is there fixed character that used in the exponential function? - plot

I want to solve this problem using the sympy.
[a copper ball heated to 100 degrees was placed in water at 30 degrees, and after 3 minute, the temperature of the copper ball dropped to 70 degrees. Find the time it takes for the temperature of the copper ball to drop to 31 degrees. According to the experiment, the temperature change rate of the copper ball is proportional to the difference between the temperature and the ambient temperature.]
So, I built this equation and conditions.
[T : the temperature of the ball // t : time [m] // a : proportional constant]
[dT/dt = -a(T-30), T(0)=100, T(3)=70]
And my code is as follows...
T = symbols('T', cls=Function)
t = symbols('t')
a = symbols('a')
deqn = Eq(T(t).diff(t), -a*(T(t)-30))
dsolve(deqn) # general solution
The general solution of the above is : 𝑇(𝑡)=𝐶1𝑒−𝑎𝑡+30
dsolve(deqn, ics={T(0):100}) #particular solution by boundary condition
And the particular solution is : 𝑇(𝑡)=30+70𝑒−𝑎𝑡
Now, I think I need to using this equation to find the value of 'a' due to T(3)=70.
C = Eq(30+70*exp(-a*t),30)
solve(C)
But, the error occurs...
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Input In [122], in <cell line: 1>()
----> 1 C = Eq(30+70*exp(-a*t),30)
2 solve(C)
TypeError: bad operand type for unary -: 'list'
I don't know what the problem is...
is there a set character when using 'exp'?
please..help...me....

You might have an old version of sympy that used to return symbols in a list. Check type(a) is list. If it is True, then use a newer version of SymPy, or use Symbol to create a single symbol, or unpack the list a = symbols('a')[0].
If that is not the issue, make sure to put 31 as the 2nd arg for C (per problem description, else the Eq will be False). And then use solve(C, t) or else it might try solve for a.

Related

i'm trying to plot antenna radiation in scilab

formulla
imp=377;
c=3*10^8;
f=3*10^6;
i0=1;
teta=0:0.01:2*%pi;
lam=c/f;
l=lam/2;
k=2*%pi/lam;
r=10*lam;
ete=%iimpi0lexp(-kr)/(4%pi*r).*sin(teta);
polarplot(teta,ete);
at line 56 of function polarplot ( C:\Program Files\scilab-6.1.0\modules\graphics\macros\polarplot.sci line 69 )
min: Wrong type for input argument #1: A real matrix expected.
can anyone help me to fix this?
Vectors given to polarplot have to be real. Maybe you are missing a call to abs to compute the modulus of ete :
polarplot(teta,abs(ete))
S.

Want to use `diffenv` but have different wave lengths

I'm trying to use diffenv to see the surface difference between two audio files.
Below are the codes adopted, but I'm faced with the error:
Error in diffenv(a1, a2, f = f, plot = TRUE, main = "surface
difference between ’a’ and ’b’") : wave1 and wave2 should have the
same length
f<-16000
layout(matrix(c(1,2,3,3),byrow=TRUE,nc=2))
env(a1,f=f,colwave="red",title="sound ’a’")
env(a2,f=f,colwave="blue",title="sound ’b’")
diffenv(a1,a2,f=f,plot=TRUE, main="surface difference between ’a’ and ’b’")
Is there a way I can amend the wave length so that they are comparable? Or is this not advisable?
You could zero pad the shorter file to the length of the larger.
If it is advisable or not depends on what you will do with the data! If you are using this as a distance estimation between the two envelopes, it sort of makes sense. There are also scenarios where it would be beneficial to ignore the trailing end of diffenvs output.

R plotrix, polar.plot without discontinuity

I am using the plotrix package to make the polar coordinates from my measurements.
It looks that even when I provide measurements for all the polar cordinates from 1 to 360 degrees (or equally to 0 to 359) the first and last points are not connected. For example
require(plotrix)
polar.plot(seq(1,360),polar.pos=1:360,radial.lim=c(0,361),rp.type="l")
A quick and dirty fix I found was to add one more measurement point, so instead of 360 use 361
as
polar.plot(seq(1,360),polar.pos=0:360,radial.lim=c(0,361),rp.type="l")
which gives warning messages.
Warning messages:
1: In cos(radial.pos[i, ]) * lengths[i, ] :
longer object length is not a multiple of shorter object length
2: In sin(radial.pos[i, ]) * lengths[i, ] :
longer object length is not a multiple of shorter object length
Are there any alternatives since showing my end user warning messages is not something that I like to see :)
I would like to thank you for your reply
Regards
Alex
It's going to connect them in order. So, if you want the final vertical line back to the origin, you need to add a datapoint at the end of the vector to make it do so. The error you got is that you added an extra value to one coord but not the other, so x and y are not equal. It recycled one of the vectors to fill it out, which happened to give you what you wanted, but gave you a warning that it was doing so.
polar.plot(c(seq(1,360), 1),
polar.pos = c(1:360, 1),
radial.lim = c(0,361),
rp.type = "l")

determine trajectory for object followers - curve of pursuit

I have started to develop unit trajectories for a game server and for now I'm trying to retrieve the position of a unit at a given time. It is easy when the trajectory is just a straight line, but it is far more complicated when unit chases another unit.
I've done flash app to illustrate the problem. Black trajectory is for unit which travels in a single direction. Blue chases black and red chases blue. What I want is to precalculate whole trajectory for blue and red to be able to retrieve their position in a constant time.
Is it possible? Thanks for any help!!
Here's a paper A classic chase problem solved from a
physics perspective by Carl E. Mungan that solves a particular version in which the chaser is initially perpendicular to the chased object's trajectory. I believe this is an inessential element of the solution since that perpendicularity disappears along the rest of the trajectory.
It is an autonomous system of differential equations in the sense that time does not appear explicitly in the coefficients or terms of the equations. This supports the idea that the family of solutions given in the paper is general enough to provide for non-perpendicular initial conditions.
The paper provides further links and references, as well as a useful search term, "curves of pursuit".
Let's state a slight different, slightly more general initial condition than Mungan's. Suppose the chased object ("ship") is initially located at the origin and travels up the positive y-axis (x=0) with constant speed V. The chasing object ("torpedo") is initially located at (x0,y0), and although instantaneous reorienting directly at the "ship", also travels at some constant speed v.
The special case where x0 is zero results in a linear pursuit curve, i.e. a head-on collision or a trailing chase accordingly as y0 is positive or negative. Otherwise by reflection in the y-axis one may assume without loss of generality that x0 > 0. Thus rational powers of x-coordinates will be well-defined.
Assume for our immediate purpose that speeds V,v are unequal, so that ratio r = V/v is not 1. The following is a closed-form solution (1) for the "torpedo" curve similar to Mungan's equation (10):
(1+r) (1-r)
[ (x/H) (x/H) ]
(y/H) = (1/2) [ ----- - ----- ] + C (1)
[ (1+r) (1-r) ]
in which the constants H,C can be determined by the initial conditions.
Applying the condition that initially the torpedo moves toward the ship's location at the origin, we take the derivative with respect to x in (1) and cancel a factor 1/H from both sides:
r -r
dy/dx = (1/2) [ (x/H) - (x/H) ] (2)
Now equate the curve's slope dy/dx at initial point (x0,y0) with that of its line passing through the origin:
r -r
(x0/H) - (x0/H) = 2y0/x0 = K (3)
This amounts to a quadratic equation for positive B = (x0/H)^r:
B^2 - K*B - 1 = 0 (4)
namely B = [K + sqrt(K^2 + 4)]/2 (but use the alternative form if K < 0 to avoid cancellation error), which allows H to be determined from our knowledge of x0 and r:
H = x0/(B^(1/r)) (5)
Knowing H makes it a simple matter to determine the additive constant C in (1) by substituting the initial point (x0,y0) there.
The tricky part will be to determine which point on the "torpedo" trajectory corresponds to a given time t > 0. The inverse of that problem is solved fairly simply. Given a point on the trajectory, find the tangent line at that point using derivative formula (2) and deduce time t from the y-intercept b of that line (i.e. from the current "ship" position):
t = b/V (6)
Therefore determining (x(t),y(t)) where the "torpedo" is located at a given time t > 0 is essentially a root-finding exercise. One readily brackets the desired x(t) between two x-coordinates x1 and x2 that correspond to times t1 and t2 such that t1 < t < t2. A root-finding method can be used to refine this interval until the desired accuracy is achieved. Once a fairly small interval has been refined, Newton's method will provide rapid convergence. We can look at the details of such a procedure in a next installment!
I can set up the problem for you but not solve it.
The black curve is moving at a constant velocity v0, and in a straight line.
The blue curve moves at a constant velocity v1 in the direction of black.
For simplicity, choose coordinates so that at time t=0 the black curve starts at (x=0, y=0) and is moving in the direction x.
Thus, at time t >= 0, the position of the black curve is (v0 t, 0).
Problem statement
The goal is to find x, y of the blue curve for times t >= 0 given the initial position (x(t=0), y(t=0)). The differential equations of motion are
dx / dt = v1 (v0 t - x) / a(t)
dy / dt = v1 (- y) / a(t)
where a(t) = sqrt((v0 t - x)^2 + (y^2)) is the distance between blue and black at time t.
This is a system of two nonlinear coupled differential equations. It seems likely that there is no complete anaytical solution. Wolfram Alpha gives up without trying for the input
D[y[t],t] = -y[t] / sqrt[(t-x[t])^2 + y[t]^2], D[x[t],t] = (t-x[t]) / sqrt[(t-x[t])^2 + y[t]^2]
You could try asking on math.stackexchange. Good luck!

Collision Detection between Accelerating Spheres

I am writing a physics engine/simulator which incorporates 3D space flight, planetary/stellar gravitation, ship thrust and relativistic effects. So far, it is going very well, however, one thing that I need help with is the math of the collision detection algorithm.
The iterative simulation of movement that I am using is basically as follows:
(Note: 3D Vectors are ALL CAPS.)
For each obj
obj.ACC = Sum(all acceleration influences)
obj.POS = obj.POS + (obj.VEL * dT) + (obj.ACC * dT^2)/2 (*EQ.2*)
obj.VEL = obj.VEL + (obj.ACC * dT)
Next
Where:
obj.ACC is the acceleration vector of the object
obj.POS is the position or location vector of the object
obj.VEL is the velocity vector of the object
obj.Radius is the radius (scalar) of the object
dT is the time delta or increment
What I basically need to do is to find some efficient formula that derives from (EQ.2) above for two objects (obj1, obj2) and tell if they ever collide, and if so, at what time. I need the exact time both so that I can determine if it is in this particular time increment (because acceleration will be different at different time increments) and also so that I can locate the exact position (which I know how to do, given the time)
For this engine, I am modelling all objects as spheres, all this formula/algorithm needs to do is to figure out at what points:
(obj1.POS - obj2.POS).Distance = (obj1.Radius + obj2.Radius)
where .Distance is a positive scalar value. (You can also square both sides if this is easier, to avoid the square root function implicit in the .Distance calculation).
(yes, I am aware of many, many other collision detection questions, however, their solutions all seem to be very particular to their engine and assumptions, and none appear to match my conditions: 3D, spheres, and acceleration applied within the simulation increments. Let me know if I am wrong.)
Some Clarifications:
1) It is not sufficient for me to check for Intersection of the two spheres before and after the time increment. In many cases their velocities and position changes will far exceed their radii.
2) RE: efficiency, I do not need help (at this point anyway) with respect to determine likely candidates for collisions, I think that I have that covered.
Another clarification, which seems to be coming up a lot:
3) My equation (EQ.2) of incremental movement is a quadratic equation that applies both Velocity and Acceleration:
obj.POS = obj.POS + (obj.VEL * dT) + (obj.ACC * dT^2)/2
In the physics engines that I have seen, (and certainly every game engine that I ever heard of) only linear equations of incremental movement that apply only Velocity:
obj.POS = obj.POS + (obj.VEL * dT)
This is why I cannot use the commonly published solutions for collision detection found on StackOverflow, on Wikipedia and all over the Web, such as finding the intersection/closest approach of two line segments. My simulation deals with variable accelerations that are fundamental to the results, so what I need is the intersection/closest approach of two parabolic segments.
On the webpage AShelley referred to, the Closest Point of Approach method is developed for the case of two objects moving at constant velocity. However, I believe the same vector-calculus method can be used to derive a result in the case of two objects both moving with constant non-zero acceleration (quadratic time dependence).
In this case, the time derivative of the distance-squared function is 3rd order (cubic) instead of 1st order. Therefore there will be 3 solutions to the Time of Closest Approach, which is not surprising since the path of both objects is curved so multiple intersections are possible. For this application, you would probably want to use the earliest value of t which is within the interval defined by the current simulation step (if such a time exists).
I worked out the derivative equation which should give the times of closest approach:
0 = |D_ACC|^2 * t^3 + 3 * dot(D_ACC, D_VEL) * t^2 + 2 * [ |D_VEL|^2 + dot(D_POS, D_ACC) ] * t + 2 * dot(D_POS, D_VEL)
where:
D_ACC = ob1.ACC-obj2.ACC
D_VEL = ob1.VEL-obj2.VEL (before update)
D_POS = ob1.POS-obj2.POS (also before update)
and dot(A, B) = A.x*B.x + A.y*B.y + A.z*B.z
(Note that the square of the magnitude |A|^2 can be computed using dot(A, A))
To solve this for t, you'll probably need to use formulas like the ones found on Wikipedia.
Of course, this will only give you the moment of closest approach. You will need to test the distance at this moment (using something like Eq. 2). If it is greater than (obj1.Radius + obj2.Radius), it can be disregarded (i.e. no collision). However, if the distance is less, that means the spheres collide before this moment. You could then use an iterative search to test the distance at earlier times. It might also be possible to come up with another (even more complicated) derivation which takes the size into account, or possible to find some other analytic solution, without resorting to iterative solving.
Edit: because of the higher order, some of the solutions to the equation are actually moments of farthest separation. I believe in all cases either 1 of the 3 solutions or 2 of the 3 solutions will be a time of farthest separation. You can test analytically whether you're at a min or a max by evaluating the second derivative with respect to time (at the values of t which you found by setting the first derivative to zero):
D''(t) = 3 * |D_ACC|^2 * t^2 + 6 * dot(D_ACC, D_VEL) * t + 2 * [ |D_VEL|^2 + dot(D_POS, D_ACC) ]
If the second derivative evaluates to a positive number, then you know the distance is at a minimum, not a maximum, for the given time t.
Draw a line between the start location and end location of each sphere. If the resulting line segments intersect the spheres definitely collided at some point and some clever math can find at what time the collision occurred. Also make sure to check if the minimum distance between the segments (if they don't intersect) is ever less than 2*radius. This will also indicate a collision.
From there you can backstep your delta time to happen exactly at collision so you can correctly calculate the forces.
Have you considered using a physics library which already does this work? Many libraries use far more advanced and more stable (better integrators) systems for solving the systems of equations you're working with. Bullet Physics comes to mind.
op asked for time of collision. A slightly different approach will compute it exactly...
Remember that the position projection equation is:
NEW_POS=POS+VEL*t+(ACC*t^2)/2
If we replace POS with D_POS=POS_A-POS_B, VEL with D_VEL=VEL_A-VEL_B, and ACC=ACC_A-ACC_B for objects A and B we get:
$D_NEW_POS=D_POS+D_VEL*t+(D_ACC*t^2)/2
This is the formula for vectored distance between the objects. In order to get the squared scalar distance between them, we can take the square of this equation, which after expansion looks like:
distsq(t) = D_POS^2+2*dot(D_POS,D_VEL)*t + (dot(D_POS, D_ACC)+D_VEL^2)*t^2 + dot(D_VEL,D_ACC)*t^3 + D_ACC^2*t^4/4
In order to find the time where collision occurs, we can set the equation equal to the square of the sum of radii and solve for t:
0 = D_POS^2-(r_A+r_B)^2 + 2*dot(D_POS,D_VEL)*t + (dot(D_POS, D_ACC)+D_VEL^2)*t^2 + dot(D_VEL,D_ACC)*t^3 + D_ACC^2*t^4/4
Now, we can solve for the equation using the quartic formula.
The quartic formula will yield 4 roots, but we are only interested in real roots. If there is a double real root, then the two objects touch edges at exactly one point in time. If there are two real roots, then the objects continuously overlap between root 1 and root 2 (i.e. root 1 is the time when collision starts and root 2 is the time when collision stops). Four real roots means that the objects collide twice, continuously between root pairs 1,2 and 3,4.
In R, I used polyroot() to solve as follows:
# initial positions
POS_A=matrix(c(0,0),2,1)
POS_B=matrix(c(2,0),2,1)
# initial velocities
VEL_A=matrix(c(sqrt(2)/2,sqrt(2)/2),2,1)
VEL_B=matrix(c(-sqrt(2)/2,sqrt(2)/2),2,1)
# acceleration
ACC_A=matrix(c(sqrt(2)/2,sqrt(2)/2),2,1)
ACC_B=matrix(c(0,0),2,1)
# radii
r_A=.25
r_B=.25
# deltas
D_POS=POS_B-POS_A
D_VEL=VEL_B-VEL_A
D_ACC=ACC_B-ACC_A
# quartic coefficients
z=c(t(D_POS)%*%D_POS-r*r, 2*t(D_POS)%*%D_VEL, t(D_VEL)%*%D_VEL+t(D_POS)%*%D_ACC, t(D_ACC)%*%D_VEL, .25*(t(D_ACC)%*%D_ACC))
# get roots
roots=polyroot(z)
# In this case there are only two real roots...
root1=as.numeric(roots[1])
root2=as.numeric(roots[2])
# trajectory over time
pos=function(p,v,a,t){
T=t(matrix(t,length(t),2))
return(t(matrix(p,2,length(t))+matrix(v,2,length(t))*T+.5*matrix(a,2,length(t))*T*T))
}
# plot A in red and B in blue
t=seq(0,2,by=.1) # from 0 to 2 seconds.
a1=pos(POS_A,VEL_A,ACC_A,t)
a2=pos(POS_B,VEL_B,ACC_B,t)
plot(a1,type='o',col='red')
lines(a2,type='o',col='blue')
# points of a circle with center 'p' and radius 'r'
circle=function(p,r,s=36){
e=matrix(0,s+1,2)
for(i in 1:s){
e[i,1]=cos(2*pi*(1/s)*i)*r+p[1]
e[i,2]=sin(2*pi*(1/s)*i)*r+p[2]
}
e[s+1,]=e[1,]
return(e)
}
# plot circles with radius r_A and r_B at time of collision start in black
lines(circle(pos(POS_A,VEL_A,ACC_A,root1),r_A))
lines(circle(pos(POS_B,VEL_B,ACC_B,root1),r_B))
# plot circles with radius r_A and r_B at time of collision stop in gray
lines(circle(pos(POS_A,VEL_A,ACC_A,root2),r_A),col='gray')
lines(circle(pos(POS_B,VEL_B,ACC_B,root2),r_B),col='gray')
Object A follows the red trajectory from the lower left to the upper right. Object B follows the blue trajectory from the lower right to the upper left. The two objects collide continuously between time 0.9194381 and time 1.167549. The two black circles just touch, showing the beginning of overlap - and overlap continues in time until the objects reach the location of the gray circles.
Seems like you want the Closest Point of Approach (CPA). If it is less than the sum of the radiuses, you have a collision. There is example code in the link. You can calculate each frame with the current velocity, and check if the CPA time is less than your tick size. You could even cache the cpa time, and only update when acceleration was applied to either item.

Resources