I'm using Plotly in Rshiny to make reactive plots based on what variables someone checks from a checkbox.
Right now, I have working code that I like, however, I would like to add more descriptive Y-axis labels to the plots, as currently there are none.
My biggest barrier right now is getting code that is flexible enough to change the Y axis names depending on what variables are selected.
I made a reproducible data frame using the Iris dataset. In this example, lets pretend the "Sepal.Length" column is in units of micro-meters (um), whereas "Sepal.Width", "Petal.Length", an "Petal.Width" are all in inches. When a user checks off both "Sepal.Length" and one of the other values, the other value displays as a practically flat line because they are not in the same units/order of magnitude. WITHOUT converting the units (I want to keep all units as they are), how would you go about adding reactive Y-axis labels to these plots (specifically when the "stacked" plot style is selected)? Or a y-axis label such that if "sepal.width", "petal.length", and "petal.width" were selected, the Layered plot would have a Y-axis of inches?
I'll attach my reproducible code below, thanks!
library(shiny)
library(dplyr)
library(stringr)
library(readtext)
library(XML)
library(data.table)
library(ecodata)
library(shinyBS)
library(huxtable)
library(gridExtra)
library(ggplot2)
library(shinyWidgets)
iris_dataset<-iris[,colnames(iris)!="Species"]
iris_dataset$Sepal.Length<-iris_dataset$Sepal.Length*1000
iris_dataset$Year <- c(1873:2022)
###### Define UI ######
ui <- fluidPage(
navbarPage(
"Visualizing Indicators",
tabPanel("Choose Variables & Plot",width=6,
# Input: Selector for choosing dataset
selectInput(inputId = "dataset",
label = "Choose a dataset:",
choices = c("iris_dataset")),
checkboxGroupInput("variable",
label = "Variable selection (Pick up to 5)",
choiceNames = c("Sepal Length","Sepal Width", "Petal Length","Petal Width"),
choiceValues = c("Sepal.Length","Sepal.Width", "Petal.Length","Petal.Width"),
selected = c("Sepal Width",multiple = TRUE)
),
# Input: Select plotting style ----
radioButtons("Plotting_Style", "Select Plotting Style",
choices = c("Layered" = "Layered",
"Stacked" = "Stacked"),
selected = 'Layered'),
mainPanel(width = 12,
# Output
tabsetPanel(type = "tabs",
tabPanel("Plot", plotlyOutput('plot'))
) #close tabsetpanel
)), # mainpanel, tabPanel
) # navbarPage
) # fluidPage
###### Define server function ######
server <- function(input, output) {
dataDf <- reactive({
temp <- get(input$dataset)
})
output$plot <- renderPlotly({
if (input$Plotting_Style == "Layered"){
if (length(input$variable) == 3){ #if only 3 variables are chosen
plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1])) %>%
add_trace(dataDf(), x = ~Year, y = ~get(input$variable[2]),
type = 'scatter', mode = 'lines',name = paste(input$variable[2])) %>%
add_trace(dataDf(), x = ~Year, y = ~get(input$variable[3]),
type = 'scatter', mode = 'lines',name = paste(input$variable[3])) %>%
layout(xaxis = list(title = "Year"))
} else if (length(input$variable) > 1){ #if only 2 variables are chosen
plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1])) %>%
add_trace(dataDf(), x = ~Year, y = ~get(input$variable[2]),
type = 'scatter', mode = 'lines',name = paste(input$variable[2])) %>%
layout(xaxis = list(title = "Year"))
} else { #plot individually if only 1 is selected
fig1<- plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1]))
fig<-subplot(fig1, nrows = 1) %>%
layout(xaxis = list(title = "Year"),
xaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'),
yaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'))
fig
}#close if layered option
} else {
if (length(input$variable) == 3){ #if only 3 variables are chosen
fig1<- plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1]))
fig2<- plot_ly(dataDf(), x = ~Year, y = ~get(input$variable[2]),
type = 'scatter', mode = 'lines',name = paste(input$variable[2]))
fig3<- plot_ly(dataDf(), x = ~Year, y =~get(input$variable[3]),
type = 'scatter', mode = 'lines', name = paste(input$variable[3]))
fig<-subplot(fig1, fig2,fig3,nrows = 3, shareX = TRUE) %>%
layout(xaxis = list(title = "Year"),
plot_bgcolor='#e5ecf6',
xaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'),
yaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'))
fig
} else if(length(input$variable) == 2){ #plot 2 variables together
fig1<- plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1]))
fig2<- plot_ly(dataDf(), x = ~Year, y = ~get(input$variable[2]),
type = 'scatter', mode = 'lines',name = paste(input$variable[2]))
fig<-subplot(fig1, fig2, nrows = 2, shareX = TRUE) %>%
layout(xaxis = list(title = "Year"),
plot_bgcolor='#e5ecf6',
xaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'),
yaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'))
fig
} else { #plot individually if only 1 is selected
fig1<- plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1]))
fig<-subplot(fig1, nrows = 1) %>%
layout(xaxis = list(title = "Year"),
plot_bgcolor='#e5ecf6',
xaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'),
yaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'))
fig
}
}#close if stacked option
}) #close renderPlotly
} # server
# Create Shiny object
shinyApp(ui = ui, server = server)
Related
I'm trying to make a dual axis plot of rainfall and temperature. I have ordered the months on the bottom, but that causes my line graph to screw up. How do I make sure the added line uses the same x axis?
temprain<-data.frame(month = c(1:12),
Train = c(250,220, 180,97,38,27,31,47,70,140,200,250),
Tair = c(17,16, 15,13,9,6,5,9,12,13,14,16))
tempseq<-seq(0,20,by=0.5)
rainseq<-seq(0,260,by=1)
xlab<-list(type = "category",
categoryorder = "array",
categoryarray = month.name,
showgrid = TRUE,
showline = TRUE,
autorange = TRUE,
showticklabels = TRUE,
ticks = "outside",
tickangle = 0
)
plot_ly(temprain) %>%
add_bars(x = ~MonthName, y = ~Train, type = "bar", name = "Rain") %>%
add_lines(x = ~MonthName, y = ~Tair, yaxis = "y2", name = "Temp") %>%
layout(xaxis = xlab,
yaxis = list(showline = TRUE, side = "left",
title = "Rainfall (mm)Temp", range = tempseq),
yaxis2 = list(showline = TRUE, side = "right",
overlaying = "y", title = "Air Temp (C)", range = rainseq),
showlegend = FALSE,
margin = list(pad = 0, b = 50, l = 50, r = 50))
I tried this as well, and it doesn't work, the temp graph disappears
plot_ly(temprain, x = ~MonthName, y = ~Tair, name = "Temp") %>%
add_bars(x = ~MonthName, y = ~Train, yaxis = "y2", type = "bar", name = "Rain") %>%
layout(xaxis = xlab,
yaxis = list(showline = TRUE, side = "left",
title = "Air Temp (C)", range = tempseq),
yaxis2 = list(showline = TRUE, side = "right",
overlaying = "y",
title = "Rainfall (mm)", range = rainseq),
showlegend = FALSE,
margin = list(pad = 0, b = 50, l = 50, r = 50))
Below is the solution:
Your data:
temprain<-data.frame(month = c(1:12),
Train = c(250,220, 180,97,38,27,31,47,70,140,200,250),
Tair = c(17,16, 15,13,9,6,5,9,12,13,14,16))
Generate a column for month abbreviations from month:
mymonths <- c("Jan","Feb","Mar",
"Apr","May","Jun",
"Jul","Aug","Sep",
"Oct","Nov","Dec")
# match the month numbers against abbreviations:
temprain$MonthAbb = mymonths[ temprain$month ]
# This is the code to archieving a consistent combined graph:
temprain$MonthAbb <- factor(temprain$MonthAbb, levels = c(as.character(temprain$MonthAbb)))
Now plot your data:
fig <- plot_ly(temprain)
# Add the Train trace:
fig <- fig %>% add_trace(x = ~MonthAbb, y = ~Train, name = "Train", type = "bar")
ay <- list(
tickfont = list(color = "red"),
overlaying = "y",
side = "right",
title = "<b>Tair</b>")
# Add the Tair trace:
fig <- fig %>% add_trace(x = ~MonthAbb, y = ~Tair, name = "Tair", yaxis = "y2", mode = "lines+markers", type = "scatter")
fig <- fig %>% layout(yaxis2 = ay,
xaxis = list(title="Month"),
yaxis = list(title="<b>Train</b>"))%>%
layout(xaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'),
yaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff')
)
fig
Output:
How can I add a horizontal x-axis scroll bar in a long plotly line chart?
library(plotly)
x <- c(1:100)
random_y <- rnorm(100, mean = 0)
data <- data.frame(x, random_y)
fig <- plot_ly(data, x = ~x, y = ~random_y, type = 'scatter', mode = 'lines')
fig
Case that rangeslider() does not work.
VaccinationWeek<-c("2020w1","2020w1","2020w1","2020w2","2020w2","2020w2")
Country<-c("EU","CHE","ITA","EU","CHE","ITA")
Value<-c(3,2,1,5,3,2)
dat<-data.frame(VaccinationWeek,Country,Value)
plot_ly(dat,
x = ~VaccinationWeek,
y = ~Value/100,
text = ~Value,
color = ~Country,
customdata = dat$Country) %>%
add_trace(
type = 'scatter',
mode = 'lines+markers',
hovertemplate = paste("Country: %{customdata}",
"Uptake full vaccination (%): %{y}",
"<extra></extra>",
sep = "\n"),
hoveron = 'points') %>%
add_text(
textposition = "top center",
showlegend = F,
hoverinfo = "skip") %>%
layout(font = list(color = '#a2a2a2'),title=list(text="by reporting week",x = 0),
xaxis = list(fixedrange = TRUE,title="",showgrid = FALSE,tickangle = 45
),
yaxis = list(fixedrange = TRUE,rangeslider = list(),title="",showgrid = FALSE,showline=T,tickformat = "%"),
hovermode = "x unified",
hoverlabel = "none",
legend = list(itemclick = F, itemdoubleclick = F))%>%
config(modeBarButtonsToRemove = c('toImage',"zoom2d","toggleSpikelines","hoverClosestCartesian","hoverCompareCartesian","drawline","autoScale2d" ,"resetScale2d","zoomIn2d","zoomOut2d","pan2d",'select2d','lasso2d'))%>%
config(displaylogo = FALSE)
I'd suggest using a rangeslider:
library(plotly)
x <- c(1:100)
random_y <- rnorm(100, mean = 0)
data <- data.frame(x, random_y)
fig <- plot_ly(data, x = ~x, y = ~random_y, type = 'scatter', mode = 'lines') %>%
layout(xaxis = list(rangeslider = list()))
fig
After #firmo23's edit:
library(plotly)
VaccinationWeek <- c("2020w1", "2020w1", "2020w1", "2020w2", "2020w2", "2020w2")
Country <- c("EU", "CHE", "ITA", "EU", "CHE", "ITA")
Value <- c(3, 2, 1, 5, 3, 2)
dat <- data.frame(VaccinationWeek, Country, Value)
plot_ly(
dat, x = ~ VaccinationWeek, y = ~ Value / 100, text = ~ Value, color = ~ Country, customdata = dat$Country
) %>%
add_trace(
type = 'scatter', mode = 'lines+markers', hovertemplate = paste(
"Country: %{customdata}", "Uptake full vaccination (%): %{y}", "<extra></extra>", sep = "\n"
), hoveron = 'points'
) %>%
add_text(textposition = "top center", showlegend = F, hoverinfo = "skip") %>%
layout(
font = list(color = '#a2a2a2'), title = list(text = "by reporting week", x = 0), xaxis = list(
fixedrange = TRUE, title = "", showgrid = FALSE, tickangle = 45, rangeslider = list()
), yaxis = list(
fixedrange = TRUE, rangeslider = list(), title = "", showgrid = FALSE, showline = T, tickformat = "%"
), hovermode = "x unified", hoverlabel = "none", legend = list(itemclick = F, itemdoubleclick = F)
) %>%
config(
modeBarButtonsToRemove = c(
'toImage',
"zoom2d",
"toggleSpikelines",
"hoverClosestCartesian",
"hoverCompareCartesian",
"drawline",
"autoScale2d" ,
"resetScale2d",
"zoomIn2d",
"zoomOut2d",
"pan2d",
'select2d',
'lasso2d'
),
displaylogo = FALSE
)
I am trying to add legend for each line in a grouped line plot in plotly but I cannot find the relevant documentation.
Here is the code without the legends (code from the official documentation https://plot.ly/r/group-by/).
library(plotly)
p <- plot_ly(
type = 'scatter',
x = mtcars$hp,
y = mtcars$qsec,
text = paste("Make: ", rownames(mtcars),
"<br>hp: ", mtcars$hp,
"<br>qsec: ", mtcars$qsec,
"<br>Cyl: ", mtcars$cyl),
hoverinfo = 'text',
mode = 'markers',
transforms = list(
list(
type = 'groupby',
groups = mtcars$cyl,
styles = list(
list(target = 4, value = list(line =list(color = 'blue'))),
list(target = 6, value = list(line =list(color = 'red'))),
list(target = 8, value = list(line =list(color = 'black')))
)
)
)
)
Adding a layout command at the bottom will work layout(showlegend = TRUE). This can work by being piped in using the library(dplyr) package as shown here:
library(plotly)
library(dplyr)
p <- plot_ly(
type = 'scatter',
x = mtcars$hp,
y = mtcars$qsec,
text = paste("Make: ", rownames(mtcars),
"<br>hp: ", mtcars$hp,
"<br>qsec: ", mtcars$qsec,
"<br>Cyl: ", mtcars$cyl),
hoverinfo = 'text',
mode = 'markers',
transforms = list(
list(
type = 'groupby',
groups = mtcars$cyl,
styles = list(
list(target = 4, value = list(line =list(color = 'blue'))),
list(target = 6, value = list(line =list(color = 'red'))),
list(target = 8, value = list(line =list(color = 'black')))
)
)
)
) %>%
layout(showlegend = TRUE)
I'm trying to make a shiny app for some user-friendly data analysis of some data I have, and I'd like to change the outputted Plotly plot depending on which file i'm looking at. Basically, I'd like to have one plot outputted at a time, where I can cycle through several plots (that don't change place in my shiny app) depending on which folder and criteria i'm using. Currently I'm struggeling with this, and I don't know exactly what to do from here. I've attached a few images to clarify what I mean and what I want.
This photo shows my UI and how I want my figures to be displayed. I'd like all figures to show in that same location, depending on the selected file.
When I switch to 'Datalogger', a new plot is generated, and it is outputted below the first one. I'd like it to be placed on top of it, in the exact same location.
Any help you can offer would be very welcome.
Best,
T.
Script:
# Load packages
library(shiny)
library(shinythemes)
library(dplyr)
library(readr)
library(lubridate)
library(plotly)
#picarro
time = as.character(seq(as.POSIXct("2018-06-01 12:00:00"), as.POSIXct("2018-06-01 12:10:00"), by=seconds() )); ch4.corr = runif(length(time), 1980, 2000);
data = data.frame(time, ch4.corr); data$time = as.POSIXct(time);
#datalogger
time = as.character(seq(as.POSIXct("2018-06-01 12:00:00"), as.POSIXct("2018-06-01 12:10:00"), by=seconds() )); PressureOut = runif(length(time), 1010, 1020);
dlog = data.frame(time, PressureOut); dlog$time = as.POSIXct(time);
#dronelog
time = as.character(seq(as.POSIXct("2018-06-01 12:00:00"), as.POSIXct("2018-06-01 12:10:00"), by=seconds() ));
ulog = data.frame(time); ulog$time = as.POSIXct(time);
#------------------------------------------------------------------------------
ui <- fluidPage(
titlePanel("Active AirCore analysis"),
hr(),
fluidRow(
column(3,
radioButtons("fileInput", "File",
choices = c("Picarro", "Datalogger", "Dronelog"),
selected = "Picarro"),
hr(),
conditionalPanel(
condition = "input.fileInput == 'Picarro'",
sliderInput("timeInputPicarro", "Time", as.POSIXct(data$time[1]), as.POSIXct(data$time[length(data$time)]), c(as.POSIXct(data$time[1])+minutes(1), as.POSIXct(data$time[length(data$time)])-minutes(1)), timeFormat = "%H:%M:%S", ticks = T, step = seconds(1), pre = "")),
conditionalPanel(
condition = "input.fileInput == 'Datalogger'",
sliderInput("timeInputDatalogger", "Time", as.POSIXct(dlog$time[1]), as.POSIXct(dlog$time[length(dlog$time)]), c(as.POSIXct(dlog$time[1]), as.POSIXct(dlog$time[length(dlog$time)])), timeFormat = "%H:%M:%S", ticks = T, step = seconds(1), pre = "")),
conditionalPanel(
condition = "input.fileInput == 'Dronelog'",
sliderInput("timeInputDronelog", "Time", as.POSIXct(ulog$time[1]), as.POSIXct(ulog$time[length(ulog$time)]), c(as.POSIXct(ulog$time[1])+minutes(1), as.POSIXct(ulog$time[length(ulog$time)])-minutes(1)), timeFormat = "%H:%M:%S", ticks = T, step = seconds(1), pre = "")),
hr(),
conditionalPanel(
condition = "input.fileInput == 'Picarro'",
radioButtons("picarroPlotInput", "Plot type",
choices = c("Time-series", "Process"),
selected = "Time-series")),
conditionalPanel(
condition = "input.fileInput == 'Datalogger'",
radioButtons("dataloggerPlotInput", "Plot type",
choices = c("Time-series", "Altitude"),
selected = "Time-series")),
hr(),
checkboxGroupInput(inputId='sidebarOptions',
label=('Options'),
choices=c('Blabla', 'Store data', 'BlablaBla')),
hr()),
br(),
mainPanel(
plotlyOutput("dataplot"),
hr(),
plotlyOutput("dlogplot")
)
)
)
server <- function(input, output, session) {
datasetInputPic <- reactive({ data = data; })
datasetInputPicSamp <- reactive({ dat = data[(data$time>=input$timeInputPicarro[1]) & (data$time<=input$timeInputPicarro[2]),]; })
datasetInputDatalogger <- reactive({ dlog = dlog })
datasetInputDronelog <- reactive({ ulog = ulog })
output$dataplot <- renderPlotly({
if( (input$fileInput == 'Picarro' ) & (input$picarroPlotInput == 'Time-series')){
data = datasetInputPic();
data$time = as.POSIXct(data$time);
dat = datasetInputPicSamp();
dat$time = as.POSIXct(dat$time);
sec.col = "red";
f = list(size = 8);
x <- list(title = " ")
y <- list(title = "CH<sub>4</sub> [ppb]")
p2 = plot_ly() %>%
add_trace(data = data,
x = ~time,
y = ~ch4.corr,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = 'black')) %>%
add_trace(data = dat,
x = ~time,
y = ~ch4.corr,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = sec.col)) %>%
layout(xaxis = x, yaxis = y, title = '', showlegend = F, titlefont = f);
s1 = subplot(p2, margin = 0.06,nrows=1,titleY = TRUE) %>%
layout(showlegend = F, margin = list(l=50, r=0, b=50, t=10), titlefont = f);
s1
}
})
output$dlogplot <- renderPlotly({
if( (input$fileInput == 'Datalogger' ) & (input$dataloggerPlotInput == 'Time-series')){
data = datasetInputDatalogger();
data$time = as.POSIXct(data$time);
x <- list(title = " ")
y <- list(title = "Outside pressure [mbar]")
p1 = plot_ly() %>%
add_trace(data = data,
y = ~PressureOut,
x = ~time,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = 'black'));
s1 = subplot(p1, margin = 0.07, nrows=2, titleY = TRUE, titleX = FALSE)
layout(s1, showlegend = F, margin = list(l=100, r=100, b=0, t=100), title = "Datalogger data")
s1
}
})
outputOptions(output, c("dataplot", "dlogplot"), suspendWhenHidden = TRUE)
}
runApp(list(ui = ui, server = server))
Your issue is that in your ui you have written:
mainPanel(
plotlyOutput("dataplot"),
hr(),
plotlyOutput("dlogplot")
)
Using this structure, the "dlogplot" will always display below the "dataplot" because you essentially gave it its own position in the main panel that is below the "dataplot". One solution, if you want the plots to be displayed in the same exact spot when clicking the various buttons, is to give only one plotlyOutput. Next you would put conditional if, else if and else in renderPlotly. For example:
output$dataplot <- renderPlotly({
if( (input$fileInput == 'Picarro' ) & (input$picarroPlotInput == 'Time-series')){
data = datasetInputPic();
data$time = as.POSIXct(data$time);
dat = datasetInputPicSamp();
dat$time = as.POSIXct(dat$time);
sec.col = "red";
f = list(size = 8);
x <- list(title = " ")
y <- list(title = "CH<sub>4</sub> [ppb]")
p2 = plot_ly() %>%
add_trace(data = data,
x = ~time,
y = ~ch4.corr,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = 'black')) %>%
add_trace(data = dat,
x = ~time,
y = ~ch4.corr,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = sec.col)) %>%
layout(xaxis = x, yaxis = y, title = '', showlegend = F, titlefont = f);
s1 = subplot(p2, margin = 0.06,nrows=1,titleY = TRUE) %>%
layout(showlegend = F, margin = list(l=50, r=0, b=50, t=10), titlefont = f);
s1
}
else if( (input$fileInput == 'Datalogger' ) & (input$dataloggerPlotInput == 'Time-series')){
data = datasetInputDatalogger();
data$time = as.POSIXct(data$time);
x <- list(title = " ")
y <- list(title = "Outside pressure [mbar]")
p1 = plot_ly() %>%
add_trace(data = data,
y = ~PressureOut,
x = ~time,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = 'black'));
s1 = subplot(p1, margin = 0.07, nrows=2, titleY = TRUE, titleX = FALSE)
layout(s1, showlegend = F, margin = list(l=100, r=100, b=0, t=100), title = "Datalogger data")
s1
}
})
This code will put the "dlogplot" and the "dataplot" in the same position in your main panel. (You would also need to get rid of output$dlogplot <- renderPlotly({...}) so that it isn't also trying to make that plot.)
Try this out and see if it works for your purposes.
Thank to this question: SO-Q I have now understood how to remove traces. In this case, I simply remove 0:2, but I can change that to i.e. array(O:unique(factor(df$group))) to remove however many groups my model had created in a previous run.
What I haven't been able to figure out however, is how to add multiple traces, 1 for each factor in the target column, and color them by the colors in THECOLORS
library("shiny")
library("plotly")
rock[,2] <- sample(c('A', 'B', 'C'), 48, replace = T)
THECOLORS <- c('#383838', '#5b195b','#1A237E', '#000080', '#224D17', '#cccc00', '#b37400', '#990000')
ui <- fluidPage(
selectInput("dataset", "Choose a dataset:", choices = c("mtcars","rock")),
plotlyOutput("Plot1")
)
server <- function(input, output, session) {
dataSource <- reactive({switch(input$dataset,"rock" = rock,"mtcars" = mtcars)})
output$Plot1 <- renderPlotly({plot_ly(mtcars, x = ~mpg, y = ~hp, type = 'scatter', mode = 'markers', color = as.factor(mtcars$cyl), colors = THECOLORS) })
observeEvent(input$dataset, {
f <- list(
family = "Courier New, monospace",
size = 18,
color = "#7f7f7f"
)
x <- list(
title = "x Axis",
titlefont = f,
range = c(0,(max(dataSource()[,1])+ 0.1*max(dataSource()[,1])))
)
y <- list(
title = "y Axis",
titlefont = f,
range = c(0,(max(dataSource()[,4])+ 0.1*max(dataSource()[,4])))
)
plotlyProxy("Plot1", session) %>%
plotlyProxyInvoke("deleteTraces",array(0:2)) %>%
# lapply(unique(dataSource()[,2], function(x) { data <- dataSource()[which(dataSource()[,2] == x)],
# plotlyProxyInvoke("addTraces",
#
# x = data()[,1],
# y = data()[,4],
# type = 'scatter',
# mode = 'markers')}) %>%
plotlyProxyInvoke("relayout", list(xaxis = x, yaxis = y))
})
}
shinyApp(ui, server)
Basically when using plotlyProxy and than plotlyProxyInvoke with "addTraces", "addTraces" is used to add more traces.
You have to create a list of lists and each inner list would contain the details of each trace.
In your case with many traces to add maybe some of the functions from the purrr package could help in creating the list of lists defining the traces.
Take a look at the code below. It is a very simplified example, adding only two traces but the lists of list approach is there.
Regarding your comment about the speed maybe you could load data only when needed and partially if your app concept allows for that...
The code:
library("shiny")
library("plotly")
library(purrr)
ui <- fluidPage(
selectInput("dataset", "Choose a dataset:", choices = c("rock", "mtcars")),
plotlyOutput("Plot1")
)
server <- function(input, output, session) {
output$Plot1 <- renderPlotly({plot_ly(data = rock, x = ~area,
y =~peri, mode = 'markers', type = 'scatter')})
observeEvent(input$dataset, {
if (input$dataset == "rock") {
f <- list(
family = "Courier New, monospace",
size = 18,
color = "#7f7f7f"
)
x <- list(
title = "Area",
titlefont = f,
range = c(0, max(rock$area))
)
y <- list(
title = "Peri/Perm",
titlefont = f,
range = c(0, max(rock$peri))
)
plotlyProxyInvoke(plotlyProxy("Plot1", session), "addTraces", list(list(
x = rock$area,
y = rock$peri,
type = 'scatter',
mode = 'markers',
marker = list(size = 10,
color = 'rgba(255, 182, 193, .9)',
line = list(color = 'rgba(0, 255, 0, .3)',
width = 2))
),
list(
x = rock$area,
y = rock$perm,
type = 'scatter',
mode = 'markers',
marker = list(size = 10,
color = 'rgba(255, 182, 193, .9)',
line = list(color = 'rgba(152, 0, 0, .8)',
width = 2))
))
)
plotlyProxy("Plot1", session) %>%
plotlyProxyInvoke("deleteTraces", list(as.integer(0))) %>%
plotlyProxyInvoke("relayout", list(xaxis = x, yaxis = y))
} else {
f <- list(
family = "Courier New, monospace",
size = 18,
color = "#7f7f7f"
)
x <- list(
title = "hp",
titlefont = f,
range = c(0, max(mtcars$hp))
)
y <- list(
title = "mpg/cyl",
titlefont = f,
range = c(0, max(mtcars$mpg))
)
plotlyProxyInvoke(plotlyProxy("Plot1", session), "addTraces", list(list(
x = mtcars$hp,
y = mtcars$mpg,
type = 'scatter',
mode = 'markers',
marker = list(size = 10,
color = 'rgba(255, 182, 193, .9)',
line = list(color = 'rgba(0, 255, 0, .3)',
width = 2))
),
list(
x = mtcars$hp,
y = mtcars$cyl,
type = 'scatter',
mode = 'markers',
marker = list(size = 10,
color = 'rgba(255, 182, 193, .9)',
line = list(color = 'rgba(152, 0, 0, .8)',
width = 2))
))
)
plotlyProxy("Plot1", session) %>%
plotlyProxyInvoke("deleteTraces", list(as.integer(0))) %>%
plotlyProxyInvoke("relayout", list(xaxis = x, yaxis = y))
}
})
}
shinyApp(ui, server)