Dynamic calculations with panel data in R - r

I have a panel data (individuals observed in different time periods) like df, with much more individuals in my dataset:
id <- c("1", "1", "1", "2", "2", "2")
t <- c("1", "2", "3", "1", "2", "3")
w <- c("0.17", "NA", "NA", "0.23", "NA", "NA")
alpha <- c("0.15", "0.15", "0.15", "0.15", "0.15", "0.15")
rho <- c("0.10", "0.21", "0.32", "0.12", "0.2", "0.08")
df <- data.frame(id, t, w, alpha, rho)
I would like to fill w following these mathematical dynamics: w_id_t = w_id_t-1 * alpha + rho_id_t. However, I do not know how to move the outcome in such a way that appears in the following line, so I can continue with the dynamic calculations. The outcome should look like df_dynamics:
w_new <- c("0.17", "0.2355", "0.345", "0.23", "0.2345", "0.115")
df_dynamics <- data.frame(id, t, w_new, alpha, rho)
Any clue?

The columns are all character class. We may need to convert to numeric first and then do a group by operation
library(dplyr)
type.convert(df, as.is = TRUE) %>%
group_by(id) %>%
mutate(w = coalesce(w, lag(first(w) * first(alpha) + lead(rho)))) %>%
ungroup
# A tibble: 6 × 5
id t w alpha rho
<int> <int> <dbl> <dbl> <dbl>
1 1 1 0.17 0.15 0.1
2 1 2 0.236 0.15 0.21
3 1 3 0.346 0.15 0.32
4 2 1 0.23 0.15 0.12
5 2 2 0.234 0.15 0.2
6 2 3 0.114 0.15 0.08

Related

Calculate average real variability for successive multiple measurements in R

I have a long-form dataframe, with a column (B) including the absolute successive differences between values in column (A), for each individual's ID separately.
ID = c("1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2")
A = c("120", "115", "125", "119", "128", "129", "130", "140", "142", "143", "145", "144", "148")
B = c("NA", "5", "10", "6", "9", "1", "1", "NA", "2", "1", "2", "1", "4")
DF <- data.frame(ID, A, B)
I would like to create a new column (C), that is the sum of the absolute differences before and including each value, divided by (the number of measurements used to calculate it minus 1).
This is what I would like the data to look like:
I hope this makes sense, any help greatly appreciated!
Here's a tidyverse solution. You can first group_by the ID, then divide the cumulative sum (cumsum) of B by the row_number minus one. You can only do this after omitting the first row of each group and replacing it with NA
Note also that in your example, the 'numeric' columns are actually character vectors, so have to be coerced to numeric first.
library(tidyverse)
DF %>%
mutate(across(A:B, \(x) suppressWarnings(as.numeric(x)))) %>%
group_by(ID) %>%
mutate(C = c(NA, cumsum(B[-1])/(row_number() - 1)[-1]))
#> # A tibble: 13 x 4
#> # Groups: ID [2]
#> ID A B C
#> <chr> <dbl> <dbl> <dbl>
#> 1 1 120 NA NA
#> 2 1 115 5 5
#> 3 1 125 10 7.5
#> 4 1 119 6 7
#> 5 1 128 9 7.5
#> 6 1 129 1 6.2
#> 7 1 130 1 5.33
#> 8 2 140 NA NA
#> 9 2 142 2 2
#> 10 2 143 1 1.5
#> 11 2 145 2 1.67
#> 12 2 144 1 1.5
#> 13 2 148 4 2
Created on 2022-11-11 with reprex v2.0.2

Bring excel-table in tidy format

I have some struggles converting the following data (from an Excel-sheet) into a tidy format:
input <- structure(list(...11 = c(
NA, NA, "<1000", ">=1000 and <2000",
"2000", ">2000 and < 3000", ">=3000"
), ...13 = c(
"male", "female",
NA, NA, NA, NA, NA
), ...14 = c(
"<777", "<555", "0.3", "0.1",
"0.15", "0.13", "0.15"
), ...15 = c(
"888-999", "555-999", "0.23",
"0.21", "0", "0.21", "0.36"
), ...16 = c(
"556-899", "1020-1170",
"0.13", "0.29", "0.7", "0.8", "0.2"
), ...17 = c(
">960", ">11000",
"0.58", "0.31", "0.22", "0.65", "0.7"
)), row.names = c(NA, -7L), class = c("tbl_df", "tbl", "data.frame"))
# A tibble: 7 × 6
...11 ...13 ...14 ...15 ...16 ...17
<chr> <chr> <chr> <chr> <chr> <chr>
1 NA male <777 888-999 556-899 >960
2 NA female <555 555-999 1020-1170 >11000
3 <1000 NA 0.3 0.23 0.13 0.58
4 >=1000 and <2000 NA 0.1 0.21 0.29 0.31
5 2000 NA 0.15 0 0.7 0.22
6 >2000 and < 3000 NA 0.13 0.21 0.8 0.65
7 >=3000 NA 0.15 0.36 0.2 0.7
I would like to bring it into the following structure:
output <- tibble::tribble(
~gender, ~x, ~y, ~share,
"male", "<777", "<1000", 0.3,
"female", "<555", "<1000", 0.3,
"male", "<777", ">=1000 and <2000", 0.1,
"female", "<555", ">=1000 and <2000", 0.1,
)
# A tibble: 4 × 4
gender x y share
<chr> <chr> <chr> <dbl>
1 male <777 <1000 0.3
2 female <555 <1000 0.3
3 male <777 >=1000 and <2000 0.1
4 female <555 >=1000 and <2000 0.1
Any hints are much appreciated!
As outlined in the comments, here's a suggested approach:
Import the excel sheet twice using readxl's read_excel using the skip argument:
library(readxl)
df1 <- read_excel(file = "yourfile.xlsx", skip = 2)
df2 <- read_excel(file = "yourfile.xlsx", skip = 1)
That should give you (note X1 might be called ...1):
df1 <- read_table("NA male <777 888-999 556-899 >960
<1000 NA 0.3 0.23 0.13 0.58
>=1000and<2000 NA 0.1 0.21 0.29 0.31
2000 NA 0.15 0 0.7 0.22
>2000and<3000 NA 0.13 0.21 0.8 0.65
>=3000 NA 0.15 0.36 0.2 0.7")
df2 <- read_table("NA female <555 555-999 1020-1170 >11000
<1000 NA 0.3 0.23 0.13 0.58
>=1000and<2000 NA 0.1 0.21 0.29 0.31
2000 NA 0.15 0 0.7 0.22
>2000and<3000 NA 0.13 0.21 0.8 0.65
>=3000 NA 0.15 0.36 0.2 0.7")
Then do a little wrangling; most importantly turn into a long format:
library(dplyr)
library(tidyr)
df1 <- df1 |>
select(-male) |>
rename(y = X1) |>
mutate(gender = "male") |>
pivot_longer(-c("gender", "y"), names_to = "x", values_to = "share")
df2 <- df2 |>
select(-female) |>
rename(y = X1) |>
mutate(gender = "female") |>
pivot_longer(-c("gender", "y"), names_to = "x", values_to = "share")
And voila, a tidy frame:
bind_rows(df1, df2) |> arrange(y)
Output:
# A tibble: 40 × 4
y gender x share
<chr> <chr> <chr> <dbl>
1 <1000 male <777 0.3
2 <1000 male 888-999 0.23
3 <1000 male 556-899 0.13
4 <1000 male >960 0.58
5 <1000 female <555 0.3
6 <1000 female 555-999 0.23
7 <1000 female 1020-1170 0.13
8 <1000 female >11000 0.58
9 >=1000and<2000 male <777 0.1
10 >=1000and<2000 male 888-999 0.21
# … with 30 more rows
It's a bit unclear, but I think you'd need to do something like this
df <- input[3:nrow(input),]
input <- input[1:2, 2:3]
t <- input[rep(1:nrow(input), nrow(df)),]
s <- df[rep(1:nrow(df), 2), ]
t <- cbind(t,s)
, and repeat as needed if you need this for multiple columns.

Making lists by group

I have data as follows:
library(data.table)
dat <- structure(list(year2006 = c("1110", "1110", "1110", "1110", "1120",
"1120", "1120", "1120"), group2006 = c("1", "2", "3", "4", "1",
"2", "3", "4"), min2006 = c("1.35", "2", "3.7",
"4.25", "5.6", "4.45", "3.09", "1.13"),
year2007 = c("1110", "1110", "1110", "1110", "1120", "1120",
"1120", "1120"), group2007 = c("1", "2", "3", "4", "1",
"2", "3", "4"), min2007 = c("5", "5.05", "5",
"1.59", "2.3", "3", "4.05", "5.16"
)), row.names = c(NA, -8L), class = c("data.table", "data.frame"
))
dat
year2006 group2006 min2006 year2007 group2007 min2007
1: 1110 1 1.35 1110 1 5
2: 1110 2 2 1110 2 5.05
3: 1110 3 3.7 1110 3 5
4: 1110 4 4.25 1110 4 1.59
5: 1120 1 5.6 1120 1 2.3
6: 1120 2 4.45 1120 2 3
7: 1120 3 3.09 1120 3 4.05
8: 1120 4 1.13 1120 4 5.16
What I would like to do, is to create a list of the numbers in min200x, per category in year200x.
Desired output:
cat year2006 year2007
1: 1110 c("1.35", "2", "3.7", "4.25") c("5", "5.05", "5", "1.59")
2: 1120 c("5.6", "4.45", "3.09", "1.13") c("2.3", "3", "4.05", "5.16")
I thought I could do something like:
setDT(dat)[, cat := list(min2006), by=year2006]
But that does not work (it just puts the min2006 item in a new colum cat). And even if it did, it would only provide a solution for the year 2006. How should I go about this?
I'm not sure why your columns in your test data are all character but the columns in your desired output are numeric. Also, you ask for a list of numbers by group but your expected output shows a vector.
Nevertheless, here's a tidyverse solution that creates list columns.
library(tidyverse)
x <- dat %>%
mutate(across(everything(), as.numeric)) %>%
group_by(year2006) %>%
select(year2006, starts_with("min")) %>%
summarise(across(everything(), lst))
x
# A tibble: 2 × 3
year2006 min2006 min2007
<dbl> <named list> <named list>
1 1110 <dbl [4]> <dbl [4]>
2 1120 <dbl [4]> <dbl [4]>
and, for example,
x$min2006
$min2006
[1] 1.35 2.00 3.70 4.25
$min2006
[1] 5.60 4.45 3.09 1.13
If your inputs are actually numeric, you can lose the mutate.
Edit
... and to get the correct name for the grouping column, you can add %>% rename(cat=year2006) to the pipe. Apologies for the omission.
a similar approach
data.table
library(data.table)
COLS <- grep(names(df), pattern = "^min", value = TRUE)
setDT(df)[, lapply(.SD, list), .SDcol = COLS, by = year2006]
#> year2006 min2006 min2007
#> 1: 1110 1.35,2,3.7,4.25 5,5.05,5,1.59
#> 2: 1120 5.6,4.45,3.09,1.13 2.3,3,4.05,5.16
Created on 2022-05-31 by the reprex package (v2.0.1)
Here is also a base R solution,
l1 <- lapply(split.default(dat, gsub('\\D+', '', names(dat))), function(i)
aggregate(as.matrix(i[3]) ~ as.matrix(i[1]), i, list))
do.call(cbind, l1)[-3]
# year2006 2006.min2006 2007.min2007
#1 1110 1.35, 2, 3.7, 4.25 5, 5.05, 5, 1.59
#2 1120 5.6, 4.45, 3.09, 1.13 2.3, 3, 4.05, 5.16

conditionally aggregate columns using tidyverse for large time series dataset

After looking at a few other asked questions, and reading a few guides, I'm not able to find a suitable solution to my specific problem. Here's an example of the data to begin:
data <- data.frame(
Date = sample(c("1993-07-05", "1993-07-05", "1993-07-05", "1993-08-30", "1993-08-30", "1993-08-30", "1993-08-30", "1993-09-04", "1993-09-04")),
Site = sample(c("1", "1", "1", "1", "1", "1", "1", "1", "1")),
Station = sample(c("1", "2", "3", "1", "2", "3", "4", "1", "2")),
Oxygen = sample(c("0.9", "0.4", "4.2", "5.6", "7.3", "4.3", "9.5", "5.3", "0.3")))
I want to average all the oxygen values for the stations that are nested within a site that corresponds to a date. My dataset has a couple of thousand rows, and like in the example, there are an uneven number of stations, and the dates are uneven in length.
The output I'm looking for are columns like, "Date -> Site -> Average Oxygen", foregoing the need for a station column altogether in the new version of the time series.
Any help would be greatly appreciated!
After grouping by 'Site', 'Date', get the mean of 'Oxygen' (after converting it to numeric - it is factor column)
library(tidyverse)
data %>%
group_by(Site, Date) %>%
summarise(AverageOxygen = mean(as.numeric(as.character(Oxygen))))
# A tibble: 3 x 3
# Groups: Site [1]
# Site Date AverageOxygen
# <fct> <fct> <dbl>
#1 1 1993-07-05 3.97
#2 1 1993-08-30 5.2
#3 1 1993-09-04 2.55
Try:
library(hablar)
library(tidyverse)
data %>%
retype() %>%
group_by(Site, Date) %>%
summarize(AverageOxygen = mean(Oxygen))
which gives you:
# A tibble: 3 x 3
# Groups: Site [?]
Site Date AverageOxygen
<int> <date> <dbl>
1 1 1993-07-05 4.7
2 1 1993-08-30 3.55
3 1 1993-09-04 4.75

Transposing data frames [duplicate]

This question already has answers here:
Transposing a dataframe maintaining the first column as heading
(5 answers)
Closed 1 year ago.
Happy Weekends.
I've been trying to replicate the results from this blog post in R. I am looking for a method of transposing the data without using t, preferably using tidyr or reshape. In example below, metadata is obtained by transposing data.
metadata <- data.frame(colnames(data), t(data[1:4, ]) )
colnames(metadata) <- t(metadata[1,])
metadata <- metadata[-1,]
metadata$Multiplier <- as.numeric(metadata$Multiplier)
Though it achieves what I want, I find it little unskillful. Is there any efficient workflow to transpose the data frame?
dput of data
data <- structure(list(Series.Description = c("Unit:", "Multiplier:",
"Currency:", "Unique Identifier: "), Nominal.Broad.Dollar.Index. = c("Index:_1997_Jan_100",
"1", NA, "H10/H10/JRXWTFB_N.M"), Nominal.Major.Currencies.Dollar.Index. = c("Index:_1973_Mar_100",
"1", NA, "H10/H10/JRXWTFN_N.M"), Nominal.Other.Important.Trading.Partners.Dollar.Index. = c("Index:_1997_Jan_100",
"1", NA, "H10/H10/JRXWTFO_N.M"), AUSTRALIA....SPOT.EXCHANGE.RATE..US..AUSTRALIAN...RECIPROCAL.OF.RXI_N.M.AL. = c("Currency:_Per_AUD",
"1", "USD", "H10/H10/RXI$US_N.M.AL"), SPOT.EXCHANGE.RATE...EURO.AREA. = c("Currency:_Per_EUR",
"1", "USD", "H10/H10/RXI$US_N.M.EU"), NEW.ZEALAND....SPOT.EXCHANGE.RATE..US..NZ...RECIPROCAL.OF.RXI_N.M.NZ.. = c("Currency:_Per_NZD",
"1", "USD", "H10/H10/RXI$US_N.M.NZ"), United.Kingdom....Spot.Exchange.Rate..US..Pound.Sterling.Reciprocal.of.rxi_n.m.uk = c("Currency:_Per_GBP",
"0.01", "USD", "H10/H10/RXI$US_N.M.UK"), BRAZIL....SPOT.EXCHANGE.RATE..REAIS.US.. = c("Currency:_Per_USD",
"1", "BRL", "H10/H10/RXI_N.M.BZ"), CANADA....SPOT.EXCHANGE.RATE..CANADIAN...US.. = c("Currency:_Per_USD",
"1", "CAD", "H10/H10/RXI_N.M.CA"), CHINA....SPOT.EXCHANGE.RATE..YUAN.US.. = c("Currency:_Per_USD",
"1", "CNY", "H10/H10/RXI_N.M.CH"), DENMARK....SPOT.EXCHANGE.RATE..KRONER.US.. = c("Currency:_Per_USD",
"1", "DKK", "H10/H10/RXI_N.M.DN"), HONG.KONG....SPOT.EXCHANGE.RATE..HK..US.. = c("Currency:_Per_USD",
"1", "HKD", "H10/H10/RXI_N.M.HK"), INDIA....SPOT.EXCHANGE.RATE..RUPEES.US. = c("Currency:_Per_USD",
"1", "INR", "H10/H10/RXI_N.M.IN"), JAPAN....SPOT.EXCHANGE.RATE..YEA.US.. = c("Currency:_Per_USD",
"1", "JPY", "H10/H10/RXI_N.M.JA"), KOREA....SPOT.EXCHANGE.RATE..WON.US.. = c("Currency:_Per_USD",
"1", "KRW", "H10/H10/RXI_N.M.KO"), Malaysia...Spot.Exchange.Rate..Ringgit.US.. = c("Currency:_Per_USD",
"1", "MYR", "H10/H10/RXI_N.M.MA"), MEXICO....SPOT.EXCHANGE.RATE..PESOS.US.. = c("Currency:_Per_USD",
"1", "MXN", "H10/H10/RXI_N.M.MX"), NORWAY....SPOT.EXCHANGE.RATE..KRONER.US.. = c("Currency:_Per_USD",
"1", "NOK", "H10/H10/RXI_N.M.NO"), SWEDEN....SPOT.EXCHANGE.RATE..KRONOR.US.. = c("Currency:_Per_USD",
"1", "SEK", "H10/H10/RXI_N.M.SD"), SOUTH.AFRICA....SPOT.EXCHANGE.RATE..RAND.US.. = c("Currency:_Per_USD",
"1", "ZAR", "H10/H10/RXI_N.M.SF"), Singapore...SPOT.EXCHANGE.RATE..SINGAPORE...US.. = c("Currency:_Per_USD",
"1", "SGD", "H10/H10/RXI_N.M.SI"), SRI.LANKA....SPOT.EXCHANGE.RATE..RUPEES.US.. = c("Currency:_Per_USD",
"1", "LKR", "H10/H10/RXI_N.M.SL"), SWITZERLAND....SPOT.EXCHANGE.RATE..FRANCS.US.. = c("Currency:_Per_USD",
"1", "CHF", "H10/H10/RXI_N.M.SZ"), TAIWAN....SPOT.EXCHANGE.RATE..NT..US.. = c("Currency:_Per_USD",
"1", "TWD", "H10/H10/RXI_N.M.TA"), THAILAND....SPOT.EXCHANGE.RATE....THAILAND. = c("Currency:_Per_USD",
"1", "THB", "H10/H10/RXI_N.M.TH"), VENEZUELA....SPOT.EXCHANGE.RATE..BOLIVARES.US.. = c("Currency:_Per_USD",
"1", "VEB", "H10/H10/RXI_N.M.VE")), .Names = c("Series.Description",
"Nominal.Broad.Dollar.Index.", "Nominal.Major.Currencies.Dollar.Index.",
"Nominal.Other.Important.Trading.Partners.Dollar.Index.", "AUSTRALIA....SPOT.EXCHANGE.RATE..US..AUSTRALIAN...RECIPROCAL.OF.RXI_N.M.AL.",
"SPOT.EXCHANGE.RATE...EURO.AREA.", "NEW.ZEALAND....SPOT.EXCHANGE.RATE..US..NZ...RECIPROCAL.OF.RXI_N.M.NZ..",
"United.Kingdom....Spot.Exchange.Rate..US..Pound.Sterling.Reciprocal.of.rxi_n.m.uk",
"BRAZIL....SPOT.EXCHANGE.RATE..REAIS.US..", "CANADA....SPOT.EXCHANGE.RATE..CANADIAN...US..",
"CHINA....SPOT.EXCHANGE.RATE..YUAN.US..", "DENMARK....SPOT.EXCHANGE.RATE..KRONER.US..",
"HONG.KONG....SPOT.EXCHANGE.RATE..HK..US..", "INDIA....SPOT.EXCHANGE.RATE..RUPEES.US.",
"JAPAN....SPOT.EXCHANGE.RATE..YEA.US..", "KOREA....SPOT.EXCHANGE.RATE..WON.US..",
"Malaysia...Spot.Exchange.Rate..Ringgit.US..", "MEXICO....SPOT.EXCHANGE.RATE..PESOS.US..",
"NORWAY....SPOT.EXCHANGE.RATE..KRONER.US..", "SWEDEN....SPOT.EXCHANGE.RATE..KRONOR.US..",
"SOUTH.AFRICA....SPOT.EXCHANGE.RATE..RAND.US..", "Singapore...SPOT.EXCHANGE.RATE..SINGAPORE...US..",
"SRI.LANKA....SPOT.EXCHANGE.RATE..RUPEES.US..", "SWITZERLAND....SPOT.EXCHANGE.RATE..FRANCS.US..",
"TAIWAN....SPOT.EXCHANGE.RATE..NT..US..", "THAILAND....SPOT.EXCHANGE.RATE....THAILAND.",
"VENEZUELA....SPOT.EXCHANGE.RATE..BOLIVARES.US.."), row.names = c(NA,
4L), class = "data.frame")
Using tidyr, you gather all the columns except the first, and then you spread the gathered columns.
Try:
library(dplyr)
library(tidyr)
data %>%
gather(var, val, 2:ncol(data)) %>%
spread(Series.Description, val)
library(dplyr)
# Omitted data <- structure part ...
Here is something that replicates what's in the main answer, but more generically (e.g., works where Series.Description is not the first column of the result) and using the newer pivot_wider/pivot_longer verbs.
df_transpose <- function(df) {
df %>%
tidyr::pivot_longer(-1) %>%
tidyr::pivot_wider(names_from = 1, values_from = value)
}
df_transpose(data)
#> # A tibble: 26 x 5
#> name `Unit:` `Multiplier:` `Currency:` `Unique Identifi…
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Nominal.Broad.Dollar.… Index:_19… 1 <NA> H10/H10/JRXWTFB_…
#> 2 Nominal.Major.Currenc… Index:_19… 1 <NA> H10/H10/JRXWTFN_…
#> 3 Nominal.Other.Importa… Index:_19… 1 <NA> H10/H10/JRXWTFO_…
#> 4 AUSTRALIA....SPOT.EXC… Currency:… 1 USD H10/H10/RXI$US_N…
#> 5 SPOT.EXCHANGE.RATE...… Currency:… 1 USD H10/H10/RXI$US_N…
#> 6 NEW.ZEALAND....SPOT.E… Currency:… 1 USD H10/H10/RXI$US_N…
#> 7 United.Kingdom....Spo… Currency:… 0.01 USD H10/H10/RXI$US_N…
#> 8 BRAZIL....SPOT.EXCHAN… Currency:… 1 BRL H10/H10/RXI_N.M.…
#> 9 CANADA....SPOT.EXCHAN… Currency:… 1 CAD H10/H10/RXI_N.M.…
#> 10 CHINA....SPOT.EXCHANG… Currency:… 1 CNY H10/H10/RXI_N.M.…
#> # … with 16 more rows
But note that (like the answer above) the name of the first column is lost. The following retains this (as, I guess does the spread_(names(data)[1], "val") approach proposed by #jbkunst above).
df_transpose <- function(df) {
first_name <- colnames(df)[1]
temp <-
df %>%
tidyr::pivot_longer(-1) %>%
tidyr::pivot_wider(names_from = 1, values_from = value)
colnames(temp)[1] <- first_name
temp
}
df_transpose(data)
#> # A tibble: 26 x 5
#> Series.Description `Unit:` `Multiplier:` `Currency:` `Unique Identif…
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Nominal.Broad.Dollar.In… Index:_1… 1 <NA> H10/H10/JRXWTFB…
#> 2 Nominal.Major.Currencie… Index:_1… 1 <NA> H10/H10/JRXWTFN…
#> 3 Nominal.Other.Important… Index:_1… 1 <NA> H10/H10/JRXWTFO…
#> 4 AUSTRALIA....SPOT.EXCHA… Currency… 1 USD H10/H10/RXI$US_…
#> 5 SPOT.EXCHANGE.RATE...EU… Currency… 1 USD H10/H10/RXI$US_…
#> 6 NEW.ZEALAND....SPOT.EXC… Currency… 1 USD H10/H10/RXI$US_…
#> 7 United.Kingdom....Spot.… Currency… 0.01 USD H10/H10/RXI$US_…
#> 8 BRAZIL....SPOT.EXCHANGE… Currency… 1 BRL H10/H10/RXI_N.M…
#> 9 CANADA....SPOT.EXCHANGE… Currency… 1 CAD H10/H10/RXI_N.M…
#> 10 CHINA....SPOT.EXCHANGE.… Currency… 1 CNY H10/H10/RXI_N.M…
#> # … with 16 more rows
Created on 2021-05-30 by the reprex package (v2.0.0)

Resources