How to define Field of 16 elements in sagemath? - sage

I'm trying to define the field with 16 elements that is F_2(x) modulus x^4+x+1.
I mean, the elements are polynomials with coefficient 1 or 0 and a base is {x^³, x^2, x, 1}.
Then, I need to define matrixes with elements of this field and be abble to multiply them as usual.
I'm trying to to do this in sagemath since it is supposed to be easier.
How can this be done?
I've tried
F.<xi>=GF(2^4, modulus=GF(2)[x](x^4+x+1))
but it doesn't work.

First make sure that x or some other letter used in the optional parameter modulus=... is a generator of a polynomial ring over the field with two elements, GF(2). I will use X but any other letter would do instead. Then just use it.
R.<X> = PolynomialRing(GF(2))
F.<a> = GF(2^4, modulus=X^4 + X + 1)
print(f'F is {F}')
print(f'a has minimal polynomial {a.minpoly()}')
Results:
F is Finite Field in a of size 2^4
a has minimal polynomial x^4 + x + 1
Let us multiply some simple matrices defined over this field.
A = matrix(2, 2, [1, a, a, a^2])
B = matrix(2, 2, [1, a, a, a^3])
AB = A*B
print(f'AB is the matrix\n{AB}')
This gives:
AB is the matrix
[a^2 + 1 1]
[a^3 + a a]

Related

Concatenation of binary representation of first n positive integers in O(logn) time complexity

I came across this question in a coding competition. Given a number n, concatenate the binary representation of first n positive integers and return the decimal value of the resultant number formed. Since the answer can be large return answer modulo 10^9+7.
N can be as large as 10^9.
Eg:- n=4. Number formed=11011100(1=1,10=2,11=3,100=4). Decimal value of 11011100=220.
I found a stack overflow answer to this question but the problem is that it only contains a O(n) solution.
Link:- concatenate binary of first N integers and return decimal value
Since n can be up to 10^9 we need to come up with solution that is better than O(n).
Here's some Python code that provides a fast solution; it uses the same ideas as in Abhinav Mathur's post. It requires Python >= 3.8, but it doesn't use anything particularly fancy from Python, and could easily be translated into another language. You'd need to write algorithms for modular exponentiation and modular inverse if they're not already available in the target language.
First, for testing purposes, let's define the slow and obvious version:
# Modulus that results are reduced by,
M = 10 ** 9 + 7
def slow_binary_concat(n):
"""
Concatenate binary representations of 1 through n (inclusive).
Reinterpret the resulting binary string as an integer.
"""
concatenation = "".join(format(k, "b") for k in range(n + 1))
return int(concatenation, 2) % M
Checking that we get the expected result:
>>> slow_binary_concat(4)
220
>>> slow_binary_concat(10)
462911642
Now we'll write a faster version. First, we split the range [1, n) into subintervals such that within each subinterval, all numbers have the same length in binary. For example, the range [1, 10) would be split into four subintervals: [1, 2), [2, 4), [4, 8) and [8, 10). Here's a function to do that splitting:
def split_by_bit_length(n):
"""
Split the numbers in [1, n) by bit-length.
Produces triples (a, b, 2**k). Each triple represents a subinterval
[a, b) of [1, n), with a < b, all of whose elements has bit-length k.
"""
a = 1
while n > a:
b = 2 * a
yield (a, min(n, b), b)
a = b
Example output:
>>> list(split_by_bit_length(10))
[(1, 2, 2), (2, 4, 4), (4, 8, 8), (8, 10, 16)]
Now for each subinterval, the value of the concatenation of all numbers in that subinterval is represented by a fairly simple mathematical sum, which can be computed in exact form. Here's a function to compute that sum modulo M:
def subinterval_concat(a, b, l):
"""
Concatenation of values in [a, b), all of which have the same bit-length k.
l is 2**k.
Equivalently, sum(i * l**(b - 1 - i)) for i in range(a, b)) modulo M.
"""
n = b - a
inv = pow(l - 1, -1, M)
q = (pow(l, n, M) - 1) * inv
return (a * q + (q - n) * inv) % M
I won't go into the evaluation of the sum here: it's a bit off-topic for this site, and it's hard to express without a good way to render formulas. If you want the details, that's a topic for https://math.stackexchange.com, or a page of fairly simple algebra.
Finally, we want to put all the intervals together. Here's a function to do that.
def fast_binary_concat(n):
"""
Fast version of slow_binary_concat.
"""
acc = 0
for a, b, l in split_by_bit_length(n + 1):
acc = (acc * pow(l, b - a, M) + subinterval_concat(a, b, l)) % M
return acc
A comparison with the slow version shows that we get the same results:
>>> fast_binary_concat(4)
220
>>> fast_binary_concat(10)
462911642
But the fast version can easily be evaluated for much larger inputs, where using the slow version would be infeasible:
>>> fast_binary_concat(10**9)
827129560
>>> fast_binary_concat(10**18)
945204784
You just have to note a simple pattern. Taking up your example for n=4, let's gradually build the solution starting from n=1.
1 -> 1 #1
2 -> 2^2(1) + 2 #6
3 -> 2^2[2^2(1)+2] + 3 #27
4 -> 2^3{2^2[2^2(1)+2]+3} + 4 #220
If you expand the coefficients of each term for n=4, you'll get the coefficients as:
1 -> (2^3)*(2^2)*(2^2)
2 -> (2^3)*(2^2)
3 -> (2^3)
4 -> (2^0)
Let the N be total number of bits in the string representation of our required number, and D(x) be the number of bits in x. The coefficients can then be written as
1 -> 2^(N-D(1))
2 -> 2^(N-D(1)-D(2))
3 -> 2^(N-D(1)-D(2)-D(3))
... and so on
Since the value of D(x) will be the same for all x between range (2^t, 2^(t+1)-1) for some given t, you can break the problem into such ranges and solve for each range using mathematics (not iteration). Since the number of such ranges will be log2(Given N), this should work in the given time limit.
As an example, the various ranges become:
1. 1 (D(x) = 1)
2. 2-3 (D(x) = 2)
3. 4-7 (D(x) = 3)
4. 8-15 (D(x) = 4)

Is there a function f(n) that returns the n:th combination in an ordered list of combinations without repetition?

Combinations without repetitions look like this, when the number of elements to choose from (n) is 5 and elements chosen (r) is 3:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
As n and r grows the amount of combinations gets large pretty quickly. For (n,r) = (200,4) the number of combinations is 64684950.
It is easy to iterate the list with r nested for-loops, where the initial iterating value of each for loop is greater than the current iterating value of the for loop in which it is nested, as in this jsfiddle example:
https://dotnetfiddle.net/wHWK5o
What I would like is a function that calculates only one combination based on its index. Something like this:
tuple combination(i,n,r) {
return [combination with index i, when the number of elements to choose from is n and elements chosen is r]
Does anyone know if this is doable?
You would first need to impose some sort of ordering on the set of all combinations available for a given n and r, such that a linear index makes sense. I suggest we agree to keep our combinations in increasing order (or, at least, the indices of the individual elements), as in your example. How then can we go from a linear index to a combination?
Let us first build some intuition for the problem. Suppose we have n = 5 (e.g. the set {0, 1, 2, 3, 4}) and r = 3. How many unique combinations are there in this case? The answer is of course 5-choose-3, which evaluates to 10. Since we will sort our combinations in increasing order, consider for a minute how many combinations remain once we have exhausted all those starting with 0. This must be 4-choose-3, or 4 in total. In such a case, if we are looking for the combination at index 7 initially, this implies we must subtract 10 - 4 = 6 and search for the combination at index 1 in the set {1, 2, 3, 4}. This process continues until we find a new index that is smaller than this offset.
Once this process concludes, we know the first digit. Then we only need to determine the remaining r - 1 digits! The algorithm thus takes shape as follows (in Python, but this should not be too difficult to translate),
from math import factorial
def choose(n, k):
return factorial(n) // (factorial(k) * factorial(n - k))
def combination_at_idx(idx, elems, r):
if len(elems) == r:
# We are looking for r elements in a list of size r - thus, we need
# each element.
return elems
if len(elems) == 0 or len(elems) < r:
return []
combinations = choose(len(elems), r) # total number of combinations
remains = choose(len(elems) - 1, r) # combinations after selection
offset = combinations - remains
if idx >= offset: # combination does not start with first element
return combination_at_idx(idx - offset, elems[1:], r)
# We now know the first element of the combination, but *not* yet the next
# r - 1 elements. These need to be computed as well, again recursively.
return [elems[0]] + combination_at_idx(idx, elems[1:], r - 1)
Test-driving this with your initial input,
N = 5
R = 3
for idx in range(choose(N, R)):
print(idx, combination_at_idx(idx, list(range(N)), R))
I find,
0 [0, 1, 2]
1 [0, 1, 3]
2 [0, 1, 4]
3 [0, 2, 3]
4 [0, 2, 4]
5 [0, 3, 4]
6 [1, 2, 3]
7 [1, 2, 4]
8 [1, 3, 4]
9 [2, 3, 4]
Where the linear index is zero-based.
Start with the first element of the result. The value of that element depends on the number of combinations you can get with smaller elements. For each such smaller first element, the number of combinations with first element k is n − k − 1 choose r − 1, with potentially some of-by-one corrections. So you would sum over a bunch of binomial coefficients. Wolfram Alpha can help you compute such a sum, but the result still has a binomial coefficient in it. Solving for the largest k such that the sum doesn't exceed your given index i is a computation you can't do with something as simple as e.g. a square root. You need a loop to test possible values, e.g. like this:
def first_naive(i, n, r):
"""Find first element and index of first combination with that first element.
Returns a tuple of value and index.
Example: first_naive(8, 5, 3) returns (1, 6) because the combination with
index 8 is [1, 3, 4] so it starts with 1, and because the first combination
that starts with 1 is [1, 2, 3] which has index 6.
"""
s1 = 0
for k in range(n):
s2 = s1 + choose(n - k - 1, r - 1)
if i < s2:
return k, s1
s1 = s2
You can reduce the O(n) loop iterations to O(log n) steps using bisection, which is particularly relevant for large n. In that case I find it easier to think about numbering items from the end of your list. In the case of n = 5 and r = 3 you get choose(2, 2)=1 combinations starting with 2, choose(3,2)=3 combinations starting with 1 and choose(4,2)=6 combinations starting with 0. So in the general choose(n,r) binomial coefficient you increase the n with each step, and keep the r. Taking into account that sum(choose(k,r) for k in range(r,n+1)) can be simplified to choose(n+1,r+1), you can eventually come up with bisection conditions like the following:
def first_bisect(i, n, r):
nCr = choose(n, r)
k1 = r - 1
s1 = nCr
k2 = n
s2 = 0
while k2 - k1 > 1:
k3 = (k1 + k2) // 2
s3 = nCr - choose(k3, r)
if s3 <= i:
k2, s2 = k3, s3
else:
k1, s1 = k3, s3
return n - k2, s2
Once you know the first element to be k, you also know the index of the first combination with that same first element (also returned from my function above). You can use the difference between that first index and your actual index as input to a recursive call. The recursive call would be for r − 1 elements chosen from n − k − 1. And you'd add k + 1 to each element from the recursive call, since the top level returns values starting at 0 while the next element has to be greater than k in order to avoid duplication.
def combination(i, n, r):
"""Compute combination with a given index.
Equivalent to list(itertools.combinations(range(n), r))[i].
Each combination is represented as a tuple of ascending elements, and
combinations are ordered lexicograplically.
Args:
i: zero-based index of the combination
n: number of possible values, will be taken from range(n)
r: number of elements in result list
"""
if r == 0:
return []
k, ik = first_bisect(i, n, r)
return tuple([k] + [j + k + 1 for j in combination(i - ik, n - k - 1, r - 1)])
I've got a complete working example, including an implementation of choose, more detailed doc strings and tests for some basic assumptions.

Prolog:: f(x) recursion

I'm a beginner to Prolog and have two requirements:
f(1) = 1
f(x) = 5x + x^2 + f(x - 1)
rules:
f(1,1).
f(X,Y) :-
Y is 5 * X + X * X + f(X-1,Y).
query:
f(4,X).
Output:
ERROR: is/2: Arguments are not sufficiently instantiated
How can I add value of f(X-1)?
This can be easily solved by using auxiliary variables.
For example, consider:
f(1, 1).
f(X, Y) :-
Y #= 5*X + X^2 + T1,
T2 #= X - 1,
f(T2, T1).
This is a straight-forward translation of the rules you give, using auxiliary variables T1 and T2 which stand for the partial expressions f(X-1) and X-1, respectively. As #BallpointBen correctly notes, it is not sufficient to use the terms themselves, because these terms are different from their arithmetic evaluation. In particular, -(2,1) is not the integer 1, but 2 - 1 #= 1 does hold!
Depending on your Prolog system, you may ned to currently still import a library to use the predicate (#=)/2, which expresses equality of integer expressesions.
Your example query now already yields a solution:
?- f(4, X).
X = 75 .
Note that the predicate does not terminate universally in this case:
?- f(4, X), false.
nontermination
We can easily make it so with an additional constraint:
f(1, 1).
f(X, Y) :-
X #> 1,
Y #= 5*X + X^2 + T1,
T2 #= X - 1,
f(T2, T1).
Now we have:
?- f(4, X).
X = 75 ;
false.
Note that we can use this as a true relation, also in the most general case:
?- f(X, Y).
X = Y, Y = 1 ;
X = 2,
Y = 15 ;
X = 3,
Y = 39 ;
X = 4,
Y = 75 ;
etc.
Versions based on lower-level arithmetic typically only cover a very limited subset of instances of such queries. I therefore recommend that you use (#=)/2 instead of (is)/2. Especially for beginners, using (is)/2 is too hard to understand. Take the many related questions filed under instantiation-error as evidence, and see clpfd for declarative solutions.
The issue is that you are trying to evaluate f(X-1,Y) as if it were a number, but of course it is a predicate that may be true or false. After some tinkering, I found this solution:
f(1,1).
f(X,Y) :- X > 0, Z is X-1, f(Z,N), Y is 5*X + X*X + N.
The trick is to let it find its way down to f(1,N) first, without evaluating anything; then let the results bubble back up by satisfying Y is 5*X + X*X + N. In Prolog, order matters for its search. It needs to satisfy f(Z,N) in order to have a value of N for the statement Y is 5*X + X*X + N.
Also, note the condition X > 0 to avoid infinite recursion.

How to set a square root to only be whole

I cant seem to find any kind of answer to this, but if I have an equation like the square root of (X^2-4n) where 4n is a constant, how could I set x so the equation gives a whole number.
I know setting x to n+1 works, but I'm looking for an algorithm that would generate all solutions.
So, the problem is to find all pairs of integers (x, m) such that:
sqrt(x^2 - 4n) = m
We have:
x^2 - 4n = m^2
or
x^2 - mˆ2 = 4n
so
(x + m)(x - m) = 4n
Now, 2 divides 4n and so it must divide (x+m) or (x-m). But if it divides any of them it will divide the other too. Thus a := (x+m)/2 and b := (x-m)/2 are both integers. Therefore
a*b = n
So, it is just a matter of factoring n as a*b in all possible ways and recover x and m from the equations above:
x = a + b.
m = a - b.
Your solution x = n+1 corresponds to the trivial factorization n = n*1 where a=n and b=1.
UPDATE
Here is an algorithm that prints all pairs (x, m)
[Initialize] a := n.
[Check] if n % a = 0 then
b := n / a.
print(a + b), print(a - b)
[Decrement] a := a - 1.
[End?] if a * a > n go to Step 2.

Given a list of coefficients, create a polynomial

I want to create a polynomial with given coefficients. This seems very simple but what I have found till now did not appear to be the thing I desired.
For example in such an environment;
n = 11
K = GF(4,'a')
R = PolynomialRing(GF(4,'a'),"x")
x = R.gen()
a = K.gen()
v = [1,a,0,0,1,1,1,a,a,0,1]
Given a list/vector v of length n (I will set this n and v at the begining), I want to get the polynomial v(x) as v[i]*x^i.
(Actually after that I am going to build the quotient ring GF(4,'a')[x] /< x^n-v(x) > after getting this v(x) from above) then I will say;
S = R.quotient(x^n-v(x), 'y')
y = S.gen()
But I couldn't write it.
This is a frequently asked question in many places so it is better to leave it here as an answer although the answer I have is so simple:
I just wrote R(v) and it gave me the polynomial:
sage
n = 11
K = GF(4,'a')
R = PolynomialRing(GF(4,'a'),"x")
x = R.gen()
a = K.gen()
v = [1,a,0,0,1,1,1,a,a,0,1]
R(v)
x^10 + a*x^8 + a*x^7 + x^6 + x^5 + x^4 + a*x + 1
Basically (that is, ignoring the specifics of your polynomial ring) you have a list/vector v of length n and you require a polynomial which is the sum of all v[i]*x^i. Note that this sum equals the matrix product V.X where V is a one row matrix (essentially equal to the vector v) and X is a column matrix consisting of powers of x. In Maxima you could write
v: [1,a,0,0,1,1,1,a,a,0,1]$
n: length(v)$
V: matrix(v)$
X: genmatrix(lambda([i,j], x^(i-1)), n, 1)$
V.X;
The output is
x^10+ax^8+ax^7+x^6+x^5+x^4+a*x+1

Resources