Any R-package for weighted bootstrap? - r

Quite new to in this field thus any suggestion is appreciated.
Suppose I have a data on n=200 samples. I have to give weight to each of the sample.
Suppose, at first I generate data y=rnorm(200) and weight as w=rexp(200). This weight needs to be applied to my original sample (y). i have to do this 1000 time and regenerate 1000 data (bootstrap). How could I do it using simple R funtion? Is there any package? Or how to do it manually?
I know I can perform nonparametric bootstrap using 'sample' with 'replace=TRUE" in R. But i don't know how to do weighted bootstrap.

Something like this should work:
y <- rnorm(200)
w <- rexp(200)
w <- w/sum(w)
y_samp <- sample(y, length(y), replace=TRUE, prob = w)
The prob argument allows you to apply a weight to the values of your sampling.

Related

Is there a way in R for doing a pairwise-weighted correlation matrix?

I have a survey with a lot of numeric variables (both continuous and dummy-binary) and more than 800 observations. Of course, there is missing data for most of the variables (at a different rate). I need to use a weighted correlation table because some samples represent more population than others. Also, I want to minimize the not used samples, and in this way keep the max. of observations for each pair of variables. I know how to do a pairwise correlation matrix (e.g., cor(data, use="pairwise.complete.obs")). Also I know how to do a weighted correlation matrix (e.g., cov.wt(data %>% select(-weight), wt=data$weight, cor=TRUE)). However, I couldn't find a way (yet) to use both together. Is there a way for doing a pairwise-weighted correlation matrix in R? Super appreciate it if any help or recommendations.
Good question
Here how I do it
It is not fast but faster than looping.
df_correlation is a dataframe with only the variables I want to compute the correlations
and newdf is my original dataframe with the weight and other variables
data_list <- combn(names(df_correlation),2,simplify = FALSE)
data_list <- map(data_list,~c(.,"BalancingWeights"))
dimension <- length(names(df_correlation))
allcorr <- matrix(data =NA,nrow = dimension,ncol = dimension)
row.names(allcorr)<-names(df_correlation)
colnames(allcorr) <- names(df_correlation)
myfunction<- function(data,x,y,weight){
indice <-!(is.na(data[[x]])|is.na(data[[y]]))
return(wCorr::weightedCorr(data[[x]][indice],
data[[y]][indice], method = c("Pearson"),
weights = data[[weight]][indice], ML = FALSE, fast = TRUE))
}
b <- map_dbl(data_list,~myfunction(newdf,.[1],.[2],.[3]))
allcorr[upper.tri(allcorr, diag = FALSE)]<- b
allcorr[lower.tri(allcorr,diag=FALSE)] <- b
view(allcorr)

Bootstrapping regression coefficients from random subsets of data

I’m attempting to perform a regression calibration on two variables using the yorkfit() function in the IsoplotR package. I would like to estimate the confidence interval of the bootstrapped slope coefficient from this model; however, instead of using the typical bootstrap method below, I’d like to only perform the iterations on 75% of the data (randomly selected) at a time. So far, using the following sample data, I managed to bootstrap the slope coefficient result of the yorkfit() function:
library(boot)
library(IsoplotR)
X <- c(9.105,8.987,8.974,8.994,8.996,8.966,9.035,9.215,9.239,
9.307,9.227,9.17, 9.102)
Y <- c(28.1,28.9,29.6,29.5,29.0,28.8,28.5,27.3,27.1,26.5,
27.0,27.5,28.4)
n <- length(X)
sX <- X*0.02
sY <- Y*0.05
rXY <- rep(0.8,n)
dat <- cbind(X,sX,Y,sY,rXY)
fit <- york(dat)
boot.test <- function(data,indices){
sample = data[indices,]
mod = york(sample)
return (mod$b)
}
result <- boot(data=dat, statistic = boot.test, R=1000)
boot.ci(result, type = 'bca')
...but I'm not really sure where to go from here. Any help to move me in the right direction would be greatly appreciated. I’m new to R so I apologize if question is ambiguous. Thanks.
Based on the package documentation, you should be able to use the ran.gen argument, with sim="parametric", to sample using a custom function. In this case, the sample is a certain percent of the total observations, chosen at random. Something like the following should accomplish what you want:
result <- boot(
data=dat,
statistic =boot.test,
R=1000,
sim="parametric",
ran.gen=function(data, percent){
n=nrow(data)
indic=runif(n)
data[rank(indic, ties.method="random")<=round(n*percent,0),]
},
percent=0.75)

how to create a random loss sample in r using if function

I am working currently on generating some random data for a school project.
I have created a variable in R using a binomial distribution to determine if an observation had a loss yes=1 or not=0.
Afterwards I am trying to generate the loss amount using a random distribution for all observations which already had a loss (=1).
As my loss amount is a percentage it can be anywhere between 0
What Is The Intuition Behind Beta Distribution # stats.stackexchange
In a third step I am looking for an if statement, which combines my two variables.
Please find below my code (which is only working for the Loss_Y_N variable):
Loss_Y_N = rbinom(1000000,1,0.01)
Loss_Amount = dbeta(x, 10, 990, ncp = 0, log = FALSE)
ideally I can combine the two into something like
if(Loss_Y_N=1 then Loss_Amount=dbeta(...) #... is meant to be a random variable with mean=0.15 and should be 0<x=<1
else Loss_Amount=0)
Any input highly appreciated!
Create a vector for your loss proportion. Fill up the elements corresponding to losses with draws from the beta. Tweak the parameters for the beta until you get the desired result.
N <- 100000
loss_indicator <- rbinom(N, 1, 0.1)
loss_prop <- numeric(N)
loss_prop[loss_indicator > 0] <- rbeta(sum(loss_indicator), 10, 990)

How to find significant correlations in a large dataset

I'm using R.
My dataset has about 40 different Variables/Vektors and each has about 80 entries. I'm trying to find significant correlations, that means I want to pick one variable and let R calculate all the correlations of that variable to the other 39 variables.
I tried to do this by using a linear modell with one explaining variable that means: Y=a*X+b.
Then the lm() command gives me an estimator for a and p-value of that estimator for a. I would then go on and use one of the other variables I have for X and try again until I find a p-value thats really small.
I'm sure this is a common problem, is there some sort of package or function that can try all these possibilities (Brute force),show them and then maybe even sorts them by p-value?
You can use the function rcorr from the package Hmisc.
Using the same demo data from Richie:
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
Then:
library(Hmisc)
correlations <- rcorr(as.matrix(the_data))
To access the p-values:
correlations$P
To visualize you can use the package corrgram
library(corrgram)
corrgram(the_data)
Which will produce:
In order to print a list of the significant correlations (p < 0.05), you can use the following.
Using the same demo data from #Richie:
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
Install Hmisc
install.packages("Hmisc")
Import library and find the correlations (#Carlos)
library(Hmisc)
correlations <- rcorr(as.matrix(the_data))
Loop over the values printing the significant correlations
for (i in 1:m){
for (j in 1:m){
if ( !is.na(correlations$P[i,j])){
if ( correlations$P[i,j] < 0.05 ) {
print(paste(rownames(correlations$P)[i], "-" , colnames(correlations$P)[j], ": ", correlations$P[i,j]))
}
}
}
}
Warning
You should not use this for drawing any serious conclusion; only useful for some exploratory analysis and formulate hypothesis. If you run enough tests, you increase the probability of finding some significant p-values by random chance: https://www.xkcd.com/882/. There are statistical methods that are more suitable for this and that do do some adjustments to compensate for running multiple tests, e.g. https://en.wikipedia.org/wiki/Bonferroni_correction.
Here's some sample data for reproducibility.
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
You can calculate the correlation between two columns using cor. This code loops over all columns except the first one (which contains our response), and calculates the correlation between that column and the first column.
correlations <- vapply(
the_data[, -1],
function(x)
{
cor(the_data[, 1], x)
},
numeric(1)
)
You can then find the column with the largest magnitude of correlation with y using:
correlations[which.max(abs(correlations))]
So knowing which variables are correlated which which other variables can be interesting, but please don't draw any big conclusions from this knowledge. You need to have a proper think about what you are trying to understand, and which techniques you need to use. The folks over at Cross Validated can help.
If you are trying to predict y using only one variable than you have to take the one that is mainly correlated with y.
To do this just use the command which.max(abs(cor(x,y))). If you want to use more than one variable in your model then you have to consider something like the lasso estimator
One option is to run a correlation matrix:
cor_result=cor(data)
write.csv(cor_result, file="cor_result.csv")
This correlates all the variables in the file against each other and outputs a matrix.

using k-NN in R with categorical values

I'm looking to perform classification on data with mostly categorical features. For that purpose, Euclidean distance (or any other numerical assuming distance) doesn't fit.
I'm looking for a kNN implementation for [R] where it is possible to select different distance methods, like Hamming distance.
Is there a way to use common kNN implementations like the one in {class} with different distance metric functions?
I'm using R 2.15
As long as you can calculate a distance/dissimilarity matrix (in whatever way you like) you can easily perform kNN classification without the need of any special package.
# Generate dummy data
y <- rep(1:2, each=50) # True class memberships
x <- y %*% t(rep(1, 20)) + rnorm(100*20) < 1.5 # Dataset with 20 variables
design.set <- sample(length(y), 50)
test.set <- setdiff(1:100, design.set)
# Calculate distance and nearest neighbors
library(e1071)
d <- hamming.distance(x)
NN <- apply(d[test.set, design.set], 1, order)
# Predict class membership of the test set
k <- 5
pred <- apply(NN[, 1:k, drop=FALSE], 1, function(nn){
tab <- table(y[design.set][nn])
as.integer(names(tab)[which.max(tab)]) # This is a pretty dirty line
}
# Inspect the results
table(pred, y[test.set])
If anybody knows a better way of finding the most common value in a vector than the dirty line above, I'd be happy to know.
The drop=FALSE argument is needed to preserve the subset of NN as matrix in the case k=1. If not it will be converted to a vector and apply will throw an error.

Resources