testing_set$x1, 50)) %>%
modelr::add_predictions(rf_fit)
p + geom_contour(data = grid, aes(x2, x1, z = as.numeric(pred)), binwidth = 1)
##ERROR: Error in if (is.na(out.type)) stop("type must be one of 'response', 'prob', 'vote'") : argument is of length zero
And for gradient boosting:
fitBoost <- gbm(y ~ ., data= Dat, distribution = "gaussian",
n.trees = 1000)
pred <- predict(fitBoost, newdata=training_set, n.trees=1000)
grid <- crossing(x1 = modelr::seq_range(testing_set$x1, 50), x2 = modelr::seq_range(testing_set$x1, 50)) %>%
modelr::add_predictions(fitBoost)
### ERROR: Error in paste("Using", n.trees, "trees...\n") : argument "n.trees" is missing, with no default
It seems to be a very simple problem. Could someone help me out?
The following code works with your random forest:
training_set$y <- factor(training_set$y)
rf_fit <- randomForest(y ~ ., data=training_set, mtry=2, ntree=500)
grid <- crossing(x1 = modelr::seq_range(testing_set$x1, 50),
x2 = modelr::seq_range(testing_set$x1, 50)) %>%
modelr::add_predictions(rf_fit)
p + geom_contour(data = grid, aes(x2, x1, z = as.numeric(pred)), binwidth = 1)
And here is the code for the gradient boosting machine:
fitBoost <- gbm(y ~ ., data=Dat, distribution="gaussian", n.trees=1000)
pred <- predict(fitBoost, newdata=training_set, n.trees=1000)
add_predictions2 <- function (data, model, var = "pred", type = NULL)
{
data[[var]] <- predict2(model, data, type = type)
data
}
predict2 <- function (model, data, type = NULL)
{
if (is.null(type)) {
stats::predict(model, data, n.trees=1000)
} else {
stats::predict(model, data, type = type, n.trees=1000)
}
}
grid <- crossing(x1 = modelr::seq_range(testing_set$x1, 50),
x2 = modelr::seq_range(testing_set$x1, 50)) %>%
add_predictions2(fitBoost)
p + geom_contour(data = grid, aes(x2, x1, z = as.numeric(pred)), binwidth = 1)
I am beginning with ML in R, and I really like the idea of visualize the results of my calculations, I am wondering how to plot a Prediction.
library("faraway")
library(tibble)
library(stats)
data("sat")
df<-sat[complete.cases(sat),]
mod_sat_sal <- lm(total ~ salary, data = df)
new_teacher <- tibble(salary = 40)
predict(mod_sat_sal, new_teacher)
Expected result:
Data and Regression Model
data(sat, package = "faraway")
df <- sat[complete.cases(sat), ]
model <- lm(total ~ salary, data = df)
Method (1) : graphics way
# Compute the confidence band
x <- seq(min(df$salary), max(df$salary), length.out = 300)
x.conf <- predict(model, data.frame(salary = x),
interval = 'confidence')
# Plot
plot(total ~ salary, data = df, pch = 16, xaxs = "i")
polygon(c(x, rev(x)), c(x.conf[, 2], rev(x.conf[, 3])),
col = gray(0.5, 0.5), border = NA)
abline(model, lwd = 3, col = "darkblue")
Method (2) : ggplot2 way
library(ggplot2)
ggplot(df, aes(x = salary, y = total)) +
geom_point() +
geom_smooth(method = "lm")
I am new to R and trying to learn. I am trying to plot lift curves of multiple classifiers in one graph. I can't figure out a way to do it. I know the below two classifiers are essentially the same but they both give different graphs and I just want to combine the two. Below is the code I tried. Could someone please point me in the right direction
fullmod = glm(Response ~ page_views_90d+win_visits+osx_visits+mc_1+mc_2+mc_3+mc_4+mc_5+mc_6+store_page+orders+orderlines+bookings+purchase, data=training, family=binomial)
summary(fullmod)
fullmod.results <- predict(fullmod, newdata = testing, type='response')
plotLift(fitted.results, test_data_full$class, cumulative = TRUE,col="orange", n.buckets = 5)
redmod1 = glm(Response ~ win_visits+osx_visits+mc_2+mc_4+mc_6+store_page+orders+orderlines+bookings+purchase, data=training, family=binomial)
redmod1.results <- predict(redmod1, newdata = testing, type = 'response')
plotLift(redmod1.results, test_data_full$class, cumulative = TRUE,col="orange", n.buckets = 5)
# Attempt to plot multiple classifiers
plotLift((redmod1.results, fullmod.results), test_data_full$class, cumulative = TRUE,col="orange", n.buckets = 5)
Here is a way to plot multiple lift curves using the caret library. But first some data:
set.seed(1)
for_lift <- data.frame(Class = factor(rep(1:2, each = 50)),
model1 = sort(runif(100), decreasing = TRUE),
model2 = runif(100),
model3 = runif(100))
Here the Class column is the real classes
model1 is the predicted probabilities by the first model and so on.
Now create a lift object from the data using:
library(caret)
lift_curve <- lift(Class ~ model1 + model2, data = for_lift)
and plot it
xyplot(lift_curve, auto.key = list(columns = 3))
If you would like to plot with ggplot:
library(ggplot2)
ggplot(lift_curve$data)+
geom_line(aes(CumTestedPct, CumEventPct, color = liftModelVar))+
xlab("% Samples tested")+
ylab("% Samples found")+
scale_color_discrete(guide = guide_legend(title = "method"))+
geom_polygon(data = data.frame(x = c(0, lift_curve$pct, 100, 0),
y = c(0, 100, 100, 0)),
aes(x = x, y = y), alpha = 0.1)
I would like to fit a weibull curve to some event data and then include the fitted weibull curve in a survival plot plotted by survminer::ggsurvplot. Any ideas of how?
Here is an example to work on:
A function for simulating weibull data:
# N = sample size
# lambda = scale parameter in h0()
# rho = shape parameter in h0()
# beta = fixed effect parameter
# rateC = rate parameter of the exponential distribution of C
simulWeib <- function(N, lambda, rho, beta, rateC)
{
# covariate --> N Bernoulli trials
x <- sample(x=c(0, 1), size=N, replace=TRUE, prob=c(0.5, 0.5))
# Weibull latent event times
v <- runif(n=N)
Tlat <- (- log(v) / (lambda * exp(x * beta)))^(1 / rho)
# censoring times
C <- rexp(n=N, rate=rateC)
# follow-up times and event indicators
time <- pmin(Tlat, C)
status <- as.numeric(Tlat <= C)
# data set
data.frame(id=1:N,
time=time,
status=status,
x=x)
}
generate data
set.seed(1234)
betaHat <- rep(NA, 1e3)
for(k in 1:1e3)
{
dat <- simulWeib(N=100, lambda=0.01, rho=1, beta=-0.6, rateC=0.001)
fit <- coxph(Surv(time, status) ~ x, data=dat)
betaHat[k] <- fit$coef
}
#Estimate a survival function
survfit(Surv(as.numeric(time), x)~1, data=dat) -> out0
#plot
library(survminer)
ggsurvplot(out0, data = dat, risk.table = TRUE)
gg1 <- ggsurvplot(
out0, # survfit object with calculated statistics.
data = dat, # data used to fit survival curves.
risk.table = TRUE, # show risk table.
pval = TRUE, # show p-value of log-rank test.
conf.int = TRUE, # show confidence intervals for
# point estimaes of survival curves.
xlim = c(0,2000), # present narrower X axis, but not affect
# survival estimates.
break.time.by = 500, # break X axis in time intervals by 500.
ggtheme = theme_minimal(), # customize plot and risk table with a theme.
risk.table.y.text.col = T, # colour risk table text annotations.
risk.table.y.text = FALSE,
surv.median.line = "hv",
color = "darkgreen",
conf.int.fill = "lightblue",
title = "Survival probability",# show bars instead of names in text annotations
# in legend of risk table
)
gg1
As far as I see this, it is not possible do it with ggsurvplot at this moment.
I created an issue requesting this feature: https://github.com/kassambara/survminer/issues/276
You can plot survivor curves of a weibull model with ggplot2 like this:
library("survival")
wbmod <- survreg(Surv(time, status) ~ x, data = dat)
s <- seq(.01, .99, by = .01)
t_0 <- predict(wbmod, newdata = data.frame(x = 0),
type = "quantile", p = s)
t_1 <- predict(wbmod, newdata = data.frame(x = 1),
type = "quantile", p = s)
smod <- data.frame(time = c(t_0, t_1),
surv = rep(1 - s, times = 2),
strata = rep(c(0, 1), each = length(s)),
upper = NA, lower = NA)
head(surv_summary(cm))
library("ggplot2")
ggplot() +
geom_line(data = smod, aes(x = time, y = surv, color = factor(strata))) +
theme_classic()
However to my knowledge you cannot use survminer (yet):
library("survminer")
# wrong:
ggsurvplot(smod)
# does not work:
gg1$plot + geom_line(data = smod, aes(x = time, y = surv, color = factor(strata)))
The following works for me. Probably the credit goes to Heidi filling a feature request.
Hope, someone finds this useful.
library(survminer)
library(tidyr)
s <- with(lung,Surv(time,status))
sWei <- survreg(s ~ as.factor(sex),dist='weibull',data=lung)
fKM <- survfit(s ~ sex,data=lung)
pred.sex1 = predict(sWei, newdata=list(sex=1),type="quantile",p=seq(.01,.99,by=.01))
pred.sex2 = predict(sWei, newdata=list(sex=2),type="quantile",p=seq(.01,.99,by=.01))
df = data.frame(y=seq(.99,.01,by=-.01), sex1=pred.sex1, sex2=pred.sex2)
df_long = gather(df, key= "sex", value="time", -y)
p = ggsurvplot(fKM, data = lung, risk.table = T)
p$plot = p$plot + geom_line(data=df_long, aes(x=time, y=y, group=sex))