using k-NN in R with categorical values - r

I'm looking to perform classification on data with mostly categorical features. For that purpose, Euclidean distance (or any other numerical assuming distance) doesn't fit.
I'm looking for a kNN implementation for [R] where it is possible to select different distance methods, like Hamming distance.
Is there a way to use common kNN implementations like the one in {class} with different distance metric functions?
I'm using R 2.15

As long as you can calculate a distance/dissimilarity matrix (in whatever way you like) you can easily perform kNN classification without the need of any special package.
# Generate dummy data
y <- rep(1:2, each=50) # True class memberships
x <- y %*% t(rep(1, 20)) + rnorm(100*20) < 1.5 # Dataset with 20 variables
design.set <- sample(length(y), 50)
test.set <- setdiff(1:100, design.set)
# Calculate distance and nearest neighbors
library(e1071)
d <- hamming.distance(x)
NN <- apply(d[test.set, design.set], 1, order)
# Predict class membership of the test set
k <- 5
pred <- apply(NN[, 1:k, drop=FALSE], 1, function(nn){
tab <- table(y[design.set][nn])
as.integer(names(tab)[which.max(tab)]) # This is a pretty dirty line
}
# Inspect the results
table(pred, y[test.set])
If anybody knows a better way of finding the most common value in a vector than the dirty line above, I'd be happy to know.
The drop=FALSE argument is needed to preserve the subset of NN as matrix in the case k=1. If not it will be converted to a vector and apply will throw an error.

Related

Different results when performing PCA in R with princomp() and principal ()

I tried to use princomp() and principal() to do PCA in R with data set USArressts. However, I got two different results for loadings/rotaion and scores.
First, I centered and normalised the original data frame so it is easier to compare the outputs.
library(psych)
trans_func <- function(x){
x <- (x-mean(x))/sd(x)
return(x)
}
A <- USArrests
USArrests <- apply(USArrests, 2, trans_func)
princompPCA <- princomp(USArrests, cor = TRUE)
principalPCA <- principal(USArrests, nfactors=4 , scores=TRUE, rotate = "none",scale=TRUE)
Then I got the results for the loadings and scores using the following commands:
princompPCA$loadings
principalPCA$loadings
Could you please help me to explain why there is a difference? and how can we interprete these results?
At the very end of the help document of ?principal:
"The eigen vectors are rescaled by the sqrt of the eigen values to produce the component loadings more typical in factor analysis."
So principal returns the scaled loadings. In fact, principal produces a factor model estimated by the principal component method.
In 4 years, I would like to provide a more accurate answer to this question. I use iris data as an example.
data = iris[, 1:4]
First, do PCA by the eigen-decomposition
eigen_res = eigen(cov(data))
l = eigen_res$values
q = eigen_res$vectors
Then the eigenvector corresponding to the largest eigenvalue is the factor loadings
q[,1]
We can treat this as a reference or the correct answer. Now we check the results by different r functions.
First, by function 'princomp'
res1 = princomp(data)
res1$loadings[,1]
# compare with
q[,1]
No problem, this function actually just return the same results as 'eigen'. Now move to 'principal'
library(psych)
res2 = principal(data, nfactors=4, rotate="none")
# the loadings of the first PC is
res2$loadings[,1]
# compare it with the results by eigendecomposition
sqrt(l[1])*q[,1] # re-scale the eigen vector by sqrt of eigen value
You may find they are still different. The problem is the 'principal' function does eigendecomposition on the correlation matrix by default. Note: PCA is not invariant with rescaling the variables. If you modify the code as
res2 = principal(data, nfactors=4, rotate="none", cor="cov")
# the loadings of the first PC is
res2$loadings[,1]
# compare it with the results by eigendecomposition
sqrt(l[1])*q[,1] # re-scale the eigen vector by sqrt of eigen value
Now, you will get the same results as 'eigen' and 'princomp'.
Summarize:
If you want to do PCA, you'd better apply 'princomp' function.
PCA is a special case of the Factor model or a simplified version of the factor model. It is just equivalent to eigendecomposition.
We can apply PCA to get an approximation of a factor model. It doesn't care about the specific factors, i.e. epsilons in a factor model. So, if you change the number of factors in your model, you will get the same estimations of the loadings. It is different from the maximum likelihood estimation.
If you are estimating a factor model, you'd better use 'principal' function, since it provides more functions, like rotation, calculating the scores by different methods, and so on.
Rescale the loadings of a PCA model doesn't affect the results too much. Since you still project the data onto the same optimal direction, i.e. maximize the variation in the resulting PC.
ev <- eigen(R) # R is a correlation matrix of DATA
ev$vectors %*% diag(ev$values) %*% t(ev$vectors)
pc <- princomp(scale(DATA, center = F, scale = T),cor=TRUE)
p <-principal(DATA, rotate="none")
#eigen values
ev$values^0.5
pc$sdev
p$values^0.5
#eigen vectors - loadings
ev$vectors
pc$loadings
p$weights %*% diag(p$values^0.5)
pc$loading %*% diag(pc$sdev)
p$loadings
#weights
ee <- diag(0,2)
for (j in 1:2) {
for (i in 1:2) {
ee[i,j] <- ev$vectors[i,j]/p$values[j]^0.5
}
};ee
#scores
s <- as.matrix(scale(DATA, center = T, scale = T)) %*% ev$vectors
scale(s)
p$scores
scale(pc$scores)

How to find significant correlations in a large dataset

I'm using R.
My dataset has about 40 different Variables/Vektors and each has about 80 entries. I'm trying to find significant correlations, that means I want to pick one variable and let R calculate all the correlations of that variable to the other 39 variables.
I tried to do this by using a linear modell with one explaining variable that means: Y=a*X+b.
Then the lm() command gives me an estimator for a and p-value of that estimator for a. I would then go on and use one of the other variables I have for X and try again until I find a p-value thats really small.
I'm sure this is a common problem, is there some sort of package or function that can try all these possibilities (Brute force),show them and then maybe even sorts them by p-value?
You can use the function rcorr from the package Hmisc.
Using the same demo data from Richie:
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
Then:
library(Hmisc)
correlations <- rcorr(as.matrix(the_data))
To access the p-values:
correlations$P
To visualize you can use the package corrgram
library(corrgram)
corrgram(the_data)
Which will produce:
In order to print a list of the significant correlations (p < 0.05), you can use the following.
Using the same demo data from #Richie:
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
Install Hmisc
install.packages("Hmisc")
Import library and find the correlations (#Carlos)
library(Hmisc)
correlations <- rcorr(as.matrix(the_data))
Loop over the values printing the significant correlations
for (i in 1:m){
for (j in 1:m){
if ( !is.na(correlations$P[i,j])){
if ( correlations$P[i,j] < 0.05 ) {
print(paste(rownames(correlations$P)[i], "-" , colnames(correlations$P)[j], ": ", correlations$P[i,j]))
}
}
}
}
Warning
You should not use this for drawing any serious conclusion; only useful for some exploratory analysis and formulate hypothesis. If you run enough tests, you increase the probability of finding some significant p-values by random chance: https://www.xkcd.com/882/. There are statistical methods that are more suitable for this and that do do some adjustments to compensate for running multiple tests, e.g. https://en.wikipedia.org/wiki/Bonferroni_correction.
Here's some sample data for reproducibility.
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
You can calculate the correlation between two columns using cor. This code loops over all columns except the first one (which contains our response), and calculates the correlation between that column and the first column.
correlations <- vapply(
the_data[, -1],
function(x)
{
cor(the_data[, 1], x)
},
numeric(1)
)
You can then find the column with the largest magnitude of correlation with y using:
correlations[which.max(abs(correlations))]
So knowing which variables are correlated which which other variables can be interesting, but please don't draw any big conclusions from this knowledge. You need to have a proper think about what you are trying to understand, and which techniques you need to use. The folks over at Cross Validated can help.
If you are trying to predict y using only one variable than you have to take the one that is mainly correlated with y.
To do this just use the command which.max(abs(cor(x,y))). If you want to use more than one variable in your model then you have to consider something like the lasso estimator
One option is to run a correlation matrix:
cor_result=cor(data)
write.csv(cor_result, file="cor_result.csv")
This correlates all the variables in the file against each other and outputs a matrix.

Impossible to create correlated variables from this correlation matrix?

I would like to generate correlated variables specified by a correlation matrix.
First I generate the correlation matrix:
require(psych)
require(Matrix)
cor.table <- matrix( sample( c(0.9,-0.9) , 2500 , prob = c( 0.8 , 0.2 ) , repl = TRUE ) , 50 , 50 )
k=1
while (k<=length(cor.table[1,])){
cor.table[1,k]<-0.55
k=k+1
}
k=1
while (k<=length(cor.table[,1])){
cor.table[k,1]<-0.55
k=k+1
}
ind<-lower.tri(cor.table)
cor.table[ind]<-t(cor.table)[ind]
diag(cor.table) <- 1
This correlation matrix is not consistent, therefore, eigenvalue decomposition is impossible.
TO make it consistent I use nearPD:
c<-nearPD(cor.table)
Once this is done I generate the correlated variables:
fit<-principal(c, nfactors=50,rotate="none")
fit$loadings
loadings<-matrix(fit$loadings[1:50, 1:50],nrow=50,ncol=50,byrow=F)
loadings
cases <- t(replicate(50, rnorm(10)) )
multivar <- loadings %*% cases
T_multivar <- t(multivar)
var<-as.data.frame(T_multivar)
cor(var)
However the resulting correlations are far from anything that I specified initially.
Is it not possible to create such correlations or am I doing something wrong?
UPDATE from Greg Snow's comment it became clear that the problem is that my initial correlation matrix is unreasonable.
The question then is how can I make the matrix reasonable. The goal is:
each of the 49 variables should correlate >.5 with the first variable.
~40 of the variables should have a high >.8 correlation with each other
the remaining ~9 variables should have a low or negative correlation with each other.
Is this whole requirement impossible ?
Try using the mvrnorm function from the MASS package rather than trying to construct the variables yourself.
**Edit
Here is a matrix that is positive definite (so it works as a correlation matrix) and comes close to your criteria, you can tweak the values from there (all the Eigen values need to be positive, so you can see how changing a number affects things):
cor.mat <- matrix(0.2,nrow=50, ncol=50)
cor.mat[1,] <- cor.mat[,1] <- 0.55
cor.mat[2:41,2:41] <- 0.9
cor.mat[42:50, 42:50] <- 0.25
diag(cor.mat) <- 1
eigen(cor.mat)$values
Some numerical experimentation based on your specifications above suggests that the generated matrix will never (what never? well, hardly ever ...) be positive definite, but it also doesn't look far from PD with these values (making lcor below negative will almost certainly make things worse ...)
rmat <- function(n=49,nhcor=40,hcor=0.8,lcor=0) {
m <- matrix(lcor,n,n) ## fill matrix with 'lcor'
## select high-cor variables
hcorpos <- sample(n,size=nhcor,replace=FALSE)
## make all of these highly correlated
m[hcorpos,hcorpos] <- hcor
## compute min real part of eigenvalues
min(Re(eigen(m,only.values=TRUE)$values))
}
set.seed(101)
r <- replicate(1000,rmat())
## NEVER pos definite
max(r)
## [1] -1.069413e-15
par(las=1,bty="l")
png("eighist.png")
hist(log10(abs(r)),breaks=50,col="gray",main="")
dev.off()

applying the pvclust R function to a precomputed dist object

I'm using R to perform an hierarchical clustering. As a first approach I used hclust and performed the following steps:
I imported the distance matrix
I used the as.dist function to transform it in a dist object
I run hclust on the dist object
Here's the R code:
distm <- read.csv("distMatrix.csv")
d <- as.dist(distm)
hclust(d, "ward")
At this point I would like to do something similar with the function pvclust; however, I cannot because it's not possible to pass a precomputed dist object. How can I proceed considering that I'm using a distance not available among those provided by the dist function of R?
I've tested the suggestion of Vincent, you can do the following (my data set is a dissimilarity matrix):
# Import you data
distm <- read.csv("distMatrix.csv")
d <- as.dist(distm)
# Compute the eigenvalues
x <- cmdscale(d,1,eig=T)
# Plot the eigenvalues and choose the correct number of dimensions (eigenvalues close to 0)
plot(x$eig,
type="h", lwd=5, las=1,
xlab="Number of dimensions",
ylab="Eigenvalues")
# Recover the coordinates that give the same distance matrix with the correct number of dimensions
x <- cmdscale(d,nb_dimensions)
# As mentioned by Stéphane, pvclust() clusters columns
pvclust(t(x))
If the dataset is not too large, you can embed your n points in a space of dimension n-1, with the same distance matrix.
# Sample distance matrix
n <- 100
k <- 1000
d <- dist( matrix( rnorm(k*n), nc=k ), method="manhattan" )
# Recover some coordinates that give the same distance matrix
x <- cmdscale(d, n-1)
stopifnot( sum(abs(dist(x) - d)) < 1e-6 )
# You can then indifferently use x or d
r1 <- hclust(d)
r2 <- hclust(dist(x)) # identical to r1
library(pvclust)
r3 <- pvclust(x)
If the dataset is large, you may have to check how pvclust is implemented.
It's not clear to me whether you only have a distance matrix, or you computed it beforehand. In the former case, as already suggested by #Vincent, it would not be too difficult to tweak the R code of pvclust itself (using fix() or whatever; I provided some hints on another question on CrossValidated). In the latter case, the authors of pvclust provide an example on how to use a custom distance function, although that means you will have to install their "unofficial version".

Random sample from given bivariate discrete distribution

Suppose I have a bivariate discrete distribution, i.e. a table of probability values P(X=i,Y=j), for i=1,...n and j=1,...m. How do I generate a random sample (X_k,Y_k), k=1,...N from such distribution? Maybe there is a ready R function like:
sample(100,prob=biprob)
where biprob is 2 dimensional matrix?
One intuitive way to sample is the following. Suppose we have a data.frame
dt=data.frame(X=x,Y=y,P=pij)
Where x and y come from
expand.grid(x=1:n,y=1:m)
and pij are the P(X=i,Y=j).
Then we get our sample (Xs,Ys) of size N, the following way:
set.seed(1000)
Xs <- sample(dt$X,size=N,prob=dt$P)
set.seed(1000)
Ys <- sample(dt$Y,size=N,prob=dt$P)
I use set.seed() to simulate the "bivariateness". Intuitively I should get something similar to what I need. I am not sure that this is correct way though. Hence the question :)
Another way is to use Gibbs sampling, marginal distributions are easy to compute.
I tried googling, but nothing really relevant came up.
You are almost there. Assuming you have the data frame dt with the x, y, and pij values, just sample the rows!
dt <- expand.grid(X=1:3, Y=1:2)
dt$p <- runif(6)
dt$p <- dt$p / sum(dt$p) # get fake probabilities
idx <- sample(1:nrow(dt), size=8, replace=TRUE, prob=dt$p)
sampled.x <- dt$X[idx]
sampled.y <- dt$Y[idx]
It's not clear to me why you should care that it is bivariate. The probabilities sum to one and the outcomes are discrete, so you are just sampling from a categorical distribution. The only difference is that you are indexing the observations using rows and columns rather than a single position. This is just notation.
In R, you can therefore easily sample from your distribution by reshaping your data and sampling from a categorical distribution. Sampling from a categorical can be done using rmultinom and using which to select the index, or, as Aniko suggests, using sample to sample the rows of the reshaped data. Some bookkeeping can take care of your exact case.
Here's a solution:
library(reshape)
# Reshape data to long format.
data <- matrix(data = c(.25,.5,.1,.4), nrow=2, ncol=2)
pmatrix <- melt(data)
# Sample categorical n times.
rcat <- function(n, pmatrix) {
rows <- which(rmultinom(n,1,pmatrix$value)==1, arr.ind=TRUE)[,'row']
indices <- pmatrix[rows, c('X1','X2')]
colnames(indices) <- c('i','j')
rownames(indices) <- seq(1,nrow(indices))
return(indices)
}
rcat(3,pmatrix)
This returns 3 random draws from your matrix, reporting the i and j of the rows and columns:
i j
1 1 1
2 2 2
3 2 2

Resources