I would like to draw a map of NYC where the distances between neighborhoods are scaled by transit time. I computed a distance matrix using the Google Maps Distance Matrix API for public transit.
To visualize it, I tried embedding using sklearn.manifold.MDS (metric MDS) and then making a scatter plot. This works kind of ok. Unfortunately, the axes are rescaled as part of this process, and I would like to provide a scale that reflects the raw transit time. In addition, the orientation of the points does not influence the fit, but for drawing a map, it would be nice if I could specify the orientation.
Does anyone have other methods that would be a better fit for my problem? I thought about fixing some reference points and using them to triangulate the remaining points on a map, but I don't know of an off-the-shelf way to do this.
Related
I'll try to describe my problem as simplest as possible.
Assume I have a map where I plot as points the cities within the map. Cities are then connected by line segments representing roads, so now there's a graph with line segments that represent the euclidean distance for each road (these are the original weights).
I need to make a new graph with line segments representing the actual road lengths (new weights), while trying as much as possible to keep the original geometry unmodified.
I'm thinking metric multidimensional scaling is the way to go, but maybe there's something simpler.
Mapping a point cloud onto a 3D "fabric" then flattening.
So I have a scientific dataset consisting of a point cloud in 3D, this point cloud comprises points on a surface that is curved. In order to perform quantitative analysis I however need to map these point clouds onto a surface I can then flatten. I thought about using mapping tools sort of like in the case of the 3d world being flattened onto a map, but not sure how to even begin as I have no experience in cartography and maybe I'm trying to solve an easy problem with the wrong tools.
Just to briefly describe the dataset: imagine entirely transparent curtains on the window with small dots on them, if I could use that dot pattern to fit the material the dots are on I could then "straighten" it and do meaningful analysis on the spread of the dots. I'm guessing the procedure would be to first manually fit the "sheet" onto the point cloud data by using contours or something along those lines then flattening the sheet thus putting the points into a 2d array. Ultimately I'll probably also reduce that into a 1D but I assume I need the intermediate 2D step as the length of the 2nd dimension is variable (i.e. one end of the sheet is shorter than the other but still corresponds to the same position in terms of contours) I'm using Matlab and Amira though I'm always happy to learn new tools!
Any advice or hints how to approach are much appreciated!
You can use a space filling curve to reduce the 3d complexity to a 1d complexity. I use a hilbert curve to index lat-lng pairs on a 2d map. You can do the same with a 3d space but it's easier to start with a simple curve for example a z morton order curve. Space filling curves are often used in mapping applications. A space filling curve also adds some proximity information and a new sort order to the 3d points.
You can try to build a surface that approximates your dataset, then unfold the surface with the points you want. Solid3dtech.com has the tool to unfold the surfaces with the curves or points.
I've got data representing 3D surfaces (i.e. earthquake fault planes) in xyz point format. I'd like to create a 3D representation of these surfaces. I've had some success using rgl and akima, however it can't really handle geometry that may fold back on itself or have multiple z values at the same x,y point. Alternatively, using geometry (the convhulln function from qhull) I can create convex hulls that show up nicely in rgl but these are closed surfaces where in reality, the objects are open (don't completely enclose the point set). Is there a way to create these surfaces and render them, preferably in rgl?
EDIT
To clarify, the points are in a point cloud that defines the surface. They have varying density of coverage across the surface. However, the main issue is that the surface is one-sided, not closed, and I don't know how to generate a mesh/surface that isn't closed for more complex geometry.
As an example...
require(rgl)
require(akima)
faultdata<-cbind(c(1,1,1,2,2,2),c(1,1,1,2,2,2),c(10,20,-10,10,20,-10))
x <- faultdata[,1]
y <- faultdata[,2]
z <- faultdata[,3]
s <- interp(x,z,y,duplicate="strip")
surface3d(s$x,s$y,s$z,col=a,add=T)
This creates generally what I want. However, for planes that are more complex this doesn't necessarily work. e.g. where the data are:
faultdata<-cbind(c(2,2,2,2,2,2),c(1,1,1,2,2,2),c(10,20,-10,10,20,-10))
I can't use this approach because the points are all vertically co-planar. I also can't use convhulln because of the same issue and in general I don't want a closed hull, I want a surface. I looked at alphashape3d and it looks promising, but I'm not sure how to go about using it for this problem.
How do you determine how the points are connected together as a surface? By distance? That can be one way, and the alphashape3d package might be of use. Otherwise, if you know exactly how they are to be connected, then you can visualize it directly with rgl structures.
I have a set of points like this (that I have clustered using R):
180.06576696, 192.64378568
180.11529253999998, 192.62311824
180.12106092, 191.78020965999997
180.15299478, 192.56909828000002
180.2260287, 192.55455869999997
These points are dispersed around a center point or centroid.
The problem is that the points are very close together and are, thus, difficult to see.
So, how do I move the points apart so that I can distinguish each point more clearly?
Thanks,
s
Maybe I'm overlooking some intricacy here, but...multiply by 10?
EDIT
Assuming the data you listed above are Cartesian (x,y) coordinate pairs, you can visualize them as a scatter plot using Google Charts. I've rounded your data to 3 decimal places, because Google Charts doesn't appear to handle higher precision than that.
I don't know the coordinates for your central point. In the above chart, I'm assuming it is somewhere nearby and not at (0,0). If it is at (0,0), then I imagine it will be difficult to visualize all of the data at once without some kind of "zoom-in" feature, scaling the data, or a very large screen.
slotishtype, without going into code, I think you first need to add in the following tweaking parameters to be used by the visualization code.
Given an x by y display box, fill the entire box, with input parameters [0.0 to 1.0]...
overlap: the allowance for points to be placed on top of each other
completeness: how important is it to display all of your data points
centroid_display: how important is it to see the centroid in the same output
These produce the dependent parameter
scale: the ratio between display distances to numerical distances
You will need code to
calculate the distance(s) to the centroid like you said,
and also the distances between data points, affecting the output based on the chosen input parameters.
I take inspiration from the fundamentals in the GraphViz dot manual. Look at the "Drawing Orientation, Size and Spacing" on p12.
I need to convert arbitrary triangulated 3D mesh to cloud of particles that are uniformly spaced.
First thought was to try find a way to fill one 3D triangle. And then fill each triangle of mesh, removing duplicated particles on edges, but that's just hard and too much work. I was hoping for some more-math way.
Can anyone point me to an algorithm which can help me do my task correctly... well, at least approximatively?
Thanks
There are two main options:
Voxelization of mesh. Easy to implement the conversion of mesh to voxels, but it's inaccurate since uniform spacing cannot be achieved: distance between cubes can be x, x*sqrt(2) or x*sqrt(3) depending if neighbor cubes are in same plane and adjacent.
Poisson disk sampling on surface. Hard to implement and lack of research material and code, but mathematically very correct. Some links:
http://research.microsoft.com/apps/pubs/default.aspx?id=135760
http://web.mysites.ntu.edu.sg/cwfu/public/Shared%20Documents/dualtiling/index.html
You could convert the TIN to raster using a GIS package or software such as R, then retrieve one point at the center of each pixel representing the value. (Example in ArcGIS)
EDIT: If the irregular 3D mesh has multiple heights per {x, y} a similar approach would be to sample the mesh using a voxel "grid" and keep one value per voxel. GRASS GIS has the functionality to take the vertices of the TIN (3d mesh) and convert them to voxels, then back to a regular 3d cloud.