Given a list of coefficients, create a polynomial - sage

I want to create a polynomial with given coefficients. This seems very simple but what I have found till now did not appear to be the thing I desired.
For example in such an environment;
n = 11
K = GF(4,'a')
R = PolynomialRing(GF(4,'a'),"x")
x = R.gen()
a = K.gen()
v = [1,a,0,0,1,1,1,a,a,0,1]
Given a list/vector v of length n (I will set this n and v at the begining), I want to get the polynomial v(x) as v[i]*x^i.
(Actually after that I am going to build the quotient ring GF(4,'a')[x] /< x^n-v(x) > after getting this v(x) from above) then I will say;
S = R.quotient(x^n-v(x), 'y')
y = S.gen()
But I couldn't write it.

This is a frequently asked question in many places so it is better to leave it here as an answer although the answer I have is so simple:
I just wrote R(v) and it gave me the polynomial:
sage
n = 11
K = GF(4,'a')
R = PolynomialRing(GF(4,'a'),"x")
x = R.gen()
a = K.gen()
v = [1,a,0,0,1,1,1,a,a,0,1]
R(v)
x^10 + a*x^8 + a*x^7 + x^6 + x^5 + x^4 + a*x + 1

Basically (that is, ignoring the specifics of your polynomial ring) you have a list/vector v of length n and you require a polynomial which is the sum of all v[i]*x^i. Note that this sum equals the matrix product V.X where V is a one row matrix (essentially equal to the vector v) and X is a column matrix consisting of powers of x. In Maxima you could write
v: [1,a,0,0,1,1,1,a,a,0,1]$
n: length(v)$
V: matrix(v)$
X: genmatrix(lambda([i,j], x^(i-1)), n, 1)$
V.X;
The output is
x^10+ax^8+ax^7+x^6+x^5+x^4+a*x+1

Related

How to define Field of 16 elements in sagemath?

I'm trying to define the field with 16 elements that is F_2(x) modulus x^4+x+1.
I mean, the elements are polynomials with coefficient 1 or 0 and a base is {x^Β³, x^2, x, 1}.
Then, I need to define matrixes with elements of this field and be abble to multiply them as usual.
I'm trying to to do this in sagemath since it is supposed to be easier.
How can this be done?
I've tried
F.<xi>=GF(2^4, modulus=GF(2)[x](x^4+x+1))
but it doesn't work.
First make sure that x or some other letter used in the optional parameter modulus=... is a generator of a polynomial ring over the field with two elements, GF(2). I will use X but any other letter would do instead. Then just use it.
R.<X> = PolynomialRing(GF(2))
F.<a> = GF(2^4, modulus=X^4 + X + 1)
print(f'F is {F}')
print(f'a has minimal polynomial {a.minpoly()}')
Results:
F is Finite Field in a of size 2^4
a has minimal polynomial x^4 + x + 1
Let us multiply some simple matrices defined over this field.
A = matrix(2, 2, [1, a, a, a^2])
B = matrix(2, 2, [1, a, a, a^3])
AB = A*B
print(f'AB is the matrix\n{AB}')
This gives:
AB is the matrix
[a^2 + 1 1]
[a^3 + a a]

To understand how Gram-Schmidt Process is translated into this piece of code as the implementation

Trying to understand Gram-Schmidt process from this explanation:
http://mlwiki.org/index.php/Gram-Schmidt_Process
The steps of the calculation make sense to me. However the Python implementation included in the same article doesn't seem to be aligned.
def normalize(v):
return v / np.sqrt(v.dot(v))
n = len(A)
A[:, 0] = normalize(A[:, 0])
for i in range(1, n):
Ai = A[:, i]
for j in range(0, i):
Aj = A[:, j]
t = Ai.dot(Aj)
Ai = Ai - t * Aj
A[:, i] = normalize(Ai)
From above code, we see it does dot product for V1 and b, however the (V1,V1) part is not done as the denominator (refer to below equation). I wonder how below equation is translated into code residing in the for loop?
This is what the code does exactly
Basically it normalize the previous vector (column in A) and project the current one to it and to be subtracted by the current one.
Normalization happens with every vector for neat calculation.
The V2 equation above doesn't normalize the previous vector hence the difference.
Try this vectorized implementation.
Also I would suggest to go through David C lay book for theory.
def replace_zero(array):
for i in range(len(array)) :
if array[i] == 0 :
array[i] = 1
return array
def gram_schmidt(self,A, norm=True, row_vect=False):
"""Orthonormalizes vectors by gram-schmidt process
Parameters
-----------
A : ndarray,
Matrix having vectors in its columns
norm : bool,
Do you need Normalized vectors?
row_vect: bool,
Does Matrix A has vectors in its rows?
Returns
-------
G : ndarray,
Matrix of orthogonal vectors
Gram-Schmidt Process
--------------------
The Gram–Schmidt process is a simple algorithm for
producing an orthogonal or orthonormal basis for any
nonzero subspace of Rn.
Given a basis {x1,....,xp} for a nonzero subspace W of Rn,
define
v1 = x1
v2 = x2 - (x2.v1/v1.v1) * v1
v3 = x3 - (x3.v1/v1.v1) * v1 - (x3.v2/v2.v2) * v2
.
.
.
vp = xp - (xp.v1/v1.v1) * v1 - (xp.v2/v2.v2) * v2 - .......
.... - (xp.v(p-1) / v(p-1).v(p-1) ) * v(p-1)
Then {v1,.....,vp} is an orthogonal basis for W .
In addition,
Span {v1,.....,vp} = Span {x1,.....,xp} for 1 <= k <= p
References
----------
Linear Algebra and Its Applications - By David.C.Lay
"""
if row_vect :
# if true, transpose it to make column vector matrix
A = A.T
no_of_vectors = A.shape[1]
G = A[:,0:1].copy() # copy the first vector in matrix
# 0:1 is done to to be consistent with dimensions - [[1,2,3]]
# iterate from 2nd vector to number of vectors
for i in range(1,no_of_vectors):
# calculates weights(coefficents) for every vector in G
numerator = A[:,i].dot(G)
denominator = np.diag(np.dot(G.T,G)) #to get elements in diagonal
weights = np.squeeze(numerator/denominator)
# projected vector onto subspace G
projected_vector = np.sum(weights * G,
axis=1,
keepdims=True)
# orthogonal vector to subspace G
orthogonalized_vector = A[:,i:i+1] - projected_vector
# now add the orthogonal vector to our set
G = np.hstack((G,orthogonalized_vector))
if norm :
# to get orthoNormal vectors (unit orthogonal vectors)
# replace zero to 1 to deal with division by 0 if matrix has 0 vector
# or normazalization value comes out to be zero
G = G/self.replace_zero(np.linalg.norm(G,axis=0))
if row_vect:
return G.T
return G
G = np.array([[1,0,0],[1,1,0],[1,1,1],[1,1,1]])
gram_schmidt(G)
>
array([[ 0.5 , -0.8660254 , 0. ],
[ 0.5 , 0.28867513, -0.81649658],
[ 0.5 , 0.28867513, 0.40824829],
[ 0.5 , 0.28867513, 0.40824829]])

Find the vector in 3D that simultaneously satisfy the following conditions

Find the vector(s) π’˜βƒ— in 3D that simultaneously satisfy the following conditions:
a) β€–π’˜βƒ— β€– = 𝟏𝟎
b) π’˜βƒ— is perpendicular to the vector γ€ˆπŸ‘, βˆ’πŸ, πŸŽγ€‰
c) π’˜βƒ— forms an angle of 𝝅/πŸ‘ with the vector γ€ˆπŸŽ, 𝟎, πŸγ€‰
Put w = (x,y,z).
Condition (b) says 3x-y = 0, i.e. y = 3x.
Condition (c) means z = 0β‹…x + 0β‹…y + 1β‹…z = cos(Ο€/3)β€–wβ€–β€–(0,0,1)β€– = 0.5β‹…10 = 5.
Condition (a) implies x^2 + (3x)^2 + 25 = 100, i.e., 10x^2 = 75 or x = Β±sqrt(7.5).
In sum w = (Β±sqrt(7.5), Β±3β‹…sqrt(7.5), 5).
Note that there are two solutions, one with + and another with -.

How to set a square root to only be whole

I cant seem to find any kind of answer to this, but if I have an equation like the square root of (X^2-4n) where 4n is a constant, how could I set x so the equation gives a whole number.
I know setting x to n+1 works, but I'm looking for an algorithm that would generate all solutions.
So, the problem is to find all pairs of integers (x, m) such that:
sqrt(x^2 - 4n) = m
We have:
x^2 - 4n = m^2
or
x^2 - mˆ2 = 4n
so
(x + m)(x - m) = 4n
Now, 2 divides 4n and so it must divide (x+m) or (x-m). But if it divides any of them it will divide the other too. Thus a := (x+m)/2 and b := (x-m)/2 are both integers. Therefore
a*b = n
So, it is just a matter of factoring n as a*b in all possible ways and recover x and m from the equations above:
x = a + b.
m = a - b.
Your solution x = n+1 corresponds to the trivial factorization n = n*1 where a=n and b=1.
UPDATE
Here is an algorithm that prints all pairs (x, m)
[Initialize] a := n.
[Check] if n % a = 0 then
b := n / a.
print(a + b), print(a - b)
[Decrement] a := a - 1.
[End?] if a * a > n go to Step 2.

Unclassified statement at (1) in a mathematical expression

My first Fortran lesson is to plot the probability density function of the radial Sturmian functions. In case you are interested, the radial Sturmian functions are used to graph the momentum space eigenfunctions for the hydrogen atom.
In order to produce these radial functions, one needs to first produce some polynomials called the Gegenbauer polynomials, denoted
Cba(x),
where a and b should be stacked atop each other. One needs these polynomials because the Sturmians (let's call them R_n,l) are defined like so,
R_n,l(p) = N pl⁄(p2 + k2)l+2 Cn - l - 1l + 1(p2 - k2⁄p2 + k2),
where N is a normalisation constant, p is the momentum, n is the principle quantum number, l is the angular momentum and k is a constant. The normalisation constant is there so that when I come to square this function, it will produce a probability distribution for the momentum of the electron in a hydrogen atom.
Gegenbauer polynomials are generated using the following recurrence relation:
Cnl(x) = 1⁄n[2(l + n - 1) x Cn - 1l(x) - (2l + n - 2)Cn - 2l(x)],
with C0l(x) = 1 and C1l(x) = 2lx, as you may have noticed, l is fixed but n is not. At the start of my program, I will specify both l and n and work out the Gegenbauer polynomial I need for the radial function I wish to plot.
The problems I am having with my code at the moment are all in my subroutine for working out the value of the Gegenbauer polynomial Cn-l-1l+1(p2 - k2⁄p2 + k2) for incremental values of p between 0 and 3. I keep getting the error
Unclassified statement at (1)
but I cannot see what the issue is.
program Radial_Plot
implicit none
real, parameter :: pi = 4*atan(1.0)
integer, parameter :: top = 1000, l = 50, n = 100
real, dimension(1:top) :: x, y
real increment
real :: a=0.0, b = 2.5, k = 0.3
integer :: i
real, dimension(1:top) :: C
increment = (b-a)/(real(top)-1)
x(1) = 0.0
do i = 2, top
x(i) = x(i-1) + increment
end do
Call Gegenbauer(top, n, l, k, C)
y = x*C
! y is the function that I shall be plotting between values a and b.
end program Radial_Plot
Subroutine Gegenbauer(top1, n1, l1, k1, CSub)
! This subroutine is my attempt to calculate the Gegenbauer polynomials evaluated at a certain number of values between c and d.
implicit none
integer :: top1, i, j, n1, l1
real :: k1, increment1, c, d
real, dimension(1:top1) :: x1
real, dimension(1:n1 - l1, 1:top1) :: C1
real, dimension(1:n1 - l1) :: CSub
c = 0.0
d = 3.0
k1 = 0.3
n1 = 50
l1 = 25
top1 = 1000
increment1 = (d - c)/(real(top1) - 1)
x1(1) = 0.0
do i = 2, top1
x1(i) = x1(i-1) + increment1
end do
do j = 1, top1
C1(1,j) = 1
C1(2,j) = 2(l1 + 1)(x1(i)^2 - k1^2)/(x1(i)^2 + k1^2)
! All the errors occurring here are all due to, and I quote, 'Unclassifiable statement at (1)', I can't see what the heck I have done wrong.
do i = 3, n1 - l1
C1(i,j) = 2(((l1 + 1)/n1) + 1)(x1(i)^2 - k1^2)/(x1(i)^2 + k1^2)C1(i,j-1) - ((2(l1+1)/n1) + 1)C1(i,j-2)
end do
CSub(j) = Cn(n1 - l1,j)^2
end do
return
end Subroutine Gegenbauer
As francesalus correctly pointed out, the problem is because you use ^ instead of ** for exponentiation. Additionally, you do not put * between the terms you are multiplying.
C1(1,j) = 1
C1(2,j) = 2*(l1 + 1)*(x1(i)**2 - k1**2)/(x1(i)**2 + k1**2)
do i = 3, n1 - l1
C1(i,j) = 2 * (((l1 + 1)/n1) + 1) * (x1(i)**2 - k1**2) / &
(x1(i)**2 + k1**2)*C1(i,j-1) - ((2(l1+1)/n1) + 1) * &
C1(i,j-2)
end do
CSub(j) = Cn(n1 - l1,j)**2
Since you are beginning I have some advice. Learn to put all subroutines and functions to modules (unless they are internal). There is no reason for the return statement at the and of the subroutine, similarly as a stop statement isn't necessary at the and of the program.

Resources