I'm trying to make a shiny app for some user-friendly data analysis of some data I have, and I'd like to change the outputted Plotly plot depending on which file i'm looking at. Basically, I'd like to have one plot outputted at a time, where I can cycle through several plots (that don't change place in my shiny app) depending on which folder and criteria i'm using. Currently I'm struggeling with this, and I don't know exactly what to do from here. I've attached a few images to clarify what I mean and what I want.
This photo shows my UI and how I want my figures to be displayed. I'd like all figures to show in that same location, depending on the selected file.
When I switch to 'Datalogger', a new plot is generated, and it is outputted below the first one. I'd like it to be placed on top of it, in the exact same location.
Any help you can offer would be very welcome.
Best,
T.
Script:
# Load packages
library(shiny)
library(shinythemes)
library(dplyr)
library(readr)
library(lubridate)
library(plotly)
#picarro
time = as.character(seq(as.POSIXct("2018-06-01 12:00:00"), as.POSIXct("2018-06-01 12:10:00"), by=seconds() )); ch4.corr = runif(length(time), 1980, 2000);
data = data.frame(time, ch4.corr); data$time = as.POSIXct(time);
#datalogger
time = as.character(seq(as.POSIXct("2018-06-01 12:00:00"), as.POSIXct("2018-06-01 12:10:00"), by=seconds() )); PressureOut = runif(length(time), 1010, 1020);
dlog = data.frame(time, PressureOut); dlog$time = as.POSIXct(time);
#dronelog
time = as.character(seq(as.POSIXct("2018-06-01 12:00:00"), as.POSIXct("2018-06-01 12:10:00"), by=seconds() ));
ulog = data.frame(time); ulog$time = as.POSIXct(time);
#------------------------------------------------------------------------------
ui <- fluidPage(
titlePanel("Active AirCore analysis"),
hr(),
fluidRow(
column(3,
radioButtons("fileInput", "File",
choices = c("Picarro", "Datalogger", "Dronelog"),
selected = "Picarro"),
hr(),
conditionalPanel(
condition = "input.fileInput == 'Picarro'",
sliderInput("timeInputPicarro", "Time", as.POSIXct(data$time[1]), as.POSIXct(data$time[length(data$time)]), c(as.POSIXct(data$time[1])+minutes(1), as.POSIXct(data$time[length(data$time)])-minutes(1)), timeFormat = "%H:%M:%S", ticks = T, step = seconds(1), pre = "")),
conditionalPanel(
condition = "input.fileInput == 'Datalogger'",
sliderInput("timeInputDatalogger", "Time", as.POSIXct(dlog$time[1]), as.POSIXct(dlog$time[length(dlog$time)]), c(as.POSIXct(dlog$time[1]), as.POSIXct(dlog$time[length(dlog$time)])), timeFormat = "%H:%M:%S", ticks = T, step = seconds(1), pre = "")),
conditionalPanel(
condition = "input.fileInput == 'Dronelog'",
sliderInput("timeInputDronelog", "Time", as.POSIXct(ulog$time[1]), as.POSIXct(ulog$time[length(ulog$time)]), c(as.POSIXct(ulog$time[1])+minutes(1), as.POSIXct(ulog$time[length(ulog$time)])-minutes(1)), timeFormat = "%H:%M:%S", ticks = T, step = seconds(1), pre = "")),
hr(),
conditionalPanel(
condition = "input.fileInput == 'Picarro'",
radioButtons("picarroPlotInput", "Plot type",
choices = c("Time-series", "Process"),
selected = "Time-series")),
conditionalPanel(
condition = "input.fileInput == 'Datalogger'",
radioButtons("dataloggerPlotInput", "Plot type",
choices = c("Time-series", "Altitude"),
selected = "Time-series")),
hr(),
checkboxGroupInput(inputId='sidebarOptions',
label=('Options'),
choices=c('Blabla', 'Store data', 'BlablaBla')),
hr()),
br(),
mainPanel(
plotlyOutput("dataplot"),
hr(),
plotlyOutput("dlogplot")
)
)
)
server <- function(input, output, session) {
datasetInputPic <- reactive({ data = data; })
datasetInputPicSamp <- reactive({ dat = data[(data$time>=input$timeInputPicarro[1]) & (data$time<=input$timeInputPicarro[2]),]; })
datasetInputDatalogger <- reactive({ dlog = dlog })
datasetInputDronelog <- reactive({ ulog = ulog })
output$dataplot <- renderPlotly({
if( (input$fileInput == 'Picarro' ) & (input$picarroPlotInput == 'Time-series')){
data = datasetInputPic();
data$time = as.POSIXct(data$time);
dat = datasetInputPicSamp();
dat$time = as.POSIXct(dat$time);
sec.col = "red";
f = list(size = 8);
x <- list(title = " ")
y <- list(title = "CH<sub>4</sub> [ppb]")
p2 = plot_ly() %>%
add_trace(data = data,
x = ~time,
y = ~ch4.corr,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = 'black')) %>%
add_trace(data = dat,
x = ~time,
y = ~ch4.corr,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = sec.col)) %>%
layout(xaxis = x, yaxis = y, title = '', showlegend = F, titlefont = f);
s1 = subplot(p2, margin = 0.06,nrows=1,titleY = TRUE) %>%
layout(showlegend = F, margin = list(l=50, r=0, b=50, t=10), titlefont = f);
s1
}
})
output$dlogplot <- renderPlotly({
if( (input$fileInput == 'Datalogger' ) & (input$dataloggerPlotInput == 'Time-series')){
data = datasetInputDatalogger();
data$time = as.POSIXct(data$time);
x <- list(title = " ")
y <- list(title = "Outside pressure [mbar]")
p1 = plot_ly() %>%
add_trace(data = data,
y = ~PressureOut,
x = ~time,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = 'black'));
s1 = subplot(p1, margin = 0.07, nrows=2, titleY = TRUE, titleX = FALSE)
layout(s1, showlegend = F, margin = list(l=100, r=100, b=0, t=100), title = "Datalogger data")
s1
}
})
outputOptions(output, c("dataplot", "dlogplot"), suspendWhenHidden = TRUE)
}
runApp(list(ui = ui, server = server))
Your issue is that in your ui you have written:
mainPanel(
plotlyOutput("dataplot"),
hr(),
plotlyOutput("dlogplot")
)
Using this structure, the "dlogplot" will always display below the "dataplot" because you essentially gave it its own position in the main panel that is below the "dataplot". One solution, if you want the plots to be displayed in the same exact spot when clicking the various buttons, is to give only one plotlyOutput. Next you would put conditional if, else if and else in renderPlotly. For example:
output$dataplot <- renderPlotly({
if( (input$fileInput == 'Picarro' ) & (input$picarroPlotInput == 'Time-series')){
data = datasetInputPic();
data$time = as.POSIXct(data$time);
dat = datasetInputPicSamp();
dat$time = as.POSIXct(dat$time);
sec.col = "red";
f = list(size = 8);
x <- list(title = " ")
y <- list(title = "CH<sub>4</sub> [ppb]")
p2 = plot_ly() %>%
add_trace(data = data,
x = ~time,
y = ~ch4.corr,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = 'black')) %>%
add_trace(data = dat,
x = ~time,
y = ~ch4.corr,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = sec.col)) %>%
layout(xaxis = x, yaxis = y, title = '', showlegend = F, titlefont = f);
s1 = subplot(p2, margin = 0.06,nrows=1,titleY = TRUE) %>%
layout(showlegend = F, margin = list(l=50, r=0, b=50, t=10), titlefont = f);
s1
}
else if( (input$fileInput == 'Datalogger' ) & (input$dataloggerPlotInput == 'Time-series')){
data = datasetInputDatalogger();
data$time = as.POSIXct(data$time);
x <- list(title = " ")
y <- list(title = "Outside pressure [mbar]")
p1 = plot_ly() %>%
add_trace(data = data,
y = ~PressureOut,
x = ~time,
type = 'scatter',
mode = "markers",
marker = list(size = 3, color = 'black'));
s1 = subplot(p1, margin = 0.07, nrows=2, titleY = TRUE, titleX = FALSE)
layout(s1, showlegend = F, margin = list(l=100, r=100, b=0, t=100), title = "Datalogger data")
s1
}
})
This code will put the "dlogplot" and the "dataplot" in the same position in your main panel. (You would also need to get rid of output$dlogplot <- renderPlotly({...}) so that it isn't also trying to make that plot.)
Try this out and see if it works for your purposes.
Related
I am in the process of learning R and am having some issues. I am trying to add a tab to my app to calculate a few values based on the data I put in. I have a frame of locations and I have some math I did to calculate the values of interest.
I want to take the value called loft and put a string on the panel that says "Loft at Impact is: XXX" with what number is calculated. The data files have several pages in excel I want to shuffle through. Currently it all works except the values I am trying to calculate. It works as expected in a regular R script but I am struggling getting it into R Shiny. I don't think I understand how to manipulate and deal with reactive data and such. Here is my current code:
#Import needed libraries
library(shiny)
library(readxl)
library(plotly)
library(DT)
#start app
runApp(
list(
ui = fluidPage(
#Main Title
titlePanel("Putt Viewer"),
sidebarLayout(
#File input on sidebar
sidebarPanel(
fileInput('file1', ' .xlsx file',
accept = c(".xlsx")
),
#Shot selection
numericInput('shotSelect','Which Shot Would you like to see?', 1, 1)
),
mainPanel(
#Sets up different panels for the main screen
tabsetPanel(
tabPanel("3D View", plotlyOutput("putterPlot2"),
helpText("3D Rendering of data points.")),
tabPanel("Overhead View", plotlyOutput("putterPlot"),
helpText("Overhead view of the toe and heel fiducial markers.")),
tabPanel("View Raw Data", dataTableOutput("contents"),
helpText("Explore the generated data in a table.")),
tabPanel("Face at Launch", textOutput("contents2"))
)
)
),
),
#starts and runs the server functions
server = function(input, output){
data <- reactive({
req(input$file1)
inFile <- input$file1
data <- read_excel(inFile$datapath, input$shotSelect + 1)
})
impactFrame <- data[nrow(shotData)-1,]
launchPoints <- structure(list(X = c(impactFrame$TToe.x_mm,impactFrame$MToe.x_mm, impactFrame$Heel.x_mm, 0),
Y = c(impactFrame$TToe.y_mm,impactFrame$MToe.y_mm, impactFrame$Heel.y_mm, 0),
Z = c(impactFrame$TToe.z_mm,impactFrame$MToe.z_mm, impactFrame$Heel.z_mm, 0)),
.Names = c("X", "Y", "Z"), row.names = c(NA, 3L), class = "data.frame")
ABi = launchPoints[1,2] - launchPoints[1,1] #x2-x1
ABj = launchPoints[2,2] - launchPoints[2,1] #y2-y1
ABk = launchPoints[3,2] - launchPoints[3,1] #z2-z1
ACi = launchPoints[1,3] - launchPoints[1,1] #x3-x1
ACj = launchPoints[2,3] - launchPoints[2,1] #y3-y1
ACk = launchPoints[3,3] - launchPoints[3,1] #z3-z1
AB = c(ABi, ABj, ABk)
AC = c(ACi, ACj, ACk)
normalijk = cross(AB,AC) #face vector
midABi = ABi / 2 + launchPoints[1,1]
midABj = ABj / 2 + launchPoints[2,1]
midABk = ABk / 2 + launchPoints[3,1]
midABCi = launchPoints[3,1] - midABi
midABCj = launchPoints[3,2] - midABj
midABCk = launchPoints[3,3] - midABk
liePlane = c(midABCi, midABCj, midABCk) #lie plane
loft <- reactiveValues(atan(normalijk[3] / sqrt(normalijk[1] ^ 2 + normalijk[2] ^ 2))) #loft
faceAngle = atan(normalijk[2] / sqrt(normalijk[1] ^ 2 + normalijk[2] ^ 2)) # face angle
lie = atan(liePlane[3] / sqrt(liePlane[1] ^ 2 + liePlane[2] ^ 2))
})
output$contents2 <- renderText(loft)
#Tab 3 output of the data
output$contents <- DT::renderDataTable({
#makes sure there is a file and its correct
req(input$file1)
inFile <- input$file1
data = read_excel(inFile$datapath, input$shotSelect + 1)
data
})
output$putterPlot2 <- renderPlotly({
#makes sure there is a file and its correct
req(input$file1)
inFile <- input$file1
data = read_excel(inFile$datapath, input$shotSelect + 1)
plot_ly(data, x = ~TToe.x_mm, y = ~TToe.y_mm, z = ~TToe.z_mm, type="scatter3d", name = "TToe Fiducials", mode="markers", color = ~Timestamp_ms) %>%
add_trace(x = ~MToe.x_mm, y = ~MToe.y_mm, z = ~MToe.z_mm, type="scatter3d", name = "TToe Fiducials", mode="markers", color = ~Timestamp_ms) %>%
add_trace(x = ~Heel.x_mm, y = ~Heel.y_mm + 3, z = ~Heel.z_mm - 25, type="scatter3d", name = "Heel Fiducials", mode="markers", color = ~Timestamp_ms) %>%
layout(title = 'Putter Face Location Data',
scene = list(xaxis = list(title = 'X (mm)', range = c(-200,200), ticktype = "array"),
yaxis = list(title = 'Y (mm)', range = c(-100,100), ticktype = "array"),
zaxis = list(title = 'Z (mm)', range = c(-100,100), ticktype = "array"),
showlegend = FALSE))
})
output$putterPlot <- renderPlotly({
req(input$file1)
inFile <- input$file1
data = read_excel(inFile$datapath, input$shotSelect + 1)
plot_ly(data, x = ~TToe.x_mm, y = ~TToe.y_mm, type="scatter", name = "Toe Data", mode="markers") %>%
add_trace( x = ~MToe.x_mm, y = ~MToe.y_mm, name = 'Toe Regression Fit', mode = 'lines', alpha = 1) %>%
add_trace(x = ~Heel.x_mm, y = ~Heel.y_mm + 3, type="scatter", name = "Heel Data", mode="markers") %>%
add_trace( x = ~Heel.x_mm, y = ~Heel.y_mm, name = 'Heel Regression Fit', mode = 'lines', alpha = 1) %>%
layout(title = 'Top Down View of Toe and Heel',
scene = list(xaxis = list(title = 'X (mm)', range = c(-200,200), ticktype = "array"),
yaxis = list(title = 'Y (mm)', range = c(-100,100), ticktype = "array"),
showlegend = FALSE))
})
}
)
)
I'm using Plotly in Rshiny to make reactive plots based on what variables someone checks from a checkbox.
Right now, I have working code that I like, however, I would like to add more descriptive Y-axis labels to the plots, as currently there are none.
My biggest barrier right now is getting code that is flexible enough to change the Y axis names depending on what variables are selected.
I made a reproducible data frame using the Iris dataset. In this example, lets pretend the "Sepal.Length" column is in units of micro-meters (um), whereas "Sepal.Width", "Petal.Length", an "Petal.Width" are all in inches. When a user checks off both "Sepal.Length" and one of the other values, the other value displays as a practically flat line because they are not in the same units/order of magnitude. WITHOUT converting the units (I want to keep all units as they are), how would you go about adding reactive Y-axis labels to these plots (specifically when the "stacked" plot style is selected)? Or a y-axis label such that if "sepal.width", "petal.length", and "petal.width" were selected, the Layered plot would have a Y-axis of inches?
I'll attach my reproducible code below, thanks!
library(shiny)
library(dplyr)
library(stringr)
library(readtext)
library(XML)
library(data.table)
library(ecodata)
library(shinyBS)
library(huxtable)
library(gridExtra)
library(ggplot2)
library(shinyWidgets)
iris_dataset<-iris[,colnames(iris)!="Species"]
iris_dataset$Sepal.Length<-iris_dataset$Sepal.Length*1000
iris_dataset$Year <- c(1873:2022)
###### Define UI ######
ui <- fluidPage(
navbarPage(
"Visualizing Indicators",
tabPanel("Choose Variables & Plot",width=6,
# Input: Selector for choosing dataset
selectInput(inputId = "dataset",
label = "Choose a dataset:",
choices = c("iris_dataset")),
checkboxGroupInput("variable",
label = "Variable selection (Pick up to 5)",
choiceNames = c("Sepal Length","Sepal Width", "Petal Length","Petal Width"),
choiceValues = c("Sepal.Length","Sepal.Width", "Petal.Length","Petal.Width"),
selected = c("Sepal Width",multiple = TRUE)
),
# Input: Select plotting style ----
radioButtons("Plotting_Style", "Select Plotting Style",
choices = c("Layered" = "Layered",
"Stacked" = "Stacked"),
selected = 'Layered'),
mainPanel(width = 12,
# Output
tabsetPanel(type = "tabs",
tabPanel("Plot", plotlyOutput('plot'))
) #close tabsetpanel
)), # mainpanel, tabPanel
) # navbarPage
) # fluidPage
###### Define server function ######
server <- function(input, output) {
dataDf <- reactive({
temp <- get(input$dataset)
})
output$plot <- renderPlotly({
if (input$Plotting_Style == "Layered"){
if (length(input$variable) == 3){ #if only 3 variables are chosen
plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1])) %>%
add_trace(dataDf(), x = ~Year, y = ~get(input$variable[2]),
type = 'scatter', mode = 'lines',name = paste(input$variable[2])) %>%
add_trace(dataDf(), x = ~Year, y = ~get(input$variable[3]),
type = 'scatter', mode = 'lines',name = paste(input$variable[3])) %>%
layout(xaxis = list(title = "Year"))
} else if (length(input$variable) > 1){ #if only 2 variables are chosen
plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1])) %>%
add_trace(dataDf(), x = ~Year, y = ~get(input$variable[2]),
type = 'scatter', mode = 'lines',name = paste(input$variable[2])) %>%
layout(xaxis = list(title = "Year"))
} else { #plot individually if only 1 is selected
fig1<- plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1]))
fig<-subplot(fig1, nrows = 1) %>%
layout(xaxis = list(title = "Year"),
xaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'),
yaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'))
fig
}#close if layered option
} else {
if (length(input$variable) == 3){ #if only 3 variables are chosen
fig1<- plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1]))
fig2<- plot_ly(dataDf(), x = ~Year, y = ~get(input$variable[2]),
type = 'scatter', mode = 'lines',name = paste(input$variable[2]))
fig3<- plot_ly(dataDf(), x = ~Year, y =~get(input$variable[3]),
type = 'scatter', mode = 'lines', name = paste(input$variable[3]))
fig<-subplot(fig1, fig2,fig3,nrows = 3, shareX = TRUE) %>%
layout(xaxis = list(title = "Year"),
plot_bgcolor='#e5ecf6',
xaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'),
yaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'))
fig
} else if(length(input$variable) == 2){ #plot 2 variables together
fig1<- plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1]))
fig2<- plot_ly(dataDf(), x = ~Year, y = ~get(input$variable[2]),
type = 'scatter', mode = 'lines',name = paste(input$variable[2]))
fig<-subplot(fig1, fig2, nrows = 2, shareX = TRUE) %>%
layout(xaxis = list(title = "Year"),
plot_bgcolor='#e5ecf6',
xaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'),
yaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'))
fig
} else { #plot individually if only 1 is selected
fig1<- plot_ly(dataDf(), x = ~Year, y =~get(input$variable[1]),
type = 'scatter', mode = 'lines', name = paste(input$variable[1]))
fig<-subplot(fig1, nrows = 1) %>%
layout(xaxis = list(title = "Year"),
plot_bgcolor='#e5ecf6',
xaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'),
yaxis = list(
zerolinecolor = '#ffff',
zerolinewidth = 2,
gridcolor = 'ffff'))
fig
}
}#close if stacked option
}) #close renderPlotly
} # server
# Create Shiny object
shinyApp(ui = ui, server = server)
In the following app the user can select points in the plot by dragging, which should swap their Selected state between 0 and 1
points will get a shape and color depending on their 0 / 1 state, as a visual support for a user to select/deselect model parameters for the next model run.
in the version of the plots I had in my real app, the plotted data is a reactive variable values$RFImp_FP1 but I found out that the plot does not re-render when the content of column Selected of that data.table (or data.frame) changes.
Therefore I am trying to change it to a reactive object, but I'm failing to figure out how to change the Selected column of reactive data.table `RFImp
my attempts (comments in the code) so far produce either an assign error, or an infinite loop.
P.S.: Since i'm coding the stuff with lapply as I am using the code block several times in my app (identical "modules" with different serial number and using different data as the app takes the user through sequential stages of processing data), the second approach with values (app 2) has my preference as this allows me to do things like this:
lapply(c('FP1', 'FP2'), function(FP){
values[[paste('RFAcc', FP, sep = '_')]] <- ".... code to select a dataframe from model result list object values[[paste('RFResults', FP, sep = '_']]$Accuracy...."
which as far as I know can't be done with objectname <- reactive({....}) as you can't paste on the left side of the <- here
REACTIVE OBJECT APPROACH:
library(shiny)
library(plotly)
library(dplyr)
library(data.table)
ui <- fluidPage(
plotlyOutput('RFAcc_FP1', width = 450)
)
server <- function(input, output, session) {
values <- reactiveValues()
observe({
if(!is.null(RFImp_FP1()$Selected)) {
parsToChange <- event_data("plotly_selected", source = 'RFAcc_FP1')$y
if(!is.null(event_data("plotly_selected", source = 'RFAcc_FP1'))){
data_df <- RFImp_FP1()
data_df <- data_df %>% .[, Selected := if_else(Variables %in% parsToChange, 1-Selected, Selected)]
# how to get the reactive Data frame to update the selected
# values$Selected <- data_df$Selected #creates infinite loop.....
# RFImp_FP1$Selected <- data_df$Selected # throws an error
}
}
})
RFImp_FP1 <- reactive({
# in real app the dataframe RFImp_FP1 is a part of a list with randomForest results,
RFImp_FP1 <- data.table( MeanDecreaseAccuracy = runif(10, min = 0, max = 1), Variables = letters[1:10])
RFImp_FP1$Selected <- 1
# RFImp_FP1$Selected <- if(!is.null(values$Selected)){
# values$Selected } else {1 }
RFImp_FP1
})
output$RFAcc_FP1 <- renderPlotly({
RFImp_FP1()[order(MeanDecreaseAccuracy)]
RFImp_score <- RFImp_FP1()
plotheight <- length(RFImp_score$Variables) * 80
p <- plot_ly(data = RFImp_score,
source = 'RFAcc_FP1',
height = plotheight,
width = 450) %>%
add_trace(x = RFImp_score$MeanDecreaseAccuracy,
y = RFImp_score$Variables,
type = 'scatter',
mode = 'markers',
color = factor(RFImp_score$Selected),
colors = c('#1b73c1', '#797979'),
symbol = factor(RFImp_score$Selected),
symbols = c('circle','x'),
marker = list(size = 6),
hoverinfo = "text",
text = ~paste ('<br>', 'Parameter: ', RFImp_score$Variables,
'<br>', 'Mean decrease accuracy: ', format(round(RFImp_score$MeanDecreaseAccuracy*100, digits = 2), nsmall = 2),'%',
sep = '')) %>%
layout(
margin = list(l = 160, r= 20, b = 70, t = 50),
hoverlabel = list(font=list( color = '#1b73c1'), bgcolor='#f7fbff'),
xaxis = list(title = 'Mean decrease accuracy index (%)',
tickformat = "%",
showgrid = F,
showline = T,
zeroline = F,
nticks = 5,
font = list(size = 8),
ticks = "outside",
ticklen = 5,
tickwidth = 2,
tickcolor = toRGB("black")
),
yaxis = list(categoryarray = RFImp_score$Variables,
autorange = T,
showgrid = F,
showline = T,
autotick = T,
font = list(size = 8),
ticks = "outside",
ticklen = 5,
tickwidth = 2,
tickcolor = toRGB("black")
),
dragmode = "select"
) %>% add_annotations(x = 0.5,
y = 1.05,
textangle = 0,
font = list(size = 14,
color = 'black'),
text = "Contribution to accuracy",
showarrow = F,
xref='paper',
yref='paper')
p <- p %>% config(displayModeBar = F)
p
})
}
shinyApp(ui, server)
PREVIOUS reactiveValues() approach:
as you can see, with this app, the plot does not update when selecting a region in the plot even though the code changes the content of column Selected
ui <- fluidPage(
actionButton(inputId = 'Go', label = 'Go'),
plotlyOutput('RFAcc_FP1', width = 450)
)
server <- function(input, output, session) {
values <- reactiveValues()
observe({
if(!is.null(values$RFImp_FP1)) {
parsToChange <- event_data("plotly_selected", source = 'RFAcc_FP1')$y
if(!is.null(event_data("plotly_selected", source = 'RFAcc_FP1'))){
data_df <- values$RFImp_FP1
data_df <- data_df %>% .[, Selected := if_else(Variables %in% parsToChange, 1-Selected, Selected)]
values$RFImp_FP1 <- data_df
}
}
})
observeEvent(input$Go, {
values$RFImp_FP1 <- data.table(MeanDecreaseAccuracy = runif(10, min = 0, max = 1), Variables = letters[1:10])
values$RFImp_FP1$Selected <- 1
})
output$RFAcc_FP1 <- renderPlotly({
if(!is.null(values$RFImp_FP1)) {
RFImp_score <- values$RFImp_FP1[order(MeanDecreaseAccuracy)]
plotheight <- length(RFImp_score$Variables) * input$testme
p <- plot_ly(data = RFImp_score,
source = 'RFAcc_FP1',
height = plotheight,
width = 450) %>%
add_trace(x = RFImp_score$MeanDecreaseAccuracy,
y = RFImp_score$Variables,
type = 'scatter',
mode = 'markers',
color = factor(RFImp_score$Selected),
colors = c('#1b73c1', '#797979'),
symbol = factor(RFImp_score$Selected),
symbols = c('circle','x'),
marker = list(size = 6),
hoverinfo = "text",
text = ~paste ('<br>', 'Parameter: ', RFImp_score$Variables,
'<br>', 'Mean decrease accuracy: ', format(round(RFImp_score$MeanDecreaseAccuracy*100, digits = 2), nsmall = 2),'%',
sep = '')) %>%
layout(
margin = list(l = 160, r= 20, b = 70, t = 50),
hoverlabel = list(font=list( color = '#1b73c1'), bgcolor='#f7fbff'),
xaxis = list(title = 'Mean decrease accuracy index (%)',
tickformat = "%",
showgrid = F,
showline = T,
zeroline = F,
nticks = 5,
font = list(size = 8),
ticks = "outside",
ticklen = 5,
tickwidth = 2,
tickcolor = toRGB("black")
),
yaxis = list(categoryarray = RFImp_score$Variables,
autorange = T,
showgrid = F,
showline = T,
autotick = T,
font = list(size = 8),
ticks = "outside",
ticklen = 5,
tickwidth = 2,
tickcolor = toRGB("black")
),
dragmode = "select"
) %>% add_annotations(x = 0.5,
y = 1.05,
textangle = 0,
font = list(size = 14,
color = 'black'),
text = "Contribution to accuracy",
showarrow = F,
xref='paper',
yref='paper')
p$elementId <- NULL ## to surpress warning of widgetid
p <- p %>% config(displayModeBar = F)
p
} else {
p <- plot_ly( type = 'scatter', mode = 'markers', height = '400px', width = 450) %>% layout(
margin = list(l = 160, r= 20, b = 70, t = 50),
xaxis = list(title = 'Mean decrease accuracy index', range= c(0,1), nticks = 2, showline = TRUE),
yaxis = list(title = 'Model input variables', range = c(0,1), nticks = 2, showline = TRUE)) %>%
add_annotations(x = 0.5, y = 1.1, textangle = 0, font = list(size = 14, color = 'black'),
text = 'Contribution to accuracy',
showarrow = F, xref='paper', yref='paper')
p$elementId <- NULL
p <- p %>% config(displayModeBar = F)
p}
})
}
shinyApp(ui, server)
Not sure if this is what you want (it´s a bit weird that the plot updates with random numbers after selecting points ;-) ), but I hope it helps.
Instead of using a normal observer I use observeEvent that fires when selecting something in the plot. I generally prefer observeEvent to catch an event. This triggers an update ob a reactiveValues value, which will initially be NULL
library(shiny)
library(plotly)
library(dplyr)
library(data.table)
testDF <- data.table( MeanDecreaseAccuracy = runif(10, min = 0, max = 1), Variables = letters[1:10])
testDF$Selected <- T
ui <- fluidPage(
plotlyOutput('RFAcc_FP1', width = 450)
)
server <- function(input, output, session) {
values <- reactiveValues(val = NULL)
observeEvent(event_data("plotly_selected", source = 'RFAcc_FP1')$y, {
values$val <- runif(1, min = 0, max = 1)
})
RFImp_FP1 <- reactive({
RFImp_FP1 <- testDF
if(!is.null(values$val)) {
parsToChange <- event_data("plotly_selected", source = 'RFAcc_FP1')$y
RFImp_FP1 <- RFImp_FP1 %>% .[, Selected := if_else(Variables %in% parsToChange, 1-Selected, Selected)]
} else { }
# in real app the dataframe RFImp_FP1 is a part of a list with randomForest results,
RFImp_FP1
# RFImp_FP1$Selected <- if(!is.null(values$Selected)){
# values$Selected } else {1 }
})
output$RFAcc_FP1 <- renderPlotly({
RFImp_score <- RFImp_FP1()[order(MeanDecreaseAccuracy)]
plotheight <- length(RFImp_score$Variables) * 80
p <- plot_ly(data = RFImp_score,
source = 'RFAcc_FP1',
height = plotheight,
width = 450) %>%
add_trace(x = RFImp_score$MeanDecreaseAccuracy,
y = RFImp_score$Variables,
type = 'scatter',
mode = 'markers',
color = factor(RFImp_score$Selected),
colors = c('#1b73c1', '#797979'),
symbol = factor(RFImp_score$Selected),
symbols = c('circle','x'),
marker = list(size = 6),
hoverinfo = "text",
text = ~paste ('<br>', 'Parameter: ', RFImp_score$Variables,
'<br>', 'Mean decrease accuracy: ', format(round(RFImp_score$MeanDecreaseAccuracy*100, digits = 2), nsmall = 2),'%',
sep = '')) %>%
layout(
margin = list(l = 160, r= 20, b = 70, t = 50),
hoverlabel = list(font=list( color = '#1b73c1'), bgcolor='#f7fbff'),
xaxis = list(title = 'Mean decrease accuracy index (%)',
tickformat = "%",
showgrid = F,
showline = T,
zeroline = F,
nticks = 5,
font = list(size = 8),
ticks = "outside",
ticklen = 5,
tickwidth = 2,
tickcolor = toRGB("black")
),
yaxis = list(categoryarray = RFImp_score$Variables,
autorange = T,
showgrid = F,
showline = T,
autotick = T,
font = list(size = 8),
ticks = "outside",
ticklen = 5,
tickwidth = 2,
tickcolor = toRGB("black")
),
dragmode = "select"
) %>% add_annotations(x = 0.5,
y = 1.05,
textangle = 0,
font = list(size = 14,
color = 'black'),
text = "Contribution to accuracy",
showarrow = F,
xref='paper',
yref='paper')
p <- p %>% config(displayModeBar = F)
p
})
}
shinyApp(ui, server)
In the demo app below, the user can change the Selected state of the data rows by either clicking input$Go1 or select a region in the plot.
Selection the region in the plot is my intended functionality.
However, for a reason I fail to understand, the button does cause a re-render of the plot while select does not, even though both approaches have the same effect, i.e. a change in the values in column Selected of data.table RFImp_FP1
Why is it not working when I select points in the plot?
ui <- fluidPage(
actionButton(inputId = 'Go', label = 'Go'),
actionButton(inputId = 'Go2', label = 'Go2'),
plotlyOutput('RFAcc_FP1', width = 450)
)
server <- function(input, output, session) {
values <- reactiveValues()
observeEvent(input$Go, {
values$RFImp_FP1 <- data.table(MeanDecreaseAccuracy = runif(10, min = 0, max = 1), Variables = letters[1:10])
values$RFImp_FP1$Selected <- 1
})
observeEvent(input$Go2,{
values$RFImp_FP1$Selected[1:4] <- 1-values$RFImp_FP1$Selected[1:4]
print(values$RFImp_FP1$Selected)
})
observe({
if(!is.null(values$RFImp_FP1)) {
parsToChange <- event_data("plotly_selected", source = 'RFAcc_FP1')$y
if(!is.null(event_data("plotly_selected", source = 'RFAcc_FP1'))){
data_df <- values$RFImp_FP1
data_df <- data_df %>% .[, Selected := if_else(Variables %in% parsToChange, 1-Selected, Selected)]
values$RFImp_FP1$Selected <- data_df$Selected
print(values$RFImp_FP1)
}
}
})
observeEvent(values$RFImp_FP1, {
print('seeing change')
})
output$RFAcc_FP1 <- renderPlotly({
values$RFImp_FP1
if(!is.null(values$RFImp_FP1)) {
RFImp_score <- values$RFImp_FP1[order(MeanDecreaseAccuracy)]
plotheight <- length(RFImp_score$Variables) * input$testme
p <- plot_ly(data = RFImp_score,
source = 'RFAcc_FP1',
height = plotheight,
width = 450) %>%
add_trace(x = RFImp_score$MeanDecreaseAccuracy,
y = RFImp_score$Variables,
type = 'scatter',
mode = 'markers',
color = factor(RFImp_score$Selected),
colors = c('#1b73c1', '#797979'),
symbol = factor(RFImp_score$Selected),
symbols = c('circle','x'),
marker = list(size = 6),
hoverinfo = "text",
text = ~paste ('<br>', 'Parameter: ', RFImp_score$Variables,
'<br>', 'Mean decrease accuracy: ', format(round(RFImp_score$MeanDecreaseAccuracy*100, digits = 2), nsmall = 2),'%',
sep = '')) %>%
layout(
margin = list(l = 160, r= 20, b = 70, t = 50),
hoverlabel = list(font=list( color = '#1b73c1'), bgcolor='#f7fbff'),
xaxis = list(title = 'Mean decrease accuracy index (%)',
tickformat = "%",
showgrid = F,
showline = T,
zeroline = F,
nticks = 5,
font = list(size = 8),
ticks = "outside",
ticklen = 5,
tickwidth = 2,
tickcolor = toRGB("black")
),
yaxis = list(categoryarray = RFImp_score$Variables,
autorange = T,
showgrid = F,
showline = T,
autotick = T,
font = list(size = 8),
ticks = "outside",
ticklen = 5,
tickwidth = 2,
tickcolor = toRGB("black")
),
dragmode = "select"
) %>% add_annotations(x = 0.5,
y = 1.05,
textangle = 0,
font = list(size = 14,
color = 'black'),
text = "Contribution to accuracy",
showarrow = F,
xref='paper',
yref='paper')
p$elementId <- NULL ## to surpress warning of widgetid
p <- p %>% config(displayModeBar = F)
p
} else {
p <- plot_ly( type = 'scatter', mode = 'markers', height = '400px', width = 450) %>% layout(
margin = list(l = 160, r= 20, b = 70, t = 50),
xaxis = list(title = 'Mean decrease accuracy index', range= c(0,1), nticks = 2, showline = TRUE),
yaxis = list(title = 'Model input variables', range = c(0,1), nticks = 2, showline = TRUE)) %>%
add_annotations(x = 0.5, y = 1.1, textangle = 0, font = list(size = 14, color = 'black'),
text = 'Contribution to accuracy',
showarrow = F, xref='paper', yref='paper')
p$elementId <- NULL
p <- p %>% config(displayModeBar = F)
p}
})
}
shinyApp(ui, server)
select vs button result:
Don't ask me why, but I managed to get it to work with observeEvent and assigning NULL to the values$RFImp_FP1 before reassigning the altered data.table to it
values$RFImp_FP1 <- NULL
values$RFImp_FP1<- resDF
Full version:
library(shiny)
library(plotly)
library(dplyr)
library(data.table)
testDF <- data.table( MeanDecreaseAccuracy = runif(10, min = 0, max = 1), Variables = letters[1:10])
testDF$Selected <- T
ui <- fluidPage(
plotlyOutput('RFAcc_FP1', width = 450)
)
server <- function(input, output, session) {
values <- reactiveValues(RFImp_FP1 = testDF)
observeEvent(event_data("plotly_selected", source = 'RFAcc_FP1')$y, {
parsToChange <- event_data("plotly_selected", source = 'RFAcc_FP1')$y
resDF <- values$RFImp_FP1 %>% .[, Selected := if_else(Variables %in% parsToChange, !Selected, Selected)]
values$RFImp_FP1 <- NULL ## without this line the plot does not react
values$RFImp_FP1<- resDF ## re-assign the altered data.table to the reactiveValue
})
output$RFAcc_FP1 <- renderPlotly({
RFImp_score <- values$RFImp_FP1[order(MeanDecreaseAccuracy)]
plotheight <- length(RFImp_score$Variables) * 80
p <- plot_ly(data = RFImp_score,
source = 'RFAcc_FP1',
height = plotheight,
width = 450) %>%
add_trace(x = RFImp_score$MeanDecreaseAccuracy,
y = RFImp_score$Variables,
type = 'scatter',
mode = 'markers',
color = factor(RFImp_score$Selected),
colors = c('#F0F0F0', '#1b73c1'),
symbol = factor(RFImp_score$Selected),
symbols = c('x', 'circle'),
marker = list(size = 6),
hoverinfo = "text",
text = ~paste ('<br>', 'Parameter: ', RFImp_score$Variables,
'<br>', 'Mean decrease accuracy: ', format(round(RFImp_score$MeanDecreaseAccuracy*100, digits = 2), nsmall = 2),'%',
sep = '')) %>%
layout(
margin = list(l = 160, r= 20, b = 70, t = 50),
hoverlabel = list(font=list( color = '#1b73c1'), bgcolor='#f7fbff'),
xaxis = list(title = 'Mean decrease accuracy index (%)',
tickformat = "%",
showgrid = F,
showline = T,
zeroline = F,
nticks = 5,
font = list(size = 8),
ticks = "outside",
ticklen = 5,
tickwidth = 2,
tickcolor = toRGB("black")
),
yaxis = list(categoryarray = RFImp_score$Variables,
autorange = T,
showgrid = F,
showline = T,
autotick = T,
font = list(size = 8),
ticks = "outside",
ticklen = 5,
tickwidth = 2,
tickcolor = toRGB("black")
),
dragmode = "select"
) %>% add_annotations(x = 0.5,
y = 1.05,
textangle = 0,
font = list(size = 14,
color = 'black'),
text = "Contribution to accuracy",
showarrow = F,
xref='paper',
yref='paper')
p <- p %>% config(displayModeBar = F)
p
})
}
shinyApp(ui, server)
and to avoid the plotly warnings about not being registered, we can change the observe structure to
observe({
if(!is.null( values$RFImp_FP1)) {
values$Selected <- event_data("plotly_selected", source = 'RFAcc_FP1')$y
}
})
observeEvent(values$Selected, {
parsToChange <- event_data("plotly_selected", source = 'RFAcc_FP1')$y
if(!is.null(event_data("plotly_selected", source = 'RFAcc_FP1'))){
data_df <- values$RFImp_FP1
data_df <- data_df %>% .[, Selected := if_else(Variables %in% parsToChange, !Selected, Selected)]
values$RFImp_FP1 <- NULL
values$RFImp_FP1 <- data_df
}
})
One problem remains: making the same selection twice in a row does not trigger the observers as the selection is identical....
I would like to create a plotly plot where the fill under each line is toggled upon mouseover/hover. The closest that I've come is using a combination of plotly and Shiny in the code below. Basically, I use the function event_data("plotly_hover") with a call to add_trace, which generates the fill for the line. However, when the mouse is moved away from the line, or unhovered, I get an error message: Error: incorrect length (0), expecting: 2366. In addition, the hoverinfo text no longer appears, or only briefly before the fill appears.
I'm not sure what the program is looking for when unhovering, so am not sure why I'm getting this error. Or perhaps there is different and simpler way to toggle the fill for plotly graphs?
ui.R
shinyUI(fluidPage(
titlePanel("Snow Weather Stations"),
mainPanel(
plotlyOutput("testplot", height = "500px")
)
)
)
server.R
library(shiny)
library(plotly)
library(dplyr)
library(tidyr)
csvf <- read.csv(file = "http://bcrfc.env.gov.bc.ca/data/asp/realtime/data/SW.csv",
check.names = FALSE, stringsAsFactors = FALSE)
swe <- csvf %>%
gather(STATION, SWE, -1) %>%
separate(`DATE (UTC)`, c('DATE', 'TIME'), sep = " ") %>%
filter(TIME == "15:00:00") %>%
select(-TIME) %>%
filter(substr(STATION,1,2) == "1A")
swe$DATE <- as.Date(swe$DATE)
swe$HOVERTEXT <- paste(swe$STATION, paste0(swe$SWE, " mm"), sep = "<br>")
xmin <- as.numeric(as.Date("2015-10-01")) * 24 * 60 * 60 * 1000
xmax <- as.numeric(as.Date("2016-09-30")) * 24 * 60 * 60 * 1000
shinyServer(function(input, output) {
output$testplot <- renderPlotly({
plot_ly(swe, x = DATE, y = SWE, group = STATION,
line = list(color = '#CCCCCC'),
text = HOVERTEXT, hoverinfo = "text+x",
hoveron = "points",
key = STATION) %>%
layout(showlegend = FALSE,
hovermode = 'closest',
xaxis = list(title = "",
showgrid = FALSE, showline = TRUE,
mirror = "ticks", ticks = "inside", tickformat = "%b",
hoverformat = "%b %-d",
range = c(xmin, xmax)),
yaxis = list(title = "Snow Water Equivalent (mm)",
showgrid = FALSE, showline = TRUE,
mirror = "ticks", ticks = "inside",
rangemode = "tozero")) %>%
config(displayModeBar = FALSE)
d <- event_data("plotly_hover")
if (is.null(d)) {
stn <- "1A01P Yellowhead Lake"
} else {
stn <- d$key[1]
}
add_trace(filter(swe, STATION == stn), x = DATE, y = SWE,
line = list(color = "404040"), fill = "tozeroy")
})
})