I think I missed something in the use of the loess function and I can't understand what i did wrong. I have a data frame in which I store the output (count) of 3 different softwares for 26 different genes on the genomes of different patients. The 3 softwares were each used on the same genome but with different rate of downsampling.
I pooled the results of all the patients by genes. At the end I have a data frame with 4 columns: samplexxx (downsampling rate), software (name of the software I used), gene (the name of the gene) and count (count results given by the software).
My goal is to estimate the downsampling effect (samplexxx) on the count given by the software, and I want to do some regression to be able to compare them with each other.
rate <- c(5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90,
95, 100)
my attempts:
datalist <- list()
for (i in 1:22) {
name <- genes[i]
print(name)
mod <- paste("mod_", name)
xfit <- paste("xfit_", name)
df <- paste("df_", name)
mod <- loess(data2[data2$gene == name,]$count ~
data2[data2$gene == name,]$samplexxx)
xfit <- predict(mod, newdata=data2[data2$gene == name,]$samplexxx)
df <- setNames(data.frame(matrix(ncol=4, nrow=60)),
c("down", "software", "gene", "loess"))
df$down <- data2[data2$gene == name,]$samplexxx
df$software <- data2[data2$gene == name,]$software
df$gene <- data2[data2$gene == name,]$gene
df$loess <- xfit
print(xfit)
datalist[[i]] <- df
}
data_loess <- do.call(rbind, datalist)
ggplot(data_loess, aes(x=gene, y=loess, fill=software)) +
geom_boxplot()
and:
mod <- loess(data2$count ~ data$samplexxx)
xfit <- predict(mod, newdata=data2$samplexxx)
for (i in 1:20) {
down <- rate[i]
print(name)
title <- paste("loess_downsampling", down)
out <- paste("loess_downsampling", down, ".pdf", sep="")
pdf(out, width=10)
print(ggplot(data2, aes(x=down, y=loess, fill=software))) +
geom_boxplot() + ggtitle(title))
dev.off()
}
Sample data:
> dput(data2)
structure(list(samplexxx = c(5L, 10L, 15L, 20L, 25L, 30L, 35L,
40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L,
45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L,
45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L,
45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L,
45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L,
45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L), software = structure(c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L), .Label = c("EH", "GangSTR", "Tred"), class = "factor"),
gene = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L), .Label = c("AFF2", "AR", "ATN1", "ATXN1",
"ATXN10", "ATXN2", "ATXN3", "ATXN7", "C9ORF72", "CACNA1A",
"CBL", "CNBP", "CSTB", "DIP2B", "DMPK", "FMR1", "FXN", "HTT",
"JPH3", "NOP56", "PPP2R2B", "TBP"), class = "factor"), count = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, 24L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 24L, NA, NA, NA, NA, NA, NA, NA,
NA, NA, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, NA, NA, NA, NA, NA, NA, NA, NA, NA, 17L, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 15L, 15L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, NA, NA, NA, NA, 20L, 34L, 31L, 33L, 34L, 34L, 34L, 34L,
34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, NA, NA, NA, NA, NA,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, NA, NA, NA, NA, NA, 22L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, NA, NA,
NA, NA, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, NA, NA, NA, NA, 6L, 8L, 8L,
8L, 8L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, NA, NA,
NA, NA, 11L, NA, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, NA, NA, NA, 12L, 5L, NA, 12L,
12L, 5L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, NA, NA, NA, NA, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 20L, 20L, 18L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, NA, NA, NA, NA, 27L, 24L,
21L, 14L, 27L, 14L, 21L, 27L, 27L, 14L, 27L, 27L, 27L, 27L,
27L, 27L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 68L, 73L,
78L, 54L, 79L, 76L, 87L, 72L, 62L, 63L, NA, NA, NA, NA, NA,
27L, 27L, 27L, 28L, 27L, 27L, 64L, 27L, 64L, 64L, 27L, 27L,
27L, 27L, 27L, NA, NA, NA, NA, NA, 18L, 20L, 18L, 20L, 20L,
18L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, NA, NA,
NA, NA, NA, 15L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 9L, 7L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, NA, NA, NA, NA, NA, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, NA, NA, NA, NA, NA, 35L, 29L, 35L, 35L, 30L, 35L,
32L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 11L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 20L, 11L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 33L, 33L, 32L, 33L, 33L, 33L, 33L, 33L, 33L, 33L,
33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, NA, 21L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 19L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 19L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 8L, 8L,
7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 11L, NA, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 7L, 15L, 15L, 13L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, 27L, 19L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L,
27L, 27L, NA, 76L, 23L, 23L, 23L, 32L, 65L, 32L, 28L, 32L,
28L, 32L, 32L, 23L, 28L, 32L, 28L, 28L, 32L, 84L, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 14L, 18L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 15L,
NA, NA, 15L, NA, 15L, NA, NA, 15L, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 9L, NA, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, NA, 28L, 36L, 36L, NA, 36L, 36L, 36L,
36L, NA, 36L, NA, 36L, 36L, 36L, 36L, 36L, NA, 36L, 36L,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
1L, 8L, 18L, 16L, 15L, 14L, 15L, 16L, 15L, 16L, 14L, 15L,
14L, 14L, 14L, 14L, 16L, 16L, 16L, 16L, 31L, 28L, 31L, 31L,
32L, 32L, 32L, 33L, 31L, 33L, 32L, 31L, 32L, 32L, 32L, 32L,
32L, 32L, 32L, 32L, 7L, 18L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
19L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 5L, 6L, 6L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 12L, 11L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 5L, 7L, 7L, 7L, 7L, 11L, 11L, 7L,
11L, 15L, 15L, 11L, 7L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
1L, 2L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 20L, 17L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 1L, 2L, 1L, 1L,
1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 1L, 15L, 6L, 22L, 13L, 14L, 13L, 14L, 13L, 14L, 14L,
27L, 27L, 14L, 14L, 27L, 14L, 27L, 14L, 27L, NA, 15L, 20L,
20L, 20L, 20L, 40L, 20L, 40L, 20L, 40L, 40L, 40L, 40L, 20L,
40L, 40L, 40L, 40L, 32L, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 15L, 14L,
17L, 17L, 17L, 19L, 17L, 13L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 5L, 3L, 1L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 5L, 3L,
1L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 12L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, NA,
2L, 3L, 2L, 29L, 33L, 33L, 35L, 33L, 35L, 35L, 33L, 35L,
35L, 33L, 35L, 35L, 35L, 35L, 35L)), class = "data.frame", row.names = c(NA,
-1320L))
I believe the loess should be done on a split on the "software".
software <- unique(data2$software)
data_loess <- do.call(rbind, lapply(software, \(x) {
X <- subset(data2, software == x)
lo <- loess(count ~ samplexxx, X)
count_pred <- predict(lo, newdata=X)
return(cbind(X, count_pred))
}))
Note: R version 4.1.2 (2021-11-01)
Gives:
head(data_loess[data_loess$samplexxx > 80, ], 10)
# samplexxx software gene count count_pred
# 17 85 EH AFF2 24 22.69004
# 18 90 EH AFF2 24 22.31879
# 19 95 EH AFF2 24 21.83428
# 20 100 EH AFF2 24 21.25618
# 37 85 EH AR 21 22.69004
# 38 90 EH AR 21 22.31879
# 39 95 EH AR 21 21.83428
# 40 100 EH AR 21 21.25618
# 57 85 EH ATN1 NA 22.69004
# 58 90 EH ATN1 NA 22.31879
And here a plot of "count" predictions on "samplexxx".
plot(count_pred ~ samplexxx, data_loess, col=as.numeric(software) + 1,
pch=20, xlab='Downsampling', ylab='Count (LOESS)')
legend('topleft', legend=software, pch=19, col=as.numeric(software) + 1,
horiz=TRUE, cex=.7, title='Software')
Looks interesting, but I'm not sure if it's absolutely right.
In my answer you see something different from for loops, which is probably new to you, however it's the r-ish way and its much shorter to code. The looping job here does lapply().
Anyway, hope this helps.
Background:
I'm attempting to add a 3D plot to a Shiny application. I've added a button to rotate the plot ~ 90 degrees. I'd also like to include radio buttons to plot points on the surface.
Problem:
When points are plotted they simply appear on top of the image, even when they should be behind the surface.
Question:
Is there a way to plot the surface so that it's transparent and points appear either behind or in front? Or hide the points if they land out of eyesight?
Data:
d <- list(x = c(0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6,
6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10), y = c(0, 0.5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10),
z = structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0.000147818839413345, 0.00112553487724733,
0.00210325091508131, 0.00308096695291529, 0.00405868299074927,
0.00503639902858325, 0.00601411506641723, 0.00699183110425121,
0.00796954714208519, 0.00894726317991917, 0.00992497921775315,
0.0109026952555871, 0.0118804112934211, 0.0128581273312551,
0.0138358433690891, 0.0148135594069231, 0.015791275444757,
0.016768991482591, 0.017746707520425, 0.018724423558259,
0.019702139596093, 0.00332663525507192, 0.0253299512993333,
0.0473332673435947, 0.0693365833878561, 0.0913398994321175,
0.113343215476379, 0.13534653152064, 0.157349847564902, 0.179353163609163,
0.201356479653424, 0.223359795697686, 0.245363111741947,
0.267366427786209, 0.28936974383047, 0.311373059874731, 0.333376375918993,
0.355379691963254, 0.377383008007516, 0.399386324051777,
0.421389640096038, 0.4433929561403, 0.0185048854236584, 0.140901484725856,
0.263298084028054, 0.385694683330252, 0.50809128263245, 0.630487881934648,
0.752884481236846, 0.875281080539044, 0.997677679841242,
1.12007427914344, 1.24247087844564, 1.36486747774784, 1.48726407705003,
1.60966067635223, 1.73205727565443, 1.85445387495663, 1.97685047425883,
2.09924707356102, 2.22164367286322, 2.34404027216542, 2.46643687146762,
0.0575583422570596, 0.438265663185897, 0.818972984114734,
1.19968030504357, 1.58038762597241, 1.96109494690124, 2.34180226783008,
2.72250958875892, 3.10321690968776, 3.48392423061659, 3.86463155154543,
4.24533887247427, 4.6260461934031, 5.00675351433194, 5.38746083526078,
5.76816815618962, 6.14887547711845, 6.52958279804729, 6.91029011897613,
7.29099743990496, 7.6717047608338, 0.129117933403967, 0.98314083577592,
1.83716373814787, 2.69118664051983, 3.54520954289178, 4.39923244526373,
5.25325534763568, 6.10727825000764, 6.96130115237959, 7.81532405475154,
8.6693469571235, 9.52336985949545, 10.3773927618674, 11.2314156642394,
12.0854385666113, 12.9394614689833, 13.7934843713552, 14.6475072737272,
15.5015301760991, 16.3555530784711, 17.209575980843, 0.23363441995763,
1.77895922624881, 3.32428403254, 4.86960883883118, 6.41493364512237,
7.96025845141355, 9.50558325770473, 11.0509080639959, 12.5962328702871,
14.1415576765783, 15.6868824828695, 17.2322072891607, 18.7775320954518,
20.322856901743, 21.8681817080342, 23.4135065143254, 24.9588313206166,
26.5041561269078, 28.0494809331989, 29.5948057394901, 31.1401305457813,
0.36143039040365, 2.75203425835922, 5.14263812631479, 7.53324199427035,
9.92384586222592, 12.3144497301815, 14.7050535981371, 17.0956574660926,
19.4862613340482, 21.8768652020038, 24.2674690699593, 26.6580729379149,
29.0486768058705, 31.439280673826, 33.8298845417816, 36.2204884097372,
38.6110922776927, 41.0016961456483, 43.3923000136039, 45.7829038815594,
48.173507749515, 0.494048345421132, 3.76182525870662, 7.02960217199211,
10.2973790852776, 13.5651559985631, 16.8329329118486, 20.1007098251341,
23.3684867384196, 26.636263651705, 29.9040405649905, 33.171817478276,
36.4395943915615, 39.707371304847, 42.9751482181325, 46.242925131418,
49.5107020447035, 52.778478957989, 56.0462558712744, 59.3140327845599,
62.5818096978454, 65.8495866111309, 0.608277972936286, 4.63160227964344,
8.65492658635059, 12.6782508930577, 16.7015751997649, 20.724899506472,
24.7482238131792, 28.7715481198863, 32.7948724265935, 36.8181967333006,
40.8415210400078, 44.8648453467149, 48.8881696534221, 52.9114939601292,
56.9348182668364, 60.9581425735435, 64.9814668802507, 69.0047911869578,
73.028115493665, 77.0514398003722, 81.0747641070793, 0.68169864474794,
5.19064825215217, 9.6995978595564, 14.2085474669606, 18.7174970743649,
23.2264466817691, 27.7353962891733, 32.2443458965776, 36.7532955039818,
41.262245111386, 45.7711947187903, 50.2801443261945, 54.7890939335987,
59.298043541003, 63.8069931484072, 68.3159427558114, 72.8248923632157,
77.3338419706199, 81.8427915780241, 86.3517411854284, 90.8606907928326,
0.698331143785818, 5.31729285196915, 9.93625456015249, 14.5552162683358,
19.1741779765192, 23.7931396847025, 28.4121013928858, 33.0310631010692,
37.6500248092525, 42.2689865174358, 46.8879482256192, 51.5069099338025,
56.1258716419859, 60.7448333501692, 65.3637950583525, 69.9827567665359,
74.6017184747192, 79.2206801829025, 83.8396418910859, 88.4586035992692,
93.0775653074525, 0.653010606586468, 4.9722093330084, 9.29140805943032,
13.6106067858523, 17.9298055122742, 22.2490042386961, 26.568202965118,
30.88740169154, 35.2066004179619, 39.5257991443838, 43.8449978708057,
48.1641965972277, 52.4833953236496, 56.8025940500715, 61.1217927764935,
65.4409915029154, 69.7601902293373, 74.0793889557592, 78.3985876821812,
82.7177864086031, 87.036985135025, 0.553337675961259, 4.21327116124787,
7.87320464653448, 11.5331381318211, 15.1930716171077, 18.8530051023943,
22.5129385876809, 26.1728720729675, 29.8328055582542, 33.4927390435408,
37.1526725288274, 40.812606014114, 44.4725394994006, 48.1324729846872,
51.7924064699738, 55.4523399552604, 59.112273440547, 62.7722069258337,
66.4321404111203, 70.0920738964069, 73.7520073816935, 0.418509049668882,
3.18664747819306, 5.95478590671724, 8.72292433524142, 11.4910627637656,
14.2592011922898, 17.027339620814, 19.7954780493381, 22.5636164778623,
25.3317549063865, 28.0998933349107, 30.8680317634349, 33.636170191959,
36.4043086204832, 39.1724470490074, 41.9405854775316, 44.7087239060558,
47.4768623345799, 50.2450007631041, 53.0131391916283, 55.7812776201525,
0.274945103406177, 2.09351057307846, 3.91207604275075, 5.73064151242304,
7.54920698209532, 9.36777245176761, 11.1863379214399, 13.0049033911122,
14.8234688607845, 16.6420343304568, 18.460599800129, 20.2791652698013,
22.0977307394736, 23.9162962091459, 25.7348616788182, 27.5534271484905,
29.3719926181628, 31.1905580878351, 33.0091235575073, 34.8276890271796,
36.6462544968519, 0.14939138421548, 1.1375086826693, 2.12562598112311,
3.11374327957693, 4.10186057803075, 5.08997787648456, 6.07809517493838,
7.06621247339219, 8.05432977184601, 9.04244707029983, 10.0305643687536,
11.0186816672075, 12.0067989656613, 12.9949162641151, 13.9830335625689,
14.9711508610227, 15.9592681594765, 16.9473854579304, 17.9355027563842,
18.923620054838, 19.9117373532918, 0.0610345623904979, 0.464734596487648,
0.868434630584799, 1.27213466468195, 1.6758346987791, 2.07953473287625,
2.4832347669734, 2.88693480107055, 3.2906348351677, 3.69433486926485,
4.098034903362, 4.50173493745915, 4.9054349715563, 5.30913500565345,
5.7128350397506, 6.11653507384775, 6.52023510794491, 6.92393514204206,
7.32763517613921, 7.73133521023636, 8.13503524433351, 0.0150842607904164,
0.114855871447028, 0.214627482103639, 0.31439909276025, 0.414170703416861,
0.513942314073472, 0.613713924730083, 0.713485535386694,
0.813257146043305, 0.913028756699917, 1.01280036735653, 1.11257197801314,
1.21234358866975, 1.31211519932636, 1.41188680998297, 1.51165842063958,
1.61143003129619, 1.71120164195281, 1.81097325260942, 1.91074486326603,
2.01051647392264, 0.00112075907879118, 0.00853377984279572,
0.0159468006068003, 0.0233598213708048, 0.0307728421348093,
0.0381858628988139, 0.0455988836628184, 0.0530119044268229,
0.0604249251908275, 0.067837945954832, 0.0752509667188366,
0.0826639874828411, 0.0900770082468456, 0.0974900290108502,
0.104903049774855, 0.112316070538859, 0.119729091302864,
0.127142112066868, 0.134555132830873, 0.141968153594877,
0.149381174358882, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(21L, 21L)), facetcol = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L,
5L, 5L, 6L, 6L, 1L, 2L, 2L, 3L, 4L, 4L, 5L, 6L, 6L, 7L, 8L,
9L, 9L, 10L, 11L, 11L, 12L, 13L, 13L, 14L, 1L, 3L, 4L, 5L,
7L, 8L, 9L, 11L, 12L, 13L, 15L, 16L, 17L, 19L, 20L, 21L,
23L, 24L, 25L, 27L, 2L, 4L, 6L, 9L, 11L, 13L, 15L, 17L, 19L,
22L, 24L, 26L, 28L, 30L, 33L, 35L, 37L, 39L, 41L, 44L, 3L,
6L, 9L, 12L, 15L, 18L, 21L, 25L, 28L, 31L, 34L, 37L, 40L,
44L, 47L, 50L, 53L, 56L, 59L, 62L, 3L, 7L, 11L, 15L, 19L,
23L, 28L, 32L, 36L, 40L, 44L, 48L, 52L, 56L, 60L, 64L, 68L,
72L, 76L, 80L, 4L, 8L, 13L, 18L, 23L, 27L, 32L, 37L, 42L,
46L, 51L, 56L, 61L, 65L, 70L, 75L, 80L, 84L, 89L, 94L, 4L,
9L, 14L, 19L, 24L, 29L, 34L, 39L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 4L, 9L, 14L, 19L, 24L,
29L, 34L, 39L, 44L, 49L, 54L, 59L, 64L, 69L, 74L, 78L, 83L,
88L, 93L, 98L, 3L, 8L, 12L, 17L, 21L, 26L, 30L, 35L, 39L,
43L, 48L, 52L, 57L, 61L, 66L, 70L, 75L, 79L, 83L, 88L, 3L,
6L, 10L, 14L, 17L, 21L, 24L, 28L, 32L, 35L, 39L, 42L, 46L,
49L, 53L, 57L, 60L, 64L, 67L, 71L, 2L, 5L, 7L, 10L, 12L,
15L, 18L, 20L, 23L, 25L, 28L, 30L, 33L, 35L, 38L, 41L, 43L,
46L, 48L, 51L, 2L, 3L, 5L, 6L, 8L, 9L, 11L, 12L, 14L, 16L,
17L, 19L, 20L, 22L, 23L, 25L, 27L, 28L, 30L, 31L, 1L, 2L,
3L, 3L, 4L, 5L, 6L, 6L, 7L, 8L, 9L, 10L, 10L, 11L, 12L, 13L,
13L, 14L, 15L, 16L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L), .Label = c("(-0.357,3.59]", "(3.59,7.18]",
"(7.18,10.8]", "(10.8,14.4]", "(14.4,17.9]", "(17.9,21.5]",
"(21.5,25.1]", "(25.1,28.7]", "(28.7,32.3]", "(32.3,35.9]",
"(35.9,39.5]", "(39.5,43.1]", "(43.1,46.6]", "(46.6,50.2]",
"(50.2,53.8]", "(53.8,57.4]", "(57.4,61]", "(61,64.6]", "(64.6,68.2]",
"(68.2,71.8]", "(71.8,75.3]", "(75.3,78.9]", "(78.9,82.5]",
"(82.5,86.1]", "(86.1,89.7]", "(89.7,93.3]", "(93.3,96.9]",
"(96.9,100]", "(100,104]", "(104,108]", "(108,111]", "(111,115]",
"(115,118]", "(118,122]", "(122,126]", "(126,129]", "(129,133]",
"(133,136]", "(136,140]", "(140,144]", "(144,147]", "(147,151]",
"(151,154]", "(154,158]", "(158,161]", "(161,165]", "(165,169]",
"(169,172]", "(172,176]", "(176,179]", "(179,183]", "(183,187]",
"(187,190]", "(190,194]", "(194,197]", "(197,201]", "(201,204]",
"(204,208]", "(208,212]", "(212,215]", "(215,219]", "(219,222]",
"(222,226]", "(226,230]", "(230,233]", "(233,237]", "(237,240]",
"(240,244]", "(244,248]", "(248,251]", "(251,255]", "(255,258]",
"(258,262]", "(262,265]", "(265,269]", "(269,273]", "(273,276]",
"(276,280]", "(280,283]", "(283,287]", "(287,291]", "(291,294]",
"(294,298]", "(298,301]", "(301,305]", "(305,309]", "(309,312]",
"(312,316]", "(316,319]", "(319,323]", "(323,326]", "(326,330]",
"(330,334]", "(334,337]", "(337,341]", "(341,344]", "(344,348]",
"(348,352]", "(352,355]", "(355,359]"), class = "factor"))
Code
flip <- 1 # 1 or 2
theta = c(-300,120)[flip]
pmat <- persp(d$x, d$y, d$z, asp = 1,col = color[d$facetcol], phi = 30, theta = theta, border = "grey10"
,d = .8,r = 2.8,expand = .6,shade = .2,axes = F,box = T,cex = .1)
xx <- c(7.76245335753423, 6.73123147037805)
yy <- c(4.88402435072353, 4.20867046100364)
zz <- c(68.727, 48.558)
mypoints <- trans3d(xx,yy,zz,pmat = pmat)
points(mypoints,pch = 16,col = 2)
The image below is correct, but when the plot is rotated (set flip to 2) the points do not jive. In other words, when the plot is rotated the points should be hidden from view, or seen through a semi-transparent surface. Help is appreciated!
In case this is helpful to anyone. I ended up using the persp3D() function from the plot3D package. All my custom axes labels and tick marks transferred seamlessly from the base persp() with the added bonus of a transparency argument (alpha =) and proper point plotting (points3D).
I'm trying to use nls to estimate the parameters of a non linear model.
I first use nls2 to find good initial parameters with Random Search and I then use nls to improve the estimation with a Gauss-Newton approach.
The problem is I always get an "singular gradient matrix at initial parameter estimates" error.
I'm not sure I understand, because the input matrix doesn't seem to be a singular gradient matrix.
Moreover even if the fits I'm looking for is not perfect for this data, nls should find a way to improve the
parameters estimations. Isn't it ?
Question: Is there a way to improve the parameters estimation?
I've tried NLS.lm but I had the same problem.
Here is a reproductible example:
Data:
structure(list(x1 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L), x2 = c(1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L,
32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L,
45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L,
58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 0L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L,
30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L,
43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L,
56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 0L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L,
29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L,
42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L,
55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 0L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L,
29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L,
42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L,
55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 0L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L,
30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L,
43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L,
56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 0L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L,
32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L,
45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L,
58L, 59L, 60L, 61L, 62L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L,
22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L,
35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L,
48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L,
61L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L,
27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L,
40L, 41L, 42L, 43L, 44L, 45L), y = c(0.0689464583349188, 0.0358227182166929,
0.0187034836294036, 0.0227081421239796, 0.0146603483536504, 0.00562771204350896,
0.00411351161052011, 0.00356917888321555, 0.0028017552960605,
0.0024750328652541, 0.00243175013170564, 0.00242654283706898,
0.00235224917236107, 0.00176144220485858, 0.00138071934398105,
0.000696375069179013, 0.00106282865382483, 0.00114735219137874,
0.00277256441625284, 0.00214359572321392, 0.00144935953386591,
0.00249732559162499, 0.00225859018399108, 0.00201642941663214,
0.00232438586834105, 0.0016083751355862, 0.00143118376291818,
0.00158323933266031, 0.00157585431454131, 0.00169206800399143,
0.00158514119474578, 0.00134506293557103, 0.00119442163345335,
0.00101284069499962, 0.0012621113004254, 0.00128964367655383,
0.00102819258807122, 0.00125345601171754, 0.00116155619985178,
0.00142466624262548, 0.00141075318725309, 0.00106556656123991,
0.0010976347045814, 0.0012442089226047, 0.0010627617251863, 0.00125322168410487,
0.00112108560656369, 0.0012459199320756, 0.00135773322693401,
0.0013997982284804, 0.00155012485145915, 0.00151108062240688,
0.00149570655260348, 0.00152598641103596, 0.00108261570337346,
0.000992225418429453, 0.000769588971038765, 0.000700496873143604,
0.000688378351958078, 0.000595007407260441, 0.000557615594951187,
0.00040476923690092, 0.000492276455560289, 0.000447248723966691,
0.000388694992851599, 0.000346087542525691, 0.000189803623801549,
0.0709302325562937, 0.0424623423412875, 0.019085896698975, 0.0190650552541205,
0.014276898897581, 0.00593407290200902, 0.00445528598343583,
0.00371231334350143, 0.00253909496678967, 0.00263487912423124,
0.00248012072619926, 0.00263786771266913, 0.00219351150766708,
0.00179271674850348, 0.00139646119589996, 0.000911560061336614,
0.000989537441246412, 0.001046390000492, 0.00223993432619926,
0.00164189356162362, 0.00106041866437064, 0.00194151698794588,
0.0014213192200082, 0.00165239495268553, 0.00196583929282493,
0.00120501090643706, 0.001141403899631, 0.00122398595424354,
0.00124538223829438, 0.00123370121853218, 0.00136883147552275,
0.00110907318146781, 0.000965843164247642, 0.000859986264862649,
0.00104695561918819, 0.00103985460139401, 0.000455832014104141,
0.000704296760639607, 0.000870145383845838, 0.000919870911357114,
0.00101396309667897, 0.000781894087412874, 0.000909712365723658,
0.000889897365477655, 0.000933063039278393, 0.000779395399425994,
0.000789546295038951, 0.000773432990897909, 0.00125614787798278,
0.00123172652693727, 0.00078936677195572, 0.000952107503075031,
0.00105449131480115, 0.00123128091742517, 0.000889501370397704,
0.00085648642099221, 0.000830097733497335, 0.000653482256334563,
0.000521696831160312, 0.000612702433456335, 0.000513576588109881,
0.000475289330709307, 0.00041141913800738, 0.000328157997211972,
0.00031336264403444, 0.000328784093808938, 0.000237448446412464,
0.0520691145678866, 0.0281929482152033, 0.0219024230330532, 0.0141074098760277,
0.00691341703402584, 0.00445785262213699, 0.0034569415664917,
0.00234406584844369, 0.00257369504707459, 0.00234047371531346,
0.00227286083862502, 0.00248544382019894, 0.00180810413760828,
0.00138986347039715, 0.000911936124008956, 0.000932783218782117,
0.00108887529088974, 0.0017855660833578, 0.00159768589505946,
0.00124091041330201, 0.00203036436876009, 0.00154489107876964,
0.00111687975012847, 0.00163256939968433, 0.00143626193198502,
0.000996683818914256, 0.0010781399542101, 0.00122575793431581,
0.00115671467616723, 0.001069532453476, 0.0010106869893371, 0.000978618104445015,
0.000894478048836441, 0.000842874700392747, 0.000819009288742475,
0.000843003919670386, 0.000964158733115548, 0.000877802228013507,
0.00087592051873807, 0.000935810596369843, 0.000879047729316546,
0.000829181439950081, 0.0010295792954412, 0.000765620227389517,
0.00102511256239906, 0.000823109180461753, 0.00111669534392894,
0.000802757620485245, 0.00103231207284173, 0.000884354083467919,
0.00109278942886507, 0.000969283099489796, 0.000827480664091176,
0.000798564447676552, 0.000909248326695786, 0.000682209033640434,
0.000780593294853913, 0.000485172195712818, 0.000467514093470122,
0.000295219649739392, 0.000460636351123183, 0.00045060371687344,
0.000492590160218764, 0.000402536549331963, 0.000271941766535751,
0.000171012123770371, 0.0267385565244063, 0.0275426278720772,
0.0154589149018475, 0.00729065000152096, 0.00513675524527996,
0.00378848397112206, 0.00305965140790087, 0.00240428827949139,
0.00233604733730811, 0.00199601458903693, 0.00198302547453915,
0.00137121122011316, 0.00126241982975401, 0.0012413298189045,
0.00103044327584109, 0.00106759120581615, 0.00190957422380402,
0.00124400301656831, 0.000989035353673623, 0.00160702520431547,
0.0011515826661394, 0.00153203681379408, 0.00134897491229138,
0.000916492937174261, 0.00072393419977287, 0.00115124473393361,
0.00104241370079698, 0.000953324905193568, 0.00121656899373365,
0.000891420608484922, 0.000671666092758208, 0.000659860761797571,
0.000586145968952161, 0.00072735268499929, 0.000658407622538582,
0.000498831767252743, 0.000658345030520574, 0.000542106922897528,
0.000874560054044737, 0.000543320226217274, 0.000751139509440084,
0.000668632963233356, 0.000656903021131188, 0.000574965903652329,
0.0006661524076778, 0.000605171890653201, 0.000527045917239561,
0.000985791370586684, 0.000899420142057553, 0.000933015548254953,
0.00082137283567561, 0.000870124781995904, 0.000498046123582973,
0.000540181050881142, 0.000596948101336416, 0.000405622486362069,
0.000631594016548032, 0.000468749313033603, 0.000389576698910993,
0.000335624642574679, 0.000286763668856847, 0.000439039581432135,
0.000244767908276044, 0.000303911794528604, 0.000160988671898765,
0.0365772382134747, 0.0255898183301035, 0.010327803963121, 0.00714710822108354,
0.00506253612461807, 0.00447056668291465, 0.00322822676102386,
0.00328154620569948, 0.0028470908747756, 0.00253477302081723,
0.00187837758253778, 0.00116416512964702, 0.00119557763663167,
0.000993575112051645, 0.00136274483135782, 0.00204131052512691,
0.00157953945941769, 0.00116523253183218, 0.00190793844827791,
0.00144595416523011, 0.00157423646879793, 0.00126996001866537,
0.00115283860342634, 0.00116894693507543, 0.000930041619012519,
0.00106545753272384, 0.00123507493015348, 0.00130865599847824,
0.000940647984853709, 0.000836521897923032, 0.000778436697656724,
0.00100773629284415, 0.000956581999215341, 0.000808036977042788,
0.000597930101173421, 0.000776453419209873, 0.000630241947142534,
0.000649832426616575, 0.000782188275296327, 0.00102823806308181,
0.000830656989407107, 0.00051915559901561, 0.000537114715917872,
0.000872430107712244, 0.000549284113632851, 0.000738257038745497,
0.00097442578198376, 0.000879724260815807, 0.000884543540237537,
0.00100038027474944, 0.00103543285342337, 0.000875585441608313,
0.000829083410412184, 0.000760316116414823, 0.000712211369823927,
0.000386744815307978, 0.000428331410721292, 0.000397681982571065,
0.000213938551710199, 0.000370800615243779, 0.000281234314553042,
0.000267359921177464, 0.000358376119030352, 0.000337361541022196,
0.0310029062887812, 0.0154963087949333, 0.00959302943445506,
0.00645674376405936, 0.00525321947702945, 0.00386084394749159,
0.00374364242039947, 0.00351047952579374, 0.00298556939927835,
0.00199158625919048, 0.00206559575086432, 0.00169077836254661,
0.00139156751815451, 0.00170363478493893, 0.00250481301085496,
0.00182474837251083, 0.00116804333227652, 0.00155778636185214,
0.00183778204100427, 0.00135012918459471, 0.00166904872503284,
0.00120137403943415, 0.00108307957787943, 0.00146041465872549,
0.0014437889563235, 0.000975926161359965, 0.00102580511345623,
0.00112145083941, 0.000921884915530595, 0.00082253191796126,
0.000634876416504371, 0.00108601324863747, 0.000830573067167897,
0.000965052460105379, 0.000922667052402736, 0.000863193817654785,
0.000982111173513293, 0.000763009170856168, 0.000921755812461313,
0.000771609983091022, 0.000669047474976222, 0.000773869648383834,
0.00072022523061129, 0.000742426347056781, 0.000718728249316847,
0.000761437280522971, 0.000833112611531319, 0.000794451658438637,
0.000907360341651947, 0.00112083735676435, 0.00102996529205731,
0.000651843453054939, 0.000640968179416338, 0.000549646466476441,
0.000778958256714525, 0.000627413038784969, 0.000523658918731223,
0.000418571973368359, 0.000643352520494588, 0.000351378727146459,
0.000504093577607682, 0.000333827596358531, 0.000339505558071773,
0.0181836504450303, 0.0135527124187004, 0.00780738765319868,
0.00643260738080874, 0.00476881905655232, 0.00406986745617877,
0.00400325917456592, 0.00277499160186111, 0.00198311377238581,
0.00241837807740304, 0.00141018451525995, 0.00166798657140732,
0.0013970042073337, 0.00237332662413329, 0.00146721126831566,
0.000990562316636778, 0.00186106889002752, 0.00186322276224556,
0.00140391140302307, 0.00139027556176293, 0.00125730361478641,
0.00127044200804939, 0.00126655503830484, 0.00133956330669488,
0.00128219844136096, 0.00109531452608613, 0.00112195611926977,
0.00101411381866565, 0.00104786051750783, 0.000798711632769435,
0.000852432172756047, 0.000852720107765923, 0.00110385307389073,
0.00081385514739304, 0.00102898862672826, 0.000710330768658628,
0.000803425598538879, 0.000723455383750816, 0.00075034248654992,
0.000864917906994041, 0.000799733114881449, 0.000608518601191706,
0.000855476747683942, 0.000988548021123443, 0.00104800683206201,
0.000997051779707941, 0.000796235203259423, 0.000910577791459715,
0.000869997383535945, 0.000557402535474327, 0.000757813148434336,
0.000480807445269952, 0.000553425518375578, 0.000633029237291637,
0.00050222863978579, 0.000390945889771328, 0.000430333228928208,
0.000425167676834459, 0.000239604519722651, 0.000357021364759551,
0.000292330910803864, 0.000288851701197491, 0.0198837196044917,
0.0142208140311702, 0.00733039271103269, 0.00609158853724431,
0.00487605866828399, 0.00382636157210858, 0.00411545257392807,
0.00235906433257981, 0.00228491326937568, 0.00109255715480326,
0.00158036861847788, 0.00122011020381908, 0.00223761733564904,
0.00173284341769128, 0.00117538923471357, 0.00219622963095698,
0.00214263916211795, 0.0013198229549172, 0.00172951959530242,
0.00128074705482347, 0.00124062569884766, 0.00144218669111025,
0.00148407512819099, 0.00100716026446858, 0.0010842890711437,
0.000800686408079248, 0.000890454658065465, 0.000887152794471706,
0.00105780722647994, 0.000874948318354744, 0.000569126715186268,
0.000924642167943982, 0.000857013884141074, 0.000823122890591976,
0.00073038777177409, 0.000522615873628494, 0.00070936497950782,
0.000823074755104667, 0.000720588701733105, 0.000722724038337836,
0.00063458965098969, 0.000620049346639466, 0.000842327487089008,
0.000617708212493797, 0.000783953750160813, 0.00112567150392384
)), .Names = c("x1", "x2", "y"), class = c("tbl_df", "data.frame"
), row.names = c(NA, -500L))
Initial parameters: initial_par
structure(list(A1 = 0.0529486559121727, alpha1 = 0.00888818269595504,
B1 = 0.250994319084551, beta1 = 0.471984946168959, A2 = 0.281956987357551,
alpha2 = 0.325086771510541, B2 = 0.0562204262765557, beta2 = 0.725645614322275), class = "data.frame", row.names = c(NA,
-1L), .Names = c("A1", "alpha1", "B1", "beta1", "A2", "alpha2",
"B2", "beta2"))
Formula:
formula = y ~
(A1*exp(-alpha1*x1) + B1*exp(-beta1*x1)) *
(A2*exp(-alpha2*x2) + B2*exp(-beta2*x2))
Nls and the error message
final = nls(formula,
data=df,
start = as.list(as.vector(initial_par)))
Error in nlsModel(formula, mf, start, wts) :
singular gradient matrix at initial parameter estimates
The problem is that there is not a one to one relationship between your model and parameters. To see this write A1 = exp(a1+d), A2 = exp(a2-d), B1 = exp(b1+d), B2 = exp(b2-d) in which case we have:
y ~ exp(-alpha1 * x1 + a1 + d) * exp(-alpha2 * x2 + a2 - d) +
exp(-alpha1 * x1 + a1 + d) * exp(-beta2 * x2 + b2 - d) +
exp(-beta1 * x1 + b1 + d) * exp(-alpha2 * x2 + a2 - d) +
exp(-beta1 * x1 + b1 + d) * exp(-beta2 * x2 + b2 - d)
But d cancels in each of the 4 terms and so cancels entirely from the RHS. That is, the RHS is the same for any value of d thus the model is overparameterized and so will give a singular gradient.
Fix one of A1, A2, B1, B2 and then you should be able to get a solution:
A1 <- 1
nls(formula, df, start = initial_par[-1])
giving:
Nonlinear regression model
model: y ~ (A1 * exp(-alpha1 * x1) + B1 * exp(-beta1 * x1)) * (A2 * exp(-alpha2 * x2) + B2 * exp(-beta2 * x2))
data: df
alpha1 B1 beta1 A2 alpha2 B2 beta2
0.11902 1.21030 0.79076 0.04604 0.51697 0.00183 0.02317
residual sum-of-squares: 0.000685
Number of iterations to convergence: 11
Achieved convergence tolerance: 6.686e-06