Failure to report number that is too small - julia

I did the following calculations in Julia
z = LinRange(-0.09025000000000001,0.19025000000000003,5)
d = Normal.(0.05*(1-0.95) .+ 0.95.*z .- 0.0051^2/2, 0.0051 .* (similar(z) .*0 .+1))
minimum(cdf.(d, (z[3]+z[2])/2))
The problem I have is that the last code sometimes gives me the correct result 4.418051841202834e-239, sometimes reports the error DomainError with NaN: Normal: the condition σ >= zero(σ) is not satisfied. I think this is because 4.418051841202834e-239 is too small. But I was wondering why my code can give me different results.

In addition to points mentioned by others, here are a few more:
Firstly, don't use LinRange when numerical accuracy is of importance. This is what the range function is for. LinRange can be used when numerical precision is of lesser importance, since it is faster. From the docstring of range:
Special care is taken to ensure intermediate values are computed rationally. To avoid this induced overhead, see the LinRange constructor.
Example:
julia> LinRange(-0.09025000000000001,0.19025000000000003,5) .- range(-0.09025000000000001,0.19025000000000003,5)
0.0:-3.469446951953614e-18:-1.3877787807814457e-17
Secondly, this is a pretty terrible way to create a vector of a certain value:
0.0051 .* (similar(z) .*0 .+1)
Other's have mentioned ones, etc. but I think it's better to use fill
fill(0.0051, size(z))
which directly fills the array with the right value. Perhaps one should use convert(eltype(z), 0.0051) inside fill.
Thirdly, don't create this vector at all! You use broadcasting, so just use the scalar value:
d = Normal.(0.05*(1-0.95) .+ 0.95.*z .- 0.0051^2/2, 0.0051) # look! just a scalar!
This is how broadcasting works, it expands singleton dimensions implicitly to match other arguments (without actually wasting that memory).
Much of the point of broadcasting is that you don't need to create that sort of 'dummy arrays' anymore. If you find yourself doing that, give it another think; constant-valued arrays are inherently wasteful, and you shouldn't need to create them.

There are two problems:
Noted by #Dan Getz: similar does no initialize the values and quite often unused areas of memory have values corresponding to NaN. In that case multiplication by 0 does not help since NaN * 0 == NaN. Instead you want to have ones(eltype(z),size(z))
you need to use higher precision than Float64. BigFloat is one way to go - just you need to remember to call setprecision(BigFloat, 128) so you actually control how many bits you use. However, much more time-efficient solution (if you run computations at scale) will be to use a dedicated package such as DoubleFloats.
Sample corrected code using DoubleFloats below:
julia> z = LinRange(df64"-0.09025000000000001",df64"0.19025000000000003",5)
5-element LinRange{Double64, Int64}:
-0.09025000000000001,-0.020125,0.05000000000000001,0.12012500000000002,0.19025000000000003
julia> d = Normal.(0.05*(1-0.95) .+ 0.95.*z .- 0.0051^2/2, 0.0051 .* ones(eltype(z),size(z)))
5-element Vector{Normal{Double64}}:
Normal{Double64}(μ=-0.083250505, σ=0.0051)
Normal{Double64}(μ=-0.016631754999999998, σ=0.0051)
Normal{Double64}(μ=0.049986995000000006, σ=0.0051)
Normal{Double64}(μ=0.11660574500000001, σ=0.0051)
Normal{Double64}(μ=0.18322449500000001, σ=0.0051)
julia> minimum(cdf.(d, (z[3]+z[2])/2))
4.418051841203009e-239

The problem in the code is similar(z) which produces a vector with undefined entries and is used without initialization. Use ones(length(z)) instead.

Related

Julia JuMP returns Binary variable at 0.99

I cannot put the whole code here, and was not able to reproduce the problem with a small code, but here is the beginning of the code:
using JuMP, Cbc, StatsBase
n = 3;
V = 1:(2n+1);
model = Model(with_optimizer(Cbc.Optimizer, seconds=120));
#variable(model, x[V], Bin);
...
#objective(model, Min, total_blah);
JuMP.optimize!(model)
result = termination_status(model)
JuMP.objective_value(model)
xsol = JuMP.value.(x);
The problem I have is that the solver returns a solution where some of the xsol have values like 0.99995, where I am expecting Binary, ie either 0 or 1.
Can someone explain this behavior?
I looked this up and CBC has an option called integerTolerance (or integerT) that helps CBC to decide whether a variable is integer valued. Using CBC.exe, I see:
Coin:integerTolerance
integerTolerance has value 1e-006
Indeed the default is 1e-6. You cannot set it to zero but you can make it smaller (valid range is 1e-020 to 0.5). (The only solver I know of that allows this tolerance to be set to zero is Cplex; usually doing that leads to longer solution times).
In general I would advice to keep it as it is. If small deviations from integer values irritate you, I would round integer variables in the solution before printing. This gives better looking solutions (but this rounding step may make the solution slightly infeasible).

dropping singleton dimensions in julia

Just playing around with Julia (1.0) and one thing that I need to use a lot in Python/numpy/matlab is the squeeze function to drop the singleton dimensions.
I found out that one way to do this in Julia is:
a = rand(3, 3, 1);
a = dropdims(a, dims = tuple(findall(size(a) .== 1)...))
The second line seems a bit cumbersome and not easy to read and parse instantly (this could also be my bias that I bring from other languages). However, I wonder if this is the canonical way to do this in Julia?
The actual answer to this question surprised me. What you are asking could be rephrased as:
why doesn't dropdims(a) remove all singleton dimensions?
I'm going to quote Tim Holy from the relevant issue here:
it's not possible to have squeeze(A) return a type that the compiler
can infer---the sizes of the input matrix are a runtime variable, so
there's no way for the compiler to know how many dimensions the output
will have. So it can't possibly give you the type stability you seek.
Type stability aside, there are also some other surprising implications of what you have written. For example, note that:
julia> f(a) = dropdims(a, dims = tuple(findall(size(a) .== 1)...))
f (generic function with 1 method)
julia> f(rand(1,1,1))
0-dimensional Array{Float64,0}:
0.9939103383167442
In summary, including such a method in Base Julia would encourage users to use it, resulting in potentially type-unstable code that, under some circumstances, will not be fast (something the core developers are strenuously trying to avoid). In languages like Python, rigorous type-stability is not enforced, and so you will find such functions.
Of course, nothing stops you from defining your own method as you have. And I don't think you'll find a significantly simpler way of writing it. For example, the proposition for Base that was not implemented was the method:
function squeeze(A::AbstractArray)
singleton_dims = tuple((d for d in 1:ndims(A) if size(A, d) == 1)...)
return squeeze(A, singleton_dims)
end
Just be aware of the potential implications of using it.
Let me simply add that "uncontrolled" dropdims (drop any singleton dimension) is a frequent source of bugs. For example, suppose you have some loop that asks for a data array A from some external source, and you run R = sum(A, dims=2) on it and then get rid of all singleton dimensions. But then suppose that one time out of 10000, your external source returns A for which size(A, 1) happens to be 1: boom, suddenly you're dropping more dimensions than you intended and perhaps at risk for grossly misinterpreting your data.
If you specify those dimensions manually instead (e.g., dropdims(R, dims=2)) then you are immune from bugs like these.
You can get rid of tuple in favor of a comma ,:
dropdims(a, dims = (findall(size(a) .== 1)...,))
I'm a bit surprised at Colin's revelation; surely something relying on 'reshape' is type stable? (plus, as a bonus, returns a view rather than a copy).
julia> function squeeze( A :: AbstractArray )
keepdims = Tuple(i for i in size(A) if i != 1);
return reshape( A, keepdims );
end;
julia> a = randn(2,1,3,1,4,1,5,1,6,1,7);
julia> size( squeeze(a) )
(2, 3, 4, 5, 6, 7)
No?

Converting a Gray-Scale Array to a FloatingPoint-Array

I am trying to read a .tif-file in julia as a Floating Point Array. With the FileIO & ImageMagick-Package I am able to do this, but the Array that I get is of the Type Array{ColorTypes.Gray{FixedPointNumbers.Normed{UInt8,8}},2}.
I can convert this FixedPoint-Array to Float32-Array by multiplying it with 255 (because UInt8), but I am looking for a function to do this for any type of FixedPointNumber (i.e. reinterpret() or convert()).
using FileIO
# Load the tif
obj = load("test.tif");
typeof(obj)
# Convert to Float32-Array
objNew = real.(obj) .* 255
typeof(objNew)
The output is
julia> using FileIO
julia> obj = load("test.tif");
julia> typeof(obj)
Array{ColorTypes.Gray{FixedPointNumbers.Normed{UInt8,8}},2}
julia> objNew = real.(obj) .* 255;
julia> typeof(objNew)
Array{Float32,2}
I have been looking in the docs quite a while and have not found the function with which to convert a given FixedPoint-Array to a FloatingPont-Array without multiplying it with the maximum value of the Integer type.
Thanks for any help.
edit:
I made a small gist to see if the solution by Michael works, and it does. Thanks!
Note:I don't know why, but the real.(obj) .* 255-code does not work (see the gist).
Why not just Float32.()?
using ColorTypes
a = Gray.(convert.(Normed{UInt8,8}, rand(5,6)));
typeof(a)
#Array{ColorTypes.Gray{FixedPointNumbers.Normed{UInt8,8}},2}
Float32.(a)
The short answer is indeed the one given by Michael, just use Float32.(a) (for grayscale). Another alternative is channelview(a), which generally performs channel separation thus also stripping the color information from the array. In the latter case you won't get a Float32 array, because your image is stored with 8 bits per pixel, instead you'll get an N0f8 (= FixedPointNumbers.Normed{UInt8,8}). You can read about those numbers here.
Your instinct to multiply by 255 is natural, given how other image-processing frameworks work, but Julia has made some effort to be consistent about "meaning" in ways that are worth taking a moment to think about. For example, in another programming language just changing the numerical precision of an array:
img = uint8(255*rand(10, 10, 3)); % an 8-bit per color channel image
figure; image(img)
imgd = double(img); % convert to double-precision, but don't change the values
figure; image(imgd)
produces the following surprising result:
That second "all white" image represents saturation. In this other language, "5" means two completely different things depending on whether it's stored in memory as a UInt8 vs a Float64. I think it's fair to say that under any normal circumstances, a user of a numerical library would call this a bug, and a very serious one at that, yet somehow many of us have grown to accept this in the context of image processing.
These new types arise because in Julia we've gone to the effort to implement new numerical types (FixedPointNumbers) that act like fractional values (e.g., between 0 and 1) but are stored internally with the same bit pattern as the "corresponding" UInt8 (the one you get by multiplying by 255). This allows us to work with 8-bit data and yet allow values to always be interpreted on a consistent scale (0.0=black, 1.0=white).

How to make nonsymbolic plot_vector_field in sage?

I have a function f(x,y) whose outcome is random (I take mean from 20 random numbers depending on x and y). I see no way to modify this function to make it symbolic.
And when I run
x,y = var('x,y')
d = plot_vector_field((f(x),x), (x,0,1), (y,0,1))
it says it can't cast symbolic expression to real or rationa number. In fact it stops when I write:
a=matrix(RR,1,N)
a[0]=x
What is the way to change this variable to real numbers in the beginning, compute f(x) and draw a vector field? Or just draw a lot of arrows with slope (f(x),x)?
I can create something sort of like yours, though with no errors. At least it doesn't do what you want.
def f(m,n):
return m*randint(100,200)-n*randint(100,200)
var('x,y')
plot_vector_field((f(x,y),f(y,x)),(x,0,1),(y,0,1))
The reason is because Python functions immediately evaluate - in this case, f(x,y) was 161*x - 114*y, though that will change with each invocation.
My suspicion is that your problem is similar, the immediate evaluation of the Python function once and for all. Instead, try lambda functions. They are annoying but very useful in this case.
var('x,y')
plot_vector_field((lambda x,y: f(x,y), lambda x,y: f(y,x)),(x,0,1),(y,0,1))
Wow, I now I have to find an excuse to show off this picture, cool stuff. I hope your error ends up being very similar.

How do I efficiently find the maximum value in an array containing values of a smooth function?

I have a function that takes a floating point number and returns a floating point number. It can be assumed that if you were to graph the output of this function it would be 'n' shaped, ie. there would be a single maximum point, and no other points on the function with a zero slope. We also know that input value that yields this maximum output will lie between two known points, perhaps 0.0 and 1.0.
I need to efficiently find the input value that yields the maximum output value to some degree of approximation, without doing an exhaustive search.
I'm looking for something similar to Newton's Method which finds the roots of a function, but since my function is opaque I can't get its derivative.
I would like to down-thumb all the other answers so far, for various reasons, but I won't.
An excellent and efficient method for minimizing (or maximizing) smooth functions when derivatives are not available is parabolic interpolation. It is common to write the algorithm so it temporarily switches to the golden-section search (Brent's minimizer) when parabolic interpolation does not progress as fast as golden-section would.
I wrote such an algorithm in C++. Any offers?
UPDATE: There is a C version of the Brent minimizer in GSL. The archives are here: ftp://ftp.club.cc.cmu.edu/gnu/gsl/ Note that it will be covered by some flavor of GNU "copyleft."
As I write this, the latest-and-greatest appears to be gsl-1.14.tar.gz. The minimizer is located in the file gsl-1.14/min/brent.c. It appears to have termination criteria similar to what I implemented. I have not studied how it decides to switch to golden section, but for the OP, that is probably moot.
UPDATE 2: I googled up a public domain java version, translated from FORTRAN. I cannot vouch for its quality. http://www1.fpl.fs.fed.us/Fmin.java I notice that the hard-coded machine efficiency ("machine precision" in the comments) is 1/2 the value for a typical PC today. Change the value of eps to 2.22045e-16.
Edit 2: The method described in Jive Dadson is a better way to go about this. I'm leaving my answer up since it's easier to implement, if speed isn't too much of an issue.
Use a form of binary search, combined with numeric derivative approximations.
Given the interval [a, b], let x = (a + b) /2
Let epsilon be something very small.
Is (f(x + epsilon) - f(x)) positive? If yes, the function is still growing at x, so you recursively search the interval [x, b]
Otherwise, search the interval [a, x].
There might be a problem if the max lies between x and x + epsilon, but you might give this a try.
Edit: The advantage to this approach is that it exploits the known properties of the function in question. That is, I assumed by "n"-shaped, you meant, increasing-max-decreasing. Here's some Python code I wrote to test the algorithm:
def f(x):
return -x * (x - 1.0)
def findMax(function, a, b, maxSlope):
x = (a + b) / 2.0
e = 0.0001
slope = (function(x + e) - function(x)) / e
if abs(slope) < maxSlope:
return x
if slope > 0:
return findMax(function, x, b, maxSlope)
else:
return findMax(function, a, x, maxSlope)
Typing findMax(f, 0, 3, 0.01) should return 0.504, as desired.
For optimizing a concave function, which is the type of function you are talking about, without evaluating the derivative I would use the secant method.
Given the two initial values x[0]=0.0 and x[1]=1.0 I would proceed to compute the next approximations as:
def next_x(x, xprev):
return x - f(x) * (x - xprev) / (f(x) - f(xprev))
and thus compute x[2], x[3], ... until the change in x becomes small enough.
Edit: As Jive explains, this solution is for root finding which is not the question posed. For optimization the proper solution is the Brent minimizer as explained in his answer.
The Levenberg-Marquardt algorithm is a Newton's method like optimizer. It has a C/C++ implementation levmar that doesn't require you to define the derivative function. Instead it will evaluate the objective function in the current neighborhood to move to the maximum.
BTW: this website appears to be updated since I last visited it, hope it's even the same one I remembered. Apparently it now also support other languages.
Given that it's only a function of a single variable and has one extremum in the interval, you don't really need Newton's method. Some sort of line search algorithm should suffice. This wikipedia article is actually not a bad starting point, if short on details. Note in particular that you could just use the method described under "direct search", starting with the end points of your interval as your two points.
I'm not sure if you'd consider that an "exhaustive search", but it should actually be pretty fast I think for this sort of function (that is, a continuous, smooth function with only one local extremum in the given interval).
You could reduce it to a simple linear fit on the delta's, finding the place where it crosses the x axis. Linear fit can be done very quickly.
Or just take 3 points (left/top/right) and fix the parabola.
It depends mostly on the nature of the underlying relation between x and y, I think.
edit this is in case you have an array of values like the question's title states. When you have a function take Newton-Raphson.

Resources