R loess regression - r
I think I missed something in the use of the loess function and I can't understand what i did wrong. I have a data frame in which I store the output (count) of 3 different softwares for 26 different genes on the genomes of different patients. The 3 softwares were each used on the same genome but with different rate of downsampling.
I pooled the results of all the patients by genes. At the end I have a data frame with 4 columns: samplexxx (downsampling rate), software (name of the software I used), gene (the name of the gene) and count (count results given by the software).
My goal is to estimate the downsampling effect (samplexxx) on the count given by the software, and I want to do some regression to be able to compare them with each other.
rate <- c(5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90,
95, 100)
my attempts:
datalist <- list()
for (i in 1:22) {
name <- genes[i]
print(name)
mod <- paste("mod_", name)
xfit <- paste("xfit_", name)
df <- paste("df_", name)
mod <- loess(data2[data2$gene == name,]$count ~
data2[data2$gene == name,]$samplexxx)
xfit <- predict(mod, newdata=data2[data2$gene == name,]$samplexxx)
df <- setNames(data.frame(matrix(ncol=4, nrow=60)),
c("down", "software", "gene", "loess"))
df$down <- data2[data2$gene == name,]$samplexxx
df$software <- data2[data2$gene == name,]$software
df$gene <- data2[data2$gene == name,]$gene
df$loess <- xfit
print(xfit)
datalist[[i]] <- df
}
data_loess <- do.call(rbind, datalist)
ggplot(data_loess, aes(x=gene, y=loess, fill=software)) +
geom_boxplot()
and:
mod <- loess(data2$count ~ data$samplexxx)
xfit <- predict(mod, newdata=data2$samplexxx)
for (i in 1:20) {
down <- rate[i]
print(name)
title <- paste("loess_downsampling", down)
out <- paste("loess_downsampling", down, ".pdf", sep="")
pdf(out, width=10)
print(ggplot(data2, aes(x=down, y=loess, fill=software))) +
geom_boxplot() + ggtitle(title))
dev.off()
}
Sample data:
> dput(data2)
structure(list(samplexxx = c(5L, 10L, 15L, 20L, 25L, 30L, 35L,
40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L,
45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L,
45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L,
45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L,
45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L,
45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L,
70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L,
35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L,
100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L,
65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L,
30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L,
95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L,
60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L,
25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L,
90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L,
55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L, 15L,
20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L,
85L, 90L, 95L, 100L, 5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L, 45L,
50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L, 5L, 10L,
15L, 20L, 25L, 30L, 35L, 40L, 45L, 50L, 55L, 60L, 65L, 70L, 75L,
80L, 85L, 90L, 95L, 100L), software = structure(c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L), .Label = c("EH", "GangSTR", "Tred"), class = "factor"),
gene = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L), .Label = c("AFF2", "AR", "ATN1", "ATXN1",
"ATXN10", "ATXN2", "ATXN3", "ATXN7", "C9ORF72", "CACNA1A",
"CBL", "CNBP", "CSTB", "DIP2B", "DMPK", "FMR1", "FXN", "HTT",
"JPH3", "NOP56", "PPP2R2B", "TBP"), class = "factor"), count = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, 24L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 24L, NA, NA, NA, NA, NA, NA, NA,
NA, NA, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, NA, NA, NA, NA, NA, NA, NA, NA, NA, 17L, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 15L, 15L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, NA, NA, NA, NA, 20L, 34L, 31L, 33L, 34L, 34L, 34L, 34L,
34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, NA, NA, NA, NA, NA,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, NA, NA, NA, NA, NA, 22L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, NA, NA,
NA, NA, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, NA, NA, NA, NA, 6L, 8L, 8L,
8L, 8L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, NA, NA,
NA, NA, 11L, NA, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, NA, NA, NA, 12L, 5L, NA, 12L,
12L, 5L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, NA, NA, NA, NA, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 20L, 20L, 18L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, NA, NA, NA, NA, 27L, 24L,
21L, 14L, 27L, 14L, 21L, 27L, 27L, 14L, 27L, 27L, 27L, 27L,
27L, 27L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 68L, 73L,
78L, 54L, 79L, 76L, 87L, 72L, 62L, 63L, NA, NA, NA, NA, NA,
27L, 27L, 27L, 28L, 27L, 27L, 64L, 27L, 64L, 64L, 27L, 27L,
27L, 27L, 27L, NA, NA, NA, NA, NA, 18L, 20L, 18L, 20L, 20L,
18L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, NA, NA,
NA, NA, NA, 15L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 9L, 7L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, NA, NA, NA, NA, NA, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, NA, NA, NA, NA, NA, 35L, 29L, 35L, 35L, 30L, 35L,
32L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 11L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 20L, 11L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 33L, 33L, 32L, 33L, 33L, 33L, 33L, 33L, 33L, 33L,
33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, NA, 21L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 19L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 19L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 8L, 8L,
7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 11L, NA, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 7L, 15L, 15L, 13L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, 27L, 19L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L,
27L, 27L, NA, 76L, 23L, 23L, 23L, 32L, 65L, 32L, 28L, 32L,
28L, 32L, 32L, 23L, 28L, 32L, 28L, 28L, 32L, 84L, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 14L, 18L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 15L,
NA, NA, 15L, NA, 15L, NA, NA, 15L, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 9L, NA, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, NA, 28L, 36L, 36L, NA, 36L, 36L, 36L,
36L, NA, 36L, NA, 36L, 36L, 36L, 36L, 36L, NA, 36L, 36L,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
1L, 8L, 18L, 16L, 15L, 14L, 15L, 16L, 15L, 16L, 14L, 15L,
14L, 14L, 14L, 14L, 16L, 16L, 16L, 16L, 31L, 28L, 31L, 31L,
32L, 32L, 32L, 33L, 31L, 33L, 32L, 31L, 32L, 32L, 32L, 32L,
32L, 32L, 32L, 32L, 7L, 18L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
19L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 5L, 6L, 6L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 12L, 11L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 5L, 7L, 7L, 7L, 7L, 11L, 11L, 7L,
11L, 15L, 15L, 11L, 7L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
1L, 2L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 20L, 17L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 1L, 2L, 1L, 1L,
1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 1L, 15L, 6L, 22L, 13L, 14L, 13L, 14L, 13L, 14L, 14L,
27L, 27L, 14L, 14L, 27L, 14L, 27L, 14L, 27L, NA, 15L, 20L,
20L, 20L, 20L, 40L, 20L, 40L, 20L, 40L, 40L, 40L, 40L, 20L,
40L, 40L, 40L, 40L, 32L, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 15L, 14L,
17L, 17L, 17L, 19L, 17L, 13L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 5L, 3L, 1L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 5L, 3L,
1L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 12L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, NA,
2L, 3L, 2L, 29L, 33L, 33L, 35L, 33L, 35L, 35L, 33L, 35L,
35L, 33L, 35L, 35L, 35L, 35L, 35L)), class = "data.frame", row.names = c(NA,
-1320L))
I believe the loess should be done on a split on the "software".
software <- unique(data2$software)
data_loess <- do.call(rbind, lapply(software, \(x) {
X <- subset(data2, software == x)
lo <- loess(count ~ samplexxx, X)
count_pred <- predict(lo, newdata=X)
return(cbind(X, count_pred))
}))
Note: R version 4.1.2 (2021-11-01)
Gives:
head(data_loess[data_loess$samplexxx > 80, ], 10)
# samplexxx software gene count count_pred
# 17 85 EH AFF2 24 22.69004
# 18 90 EH AFF2 24 22.31879
# 19 95 EH AFF2 24 21.83428
# 20 100 EH AFF2 24 21.25618
# 37 85 EH AR 21 22.69004
# 38 90 EH AR 21 22.31879
# 39 95 EH AR 21 21.83428
# 40 100 EH AR 21 21.25618
# 57 85 EH ATN1 NA 22.69004
# 58 90 EH ATN1 NA 22.31879
And here a plot of "count" predictions on "samplexxx".
plot(count_pred ~ samplexxx, data_loess, col=as.numeric(software) + 1,
pch=20, xlab='Downsampling', ylab='Count (LOESS)')
legend('topleft', legend=software, pch=19, col=as.numeric(software) + 1,
horiz=TRUE, cex=.7, title='Software')
Looks interesting, but I'm not sure if it's absolutely right.
In my answer you see something different from for loops, which is probably new to you, however it's the r-ish way and its much shorter to code. The looping job here does lapply().
Anyway, hope this helps.
Related
R plotly multiple plots only show last figure
I would like to make an interactive graphs based on user input. However I'm struggle to make more than one graphs using R plotly. Suppose I have following data and codes, dput(norwd5) structure(list(LENGTH_OF_STAY = c(57L, 28L, 15L, 28L, 14L, 49L, 15L, 22L, 17L, 81L, 34L, 24L, 31L, 38L, 33L, 22L, 21L, 49L, 188L, 21L, 21L, 36L, 24L, 23L, 48L, 54L, 42L, 62L, 13L, 139L, 29L, 49L, 15L, 7L, 43L, 28L, 31L, 22L, 23L, 26L, 33L, 30L, 127L, 22L, 22L, 15L, 28L, 26L, 15L, 31L, 22L, 89L, 28L, 60L, 54L, 37L, 20L, 135L, 155L, 51L, 15L, 8L, 38L, 16L, 16L, 22L, 30L, 14L, 16L, 18L, 14L, 272L, 25L, 22L, 18L, 21L, 188L, 264L, 34L, 34L, 136L, 23L, 142L, 25L, 32L, 58L, 163L, 16L, 35L, 23L, 50L, 71L, 10L, 19L, 22L, 24L, 45L, 29L, 15L, 82L), PRE_OPERATIVE_LOS = c(2L, 2L, 3L, 1L, 3L, 6L, 3L, 7L, 2L, 2L, 11L, 2L, 6L, 3L, 6L, 3L, 5L, 3L, 179L, 2L, 5L, 3L, 4L, 2L, 5L, 6L, 2L, 4L, 2L, 6L, 3L, 2L, 2L, 6L, 6L, 1L, 4L, 5L, 6L, 5L, 0L, 4L, 6L, 2L, 4L, 4L, 7L, 4L, 4L, 6L, 2L, 4L, 3L, 3L, 2L, 6L, 4L, 110L, 63L, 6L, 4L, 7L, 5L, 1L, 6L, 1L, 4L, 2L, 6L, 3L, 2L, 8L, 2L, 2L, 4L, 3L, 6L, 171L, 5L, 4L, 116L, 6L, 47L, 3L, 7L, 3L, 60L, 1L, 3L, 20L, 31L, 49L, 9L, 8L, 3L, 4L, 35L, 7L, 4L, 9L), POST_OPERATIVE_LOS = c(55L, 26L, 12L, 27L, 11L, 43L, 12L, 15L, 15L, 79L, 23L, 22L, 25L, 35L, 27L, 19L, 16L, 46L, 9L, 19L, 16L, 33L, 20L, 21L, 43L, 48L, 40L, 58L, 11L, 133L, 26L, 47L, 13L, 1L, 37L, 27L, 27L, 17L, 17L, 21L, 33L, 26L, 121L, 20L, 18L, 11L, 21L, 22L, 11L, 25L, 20L, 85L, 25L, 57L, 52L, 31L, 16L, 25L, 92L, 45L, 11L, 1L, 33L, 15L, 10L, 21L, 26L, 12L, 10L, 15L, 12L, 264L, 23L, 20L, 14L, 18L, 182L, 93L, 29L, 30L, 20L, 17L, 95L, 22L, 25L, 55L, 103L, 15L, 32L, 3L, 19L, 22L, 1L, 11L, 19L, 20L, 10L, 22L, 11L, 73L), digoxin_any = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L), .Label = c("0:No", "1.Yes"), class = "factor")), row.names = c(NA, -100L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x0000012f36b61ef0>) num <- c('PRE_OPERATIVE_LOS','POST_OPERATIVE_LOS') plist <- scan(text=num,what = "",quiet = T) groups <- 'digoxin_any' bygrp <- scan(text=groups,what="",quiet=T) norwd5[, (bygrp) := lapply(.SD, as.factor), .SDcols = bygrp] plotList = list() for(i in length(plist)){ gplot <- ggplot(norwd5,aes_string(x=plist[i],group=bygrp,color=bygrp))+geom_histogram(aes(y=..density..),position = "dodge")+geom_density(alpha=.5) +theme(legend.position = "left") plotList[[i]] <- plotly_build(gplot) } for(i in length(plist)){ print(plotList[[i]]) } The goal is to show both graphs for PRE_OPERATIVE_LOS and POST_OPERATIVE_LOS. However, the codes above only show histogram for POST_OPERATIVE_LOS. I checked maybe subplot is the way to go but how to make subplot work in a loop? Any hints? Thanks!
There is an error in your first loop and calling each subplot won't make both appear at the same time. First-- the issue with your first for call- when you wrote for(i in length(plist)) You wrote for i in 2 or i == 2, meaning that you never looped. If you modify it to a range of values, now it's written: for i in 1 to 2. for(i in 1:length(plist)) So you're aware, if you had written for(i in plist) it would have done both loops, but instead of a value, i would be the strings. Okay, so now there are two graphs. From the plotly library, you can use the function subplot. You will want to turn the legend off for one of them, though. subplot(plotList[[1]], style(plotList[[2]], showlegend = FALSE)) If you wanted the outline color, that's more than okay! However, if you wanted to bars to be filled, you need to assign fill instead of color. If you change color = bygrp to fill = bygrp, this is how this would change: If you leave the color assignment and add fill = bygrp (so you have both), this is how this would change:
How to fix jagged line from predict_gam in ggplot2?
Data: structure(list(ID = c(19903L, 28185L, 28207L, 28429L, 28522L, 29092L, 29127L, 29219L, 29304L, 30981L, 31166L, 31411L, 32010L, 33231L, 33640L, 33714L, 34093L, 34193L, 34385L, 35054L, 35337L, 35377L, 35608L, 35881L, 35940L, 37112L, 37122L, 37125L, 37170L, 37198L, 37266L, 37378L, 37589L, 37725L, 37877L, 38519L, 38522L, 38605L, 38623L, 38806L, 39040L, 39083L, 39159L, 39218L, 39593L, 39636L, 39657L, 39686L, 39700L, 39819L, 39820L, 39951L, 40151L, 40152L, 40181L, 40226L, 40248L, 40286L, 40382L, 40556L, 40623L, 40628L, 40798L, 40800L, 40815L, 40915L, 43282L, 43299L, 43450L, 43466L, 43509L, 43677L, 43740L, 43762L, 43998L, 44068L, 44130L, 44131L, 44307L, 44408L, 50679L, 50848L, 51064L, 51455L, 51690L, 51726L, 51727L, 51796L, 52126L, 52183L, 52461L, 52500L, 52502L, 52577L, 52614L, 53202L, 53320L, 53390L, 53456L, 53473L, 53474L, 53475L, 53577L, 53626L, 53851L, 53873L, 54153L, 54206L, 54532L, 54581L, 54913L, 55122L, 55267L, 55332L, 55462L, 55542L, 55612L, 55728L, 55867L, 55903L, 55920L, 55991L, 56022L, 56098L, 56307L, 56420L, 56679L, 56703L, 56746L, 56919L, 57005L, 57035L, 57405L, 57445L, 57480L, 57725L, 57808L, 57809L, 57863L, 58004L, 58060L, 58130L, 58145L, 58215L, 58229L, 58503L, 58515L, 58667L, 58999L, 59326L, 59327L, 59344L, 59361L, 59428L, 59756L, 59865L, 60099L, 60100L, 60169L, 60252L, 60280L, 60306L, 60384L, 60429L, 60472L, 60493L, 60503L, 60575L, 60603L, 60662L, 60664L, 60806L, 60846L, 60925L, 61274L, 61415L, 61727L, 61749L, 61882L, 61883L, 62081L, 62144L, 62210L, 62285L, 62411L, 62809L, 62917L, 62934L, 62937L, 62983L, 62989L, 63327L, 63329L, 63383L, 63458L, 63470L, 63589L, 64081L, 64328L, 64418L, 64507L, 64596L, 65178L, 65250L, 65302L, 65478L, 65480L, 65487L, 65565L, 65572L, 65574L, 65617L, 65802L, 65865L, 65934L, 65935L, 65974L, 65975L, 65978L, 65991L, 65995L, 66013L, 66154L, 66232L, 66237L, 66245L, 66314L, 66389L, 66396L, 66460L, 66572L, 66589L, 66735L, 67174L, 73230L, 73525L, 73539L, 73677L, 73705L, 73942L, 73953L, 74034L, 74113L, 74114L, 74425L, 74427L, 74439L, 74607L, 74618L, 74641L, 74657L, 74794L, 74800L, 74836L, 74942L, 74952L, 74962L, 74969L, 74975L, 74977L, 74985L, 74989L, 75220L, 75229L, 75377L, 75407L, 75432L, 75653L, 75732L, 75735L, 75737L, 75757L, 75895L, 75898L, 76381L, 76559L, 76574L, 76594L, 76595L, 76746L, 76751L, 76755L, 76759L, 76775L, 77088L, 77091L, 77099L, 77109L, 77134L, 77182L, 77188L, 77203L, 77204L, 77252L, 77304L, 77453L, 77528L, 77556L, 77585L, 77668L, 77733L, 77758L, 78262L, 79724L, 79730L, 79747L, 79850L, 79977L, 80052L, 80819L, 80901L, 80932L, 81064L, 81065L, 81071L, 81098L, 81112L, 81142L, 81175L, 81727L, 81938L, 82554L, 83744L, 83949L), Age = c(83L, 26L, 26L, 20L, 84L, 20L, 23L, 77L, 32L, 14L, 21L, 9L, 76L, 18L, 21L, 15L, 75L, 27L, 34L, 81L, 81L, 15L, 24L, 24L, 16L, 35L, 27L, 7L, 30L, 31L, 24L, 24L, 79L, 30L, 19L, 78L, 25L, 20L, 42L, 62L, 83L, 79L, 18L, 26L, 66L, 23L, 83L, 21L, 77L, 24L, 57L, 42L, 32L, 76L, 85L, 29L, 77L, 65L, 79L, 9L, 34L, 20L, 11L, 16L, 9L, 21L, 16L, 34L, 22L, 19L, 23L, 25L, 14L, 53L, 28L, 79L, 22L, 22L, 21L, 82L, 81L, 16L, 19L, 77L, 15L, 18L, 15L, 78L, 24L, 16L, 14L, 29L, 18L, 50L, 17L, 43L, 8L, 14L, 85L, 31L, 20L, 30L, 23L, 78L, 29L, 6L, 61L, 14L, 22L, 10L, 83L, 15L, 13L, 15L, 15L, 29L, 8L, 9L, 15L, 8L, 9L, 15L, 9L, 34L, 8L, 9L, 9L, 16L, 8L, 25L, 21L, 23L, 13L, 56L, 10L, 7L, 27L, 8L, 8L, 8L, 8L, 80L, 80L, 6L, 15L, 42L, 25L, 23L, 21L, 8L, 11L, 43L, 69L, 34L, 34L, 14L, 12L, 10L, 22L, 78L, 16L, 76L, 12L, 10L, 16L, 6L, 13L, 66L, 11L, 26L, 12L, 16L, 13L, 24L, 76L, 10L, 20L, 13L, 25L, 14L, 12L, 15L, 43L, 51L, 27L, 15L, 24L, 34L, 63L, 17L, 15L, 9L, 12L, 17L, 82L, 75L, 24L, 44L, 69L, 11L, 10L, 12L, 10L, 10L, 70L, 54L, 45L, 42L, 84L, 54L, 23L, 23L, 14L, 81L, 17L, 42L, 44L, 16L, 15L, 43L, 45L, 50L, 53L, 23L, 53L, 49L, 13L, 69L, 14L, 65L, 14L, 13L, 22L, 67L, 59L, 52L, 54L, 44L, 78L, 62L, 69L, 10L, 63L, 57L, 22L, 12L, 62L, 9L, 82L, 53L, 54L, 66L, 49L, 63L, 51L, 9L, 45L, 49L, 77L, 49L, 61L, 62L, 57L, 67L, 16L, 65L, 75L, 45L, 16L, 55L, 17L, 64L, 67L, 56L, 52L, 63L, 10L, 62L, 14L, 66L, 68L, 15L, 13L, 43L, 47L, 55L, 69L, 21L, 67L, 34L, 52L, 15L, 31L, 64L, 55L, 13L, 48L, 71L, 64L, 13L, 25L, 34L, 50L, 61L, 70L, 33L, 57L, 51L, 46L, 57L, 69L, 46L, 8L, 11L, 46L, 71L, 33L, 38L, 56L, 17L, 29L, 28L, 6L, 8L), Sex = structure(c(1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L), .Label = c("Male", "Female"), class = "factor"), mean_FA_scaled = c(-1.52160414281774, -1.30073487609629, -1.39164271432334, -1.83373601712535, -2.19478262184568, -0.47769168350816, -1.66624867866514, -0.36061779499817, -1.10976759821506, -2.01706489349897, -1.21708170925372, -0.68001882107227, -0.770347444019124, -1.21756680205088, -1.04908755742334, -0.654272701867476, 0.791455877697352, 0.0263414533200063, -1.48353521852673, -1.48465744813212, 0.885781086077571, 0.937258844105155, -1.76609091258925, -1.40930154017838, -1.42620014597815, -0.395529996012095, -1.79188771313106, -1.6968602062236, -1.6213377738768, -1.26578647412735, -1.3364652186935, -1.52114801078458, 0.587760344033774, -1.4860765255686, -1.41824317606643, -1.08076339305916, -1.84290933912549, -1.42950167307528, -0.186882171702826, 0.94192876730175, -1.96157606965602, -0.668579319288362, -1.2972378638421, -2.10201405453099, 0.593407693015703, -1.87521507137852, -0.399874110613579, -2.16173114991939, -1.71213049306692, -2.03230549555918, 0.864393561856266, 1.66450706953957, -1.76062456838238, -1.42625806750617, -0.635317881823001, -1.05738481631217, -0.905876579394418, 0.0731565283419971, -1.15139145628828, -0.742407546940581, -1.69348627721645, 0.153573329806466, -1.09929828202549, -0.982123030841461, 0.725678742439884, -0.850887328730634, -0.99078229928042, 0.215368360012574, -0.402661584149531, 0.0241114744912448, -0.71105027970887, 0.366463906043185, 0.957024565541906, 0.669292134912623, 1.05465854121026, 1.82844671440856, -0.181835758574102, 0.736386984932541, -1.09078381740658, 0.0590019549321627, -1.02109697900777, 0.321350275906775, -0.0449237467173357, 0.0239956314352051, 0.117669222625202, -0.725516181331811, 0.387590783388401, 0.829691326381412, 1.37355999410519, -0.459526044282955, -0.460235583001197, -0.311304854080326, 0.578796987572713, 0.997164184459617, 0.18257029477137, 0.291839257380694, -0.863007408468775, -1.87780705975741, 2.29568520056216, 0.00319456268509986, 0.881190804982003, 0.930713711438919, -0.525093214001351, 2.54459572703618, 0.166620153992923, 1.20602921449896, -0.289055747129726, 1.46280982859267, -0.391909900510859, 2.11139337878521, 1.59105533181948, -0.209203680563451, -0.763585105622814, -0.373635658420616, 0.6654186327263, -1.62880965099135, -0.961003393687248, 0.201720599972912, -0.335957704443747, 0.757593504378786, -0.162251041912412, 0.141221563956246, 0.0760670851249914, -2.24164331007099, 0.424957409152164, -0.0769326311392693, -0.0363368801884033, 0.30505984615121, -0.551628514025415, 0.33740901955026, -0.31017538428394, 0.966704700912213, -1.19032920349958, 0.711567610176064, 0.67279638735782, -0.599819225337876, 0.0996845881750585, 0.656310472445189, -0.0716472917074639, -0.483100106187007, -0.511691620455773, 2.1239406297925, 1.29844301245453, 0.101559797644699, -1.35720112572458, 0.307058138867893, -0.0785544339238233, 0.27531714151305, -0.660383423073563, -0.957274695320974, -1.47069111968835, -0.526229923988739, -0.645664114765535, -0.887580616731169, 0.119110020634694, -0.368379279752821, -1.37513507883771, 0.756384392481372, 0.0675019391690662, 1.18129672203451, 0.788168830982229, 0.780204620879509, 0.283447876008828, 0.146224535938955, -0.389296191558966, 0.807326376374772, 0.590410253940679, -0.41226207741881, -1.02024263646948, 0.0042805913354707, -0.217414057160255, 0.302561980255357, -0.0445038156391923, -0.782909175408415, 0.298159944125853, 0.0170233274998232, -0.0487465675666421, -0.456839933421037, 0.310127979852941, -0.787615299560023, -0.21877521306872, -0.395986128045251, -0.266386709100983, 0.372589107631277, -0.47845190356342, 0.546216128061583, -0.483150787524024, -0.638590448156119, 2.21420409102033, 0.550980173741211, 0.781797462900053, 0.0321553266949922, 0.224223113608598, 0.45913835087484, 0.924827436153908, 2.19646562306427, -0.622017650951458, 0.554498906568413, -0.0470089217260485, -0.401307668432068, -0.588777934059104, 0.462266113387909, 0.263008816808847, -0.162403085923465, -0.062640494100388, 0.660965915259779, 0.113397509933743, 0.191685695243484, 1.14629763872856, 0.407899519150338, 0.473039517599588, 0.589070818605222, 1.07992680780889, 0.0233440142449823, 0.303792812725778, 0.560066613449315, -0.401387310533095, -0.286101749200717, -0.673299923821975, 1.66157479218356, 1.44751130500445, 0.402802424684597, 1.46472123901732, -0.397311082998703, -0.641768892006205, 0.839031172774602, -0.603272796446055, 1.48020076738061, -0.550643848049078, 0.299513859843316, 0.739782634512702, 0.517841819522891, 0.240976915588321, 0.407841597622318, 1.04632508136641, 0.140700270204069, 0.320249766874399, -0.0720093012575883, 0.191207842637321, 1.89043722977174, 1.44823532410469, -0.403472485541808, 1.81747058484881, 0.510261339543303, 0.874862878045841, -0.274271277102676, 1.60814942277632, -0.625188854610541, 0.262176194843562, 0.546426093600656, -0.0371912227266948, -0.0447861830882888, 1.43379838324576, -0.0424331210124857, 1.86971580312266, -0.228122299652913, 0.731789463645971, 0.0910470403091081, 0.618791802670374, 0.267229848163289, 0.199251694841068, 0.246957313356364, 1.87125072361518, -1.40312565725327, -0.190900477709198, 0.257180463051856, 1.48421907338698, 0.0556569866890196, -0.667601893503029, 0.247688572647614, 0.188977863808559, 0.91364858124609, 1.5448556730327, 0.930329981315788, 0.312119032378622, 1.15772266013046, -0.0360834735033167, 1.78212397237474, -0.861407326257228, 0.476608931763807, 1.38366006055364, 0.803771442592559, 0.145174708243597, -1.13023561817905, 0.570130478942752, 0.862605234678655, -0.328963679935357, 0.654840713671687, 0.852222800781108, 0.304538552399032, 0.652132882236762, -0.639712677761503, 0.046078213992748, -0.171257839519489, 0.349420496423362, 0.184018332971865, 0.149583984564103, 1.29365724620189, 0.621419992004272, -0.866656464734021, 1.09066401106555, 0.810541021179871, 1.62963106948065, 1.03406743799922, -0.118969180099629, -0.372665472826285, 1.40028353909531, 0.381002209576151, 0.508378889882659, 0.667424165633985, 0.4092534348678, 0.813183690895774, 1.08099111588625, 0.708867018932142, 0.0693192271106869, 1.26885235182742, -0.117571823236151, 0.174801569825717, 0.584835306868775, -0.84211945742664, 1.05460061968224, 1.61507104537468, -1.62830066556388, 0.0799550676933195 ), RAVLT_DELAY = c(NA, 12L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 5L, NA, NA, NA, NA, NA, NA, NA, 7L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 5L, 12L, NA, NA, NA, NA, 14L, NA, NA, NA, NA, NA, 6L, 7L, NA, NA, NA, NA, 7L, 1L, 1L, 11L, 4L, 12L, 7L, 9L, 9L, 8L, 14L, 12L, 7L, 12L, 7L, 6L, 13L, 10L, 13L, NA, 11L, 14L, 8L, 0L, 11L, 15L, 13L, 6L, 9L, 9L, 12L, 5L, 14L, 15L, 12L, 4L, 15L, 8L, 15L, 14L, 5L, 12L, 8L, 9L, 9L, 13L, 6L, 4L, 10L, NA, 4L, 13L, 9L, 14L, 8L, 15L, 14L, 9L, 15L, 14L, 11L, 11L, 15L, 12L, 9L, 13L, 14L, 7L, 13L, 9L, 12L, 10L, 6L, 9L, 10L, 11L, 15L, 11L, 11L, NA, 9L, 12L, 10L, 9L, 11L, 2L, 12L, NA, 6L, 12L, 12L, 10L, 11L, 4L, 13L, 4L, 5L, 6L, 12L, 15L, 11L, 11L, 14L, 2L, 11L, 5L, 10L, 12L, 10L, NA, 12L, 8L, 12L, 12L, 8L, 7L, 14L, 14L, 7L, 8L, NA, 9L, 6L, 15L, 7L, 14L, 8L, 14L, 11L, 13L, 6L, 12L, 11L, 14L, 15L, 10L, 6L, 13L, 7L, 4L, 12L, 14L, 7L, 13L, 3L, 13L, 7L, 10L, 6L, 8L, 3L, 15L, 11L, 15L, 11L, 11L, 8L, 4L, 7L, 10L, 5L, 7L, 8L, 9L, 14L, 12L, 14L, 12L, NA, NA, 11L, 10L, 13L, 7L, 12L, 12L, 14L, 8L, 13L, 2L, 11L, 8L, 7L, 4L, 7L, 9L, 4L, 12L, 14L, 15L, 12L, 13L, 9L, 7L, 11L, 10L, 14L, 6L, 5L, 5L, 10L, 8L, 5L, 12L, 2L, 11L, 8L, NA, 9L, 7L, 8L, 12L, 10L, 7L, 13L, 15L, 9L, 6L, 4L, 10L, 8L, 13L, 10L, 9L, 7L, 7L, 15L, 8L, 12L, 9L, 10L, 12L, 6L, 13L, 8L, 11L, 9L, 1L, 13L, 12L, NA, 8L, 2L, 11L, 9L, 7L, 6L, 10L, 13L, 15L, 6L, 5L, 7L, 5L, 5L, 11L, 11L, 13L, 9L, 4L, 10L, 2L, NA, 12L, 10L, 15L, NA, 6L)), row.names = c(NA, -324L), class = c("tbl_df", "tbl", "data.frame")) I am using the following model in mgcv::gam: m1 <- gam(mean_FA_scaled ~ s(Age, bs = 'ad', k = -1) + Sex + te(Age, by = Sex, bs ='fs') + te(RAVLT_DELAY, by = Sex, bs = 'fs') + s(RAVLT_DELAY), data = DF, method = 'REML', family = gaussian) I would like to reproduce the gam plot: But in ggplot. However, When I use predict_gam my plot is very jagged. This doesn't happen when I try to plot the smooth term effect on age. # Plot m1_p <- predict_gam(m1) m1_p %>% ggplot(aes(x = RAVLT_DELAY, y = fit)) + geom_line(aes(color = Sex)) geom_smooth_ci(Sex, size = 1, alpha = 1) + theme_classic(base_size = 24)
Your fit object has predictions for each age and each sex along the length of RAVLY_DELAY. With your existing code, each series tries to plot all the values from these various lines as one series, hence the jaggies. If we tell ggplot to treat each Age,Sex combination as a different series (aka group), we get: m1_p %>% ggplot(aes(x = RAVLT_DELAY, y = fit)) + geom_line(aes(color = Sex, group = interaction(Age,Sex))) There are a lot of age groups here, which we could see separately with: m1_p %>% mutate(Age = round(Age, 1)) %>% ggplot(aes(x = RAVLT_DELAY, y = fit)) + geom_line(aes(color = Sex)) + facet_wrap(~Age, ncol = 10) While wrong, I liked the aesthetic qualities that arose when I grouped by Age only:
I had the same problem and I finally managed to fix it, or that's what I think. I am a beginner, not an expert, so sorry for my dummy language in this field. This is happening because you have more variables in your model, apart from the ones you are plotting, that cause variance. So, what you have to do is to create a new database with all the variables you are not plotting fixed somehow, the numeric you can use means, the factors, choose one, etc. Then run the model with the function predict.gam (not "_"), that let you add a new database, that will be the one with your variables fixed. Then predict.gam has to be turned into a database to plot it, so you bind it (the result) with your new data, and then you can use ggplot2 and geom_smooth_ci with no problem. EXAMPLE: model<-x~gam(s(v4, by=v3) + s(v2, by=v1) #I want to plot the first smooth, first create the data: new=expand.grid(v1=levels(circ$v1)[1], v2=mean(circ$v2), v3=levels(circ$v3), v4=seq(0,23, 0.1)) # see that I maintain the levels and the numbers of v3 and v4, and I fix the other ones randomly. predict<-predict.gam(model, newdata = new, se.fit = TRUE) mew=cbind(new,preddist2n) mew %>% ggplot(aes(v4, fit)) + geom_smooth_ci(v3, ci_z = 1.96, ci_alpha = 0.05 ) If after you need to plot the second smooth, you should create another database to fix the variables out of the second smooth... Tell me if it worked for you :)
R and NLS: singular gradient matrix at initial parameter
I'm trying to use nls to estimate the parameters of a non linear model. I first use nls2 to find good initial parameters with Random Search and I then use nls to improve the estimation with a Gauss-Newton approach. The problem is I always get an "singular gradient matrix at initial parameter estimates" error. I'm not sure I understand, because the input matrix doesn't seem to be a singular gradient matrix. Moreover even if the fits I'm looking for is not perfect for this data, nls should find a way to improve the parameters estimations. Isn't it ? Question: Is there a way to improve the parameters estimation? I've tried NLS.lm but I had the same problem. Here is a reproductible example: Data: structure(list(x1 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L), x2 = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L), y = c(0.0689464583349188, 0.0358227182166929, 0.0187034836294036, 0.0227081421239796, 0.0146603483536504, 0.00562771204350896, 0.00411351161052011, 0.00356917888321555, 0.0028017552960605, 0.0024750328652541, 0.00243175013170564, 0.00242654283706898, 0.00235224917236107, 0.00176144220485858, 0.00138071934398105, 0.000696375069179013, 0.00106282865382483, 0.00114735219137874, 0.00277256441625284, 0.00214359572321392, 0.00144935953386591, 0.00249732559162499, 0.00225859018399108, 0.00201642941663214, 0.00232438586834105, 0.0016083751355862, 0.00143118376291818, 0.00158323933266031, 0.00157585431454131, 0.00169206800399143, 0.00158514119474578, 0.00134506293557103, 0.00119442163345335, 0.00101284069499962, 0.0012621113004254, 0.00128964367655383, 0.00102819258807122, 0.00125345601171754, 0.00116155619985178, 0.00142466624262548, 0.00141075318725309, 0.00106556656123991, 0.0010976347045814, 0.0012442089226047, 0.0010627617251863, 0.00125322168410487, 0.00112108560656369, 0.0012459199320756, 0.00135773322693401, 0.0013997982284804, 0.00155012485145915, 0.00151108062240688, 0.00149570655260348, 0.00152598641103596, 0.00108261570337346, 0.000992225418429453, 0.000769588971038765, 0.000700496873143604, 0.000688378351958078, 0.000595007407260441, 0.000557615594951187, 0.00040476923690092, 0.000492276455560289, 0.000447248723966691, 0.000388694992851599, 0.000346087542525691, 0.000189803623801549, 0.0709302325562937, 0.0424623423412875, 0.019085896698975, 0.0190650552541205, 0.014276898897581, 0.00593407290200902, 0.00445528598343583, 0.00371231334350143, 0.00253909496678967, 0.00263487912423124, 0.00248012072619926, 0.00263786771266913, 0.00219351150766708, 0.00179271674850348, 0.00139646119589996, 0.000911560061336614, 0.000989537441246412, 0.001046390000492, 0.00223993432619926, 0.00164189356162362, 0.00106041866437064, 0.00194151698794588, 0.0014213192200082, 0.00165239495268553, 0.00196583929282493, 0.00120501090643706, 0.001141403899631, 0.00122398595424354, 0.00124538223829438, 0.00123370121853218, 0.00136883147552275, 0.00110907318146781, 0.000965843164247642, 0.000859986264862649, 0.00104695561918819, 0.00103985460139401, 0.000455832014104141, 0.000704296760639607, 0.000870145383845838, 0.000919870911357114, 0.00101396309667897, 0.000781894087412874, 0.000909712365723658, 0.000889897365477655, 0.000933063039278393, 0.000779395399425994, 0.000789546295038951, 0.000773432990897909, 0.00125614787798278, 0.00123172652693727, 0.00078936677195572, 0.000952107503075031, 0.00105449131480115, 0.00123128091742517, 0.000889501370397704, 0.00085648642099221, 0.000830097733497335, 0.000653482256334563, 0.000521696831160312, 0.000612702433456335, 0.000513576588109881, 0.000475289330709307, 0.00041141913800738, 0.000328157997211972, 0.00031336264403444, 0.000328784093808938, 0.000237448446412464, 0.0520691145678866, 0.0281929482152033, 0.0219024230330532, 0.0141074098760277, 0.00691341703402584, 0.00445785262213699, 0.0034569415664917, 0.00234406584844369, 0.00257369504707459, 0.00234047371531346, 0.00227286083862502, 0.00248544382019894, 0.00180810413760828, 0.00138986347039715, 0.000911936124008956, 0.000932783218782117, 0.00108887529088974, 0.0017855660833578, 0.00159768589505946, 0.00124091041330201, 0.00203036436876009, 0.00154489107876964, 0.00111687975012847, 0.00163256939968433, 0.00143626193198502, 0.000996683818914256, 0.0010781399542101, 0.00122575793431581, 0.00115671467616723, 0.001069532453476, 0.0010106869893371, 0.000978618104445015, 0.000894478048836441, 0.000842874700392747, 0.000819009288742475, 0.000843003919670386, 0.000964158733115548, 0.000877802228013507, 0.00087592051873807, 0.000935810596369843, 0.000879047729316546, 0.000829181439950081, 0.0010295792954412, 0.000765620227389517, 0.00102511256239906, 0.000823109180461753, 0.00111669534392894, 0.000802757620485245, 0.00103231207284173, 0.000884354083467919, 0.00109278942886507, 0.000969283099489796, 0.000827480664091176, 0.000798564447676552, 0.000909248326695786, 0.000682209033640434, 0.000780593294853913, 0.000485172195712818, 0.000467514093470122, 0.000295219649739392, 0.000460636351123183, 0.00045060371687344, 0.000492590160218764, 0.000402536549331963, 0.000271941766535751, 0.000171012123770371, 0.0267385565244063, 0.0275426278720772, 0.0154589149018475, 0.00729065000152096, 0.00513675524527996, 0.00378848397112206, 0.00305965140790087, 0.00240428827949139, 0.00233604733730811, 0.00199601458903693, 0.00198302547453915, 0.00137121122011316, 0.00126241982975401, 0.0012413298189045, 0.00103044327584109, 0.00106759120581615, 0.00190957422380402, 0.00124400301656831, 0.000989035353673623, 0.00160702520431547, 0.0011515826661394, 0.00153203681379408, 0.00134897491229138, 0.000916492937174261, 0.00072393419977287, 0.00115124473393361, 0.00104241370079698, 0.000953324905193568, 0.00121656899373365, 0.000891420608484922, 0.000671666092758208, 0.000659860761797571, 0.000586145968952161, 0.00072735268499929, 0.000658407622538582, 0.000498831767252743, 0.000658345030520574, 0.000542106922897528, 0.000874560054044737, 0.000543320226217274, 0.000751139509440084, 0.000668632963233356, 0.000656903021131188, 0.000574965903652329, 0.0006661524076778, 0.000605171890653201, 0.000527045917239561, 0.000985791370586684, 0.000899420142057553, 0.000933015548254953, 0.00082137283567561, 0.000870124781995904, 0.000498046123582973, 0.000540181050881142, 0.000596948101336416, 0.000405622486362069, 0.000631594016548032, 0.000468749313033603, 0.000389576698910993, 0.000335624642574679, 0.000286763668856847, 0.000439039581432135, 0.000244767908276044, 0.000303911794528604, 0.000160988671898765, 0.0365772382134747, 0.0255898183301035, 0.010327803963121, 0.00714710822108354, 0.00506253612461807, 0.00447056668291465, 0.00322822676102386, 0.00328154620569948, 0.0028470908747756, 0.00253477302081723, 0.00187837758253778, 0.00116416512964702, 0.00119557763663167, 0.000993575112051645, 0.00136274483135782, 0.00204131052512691, 0.00157953945941769, 0.00116523253183218, 0.00190793844827791, 0.00144595416523011, 0.00157423646879793, 0.00126996001866537, 0.00115283860342634, 0.00116894693507543, 0.000930041619012519, 0.00106545753272384, 0.00123507493015348, 0.00130865599847824, 0.000940647984853709, 0.000836521897923032, 0.000778436697656724, 0.00100773629284415, 0.000956581999215341, 0.000808036977042788, 0.000597930101173421, 0.000776453419209873, 0.000630241947142534, 0.000649832426616575, 0.000782188275296327, 0.00102823806308181, 0.000830656989407107, 0.00051915559901561, 0.000537114715917872, 0.000872430107712244, 0.000549284113632851, 0.000738257038745497, 0.00097442578198376, 0.000879724260815807, 0.000884543540237537, 0.00100038027474944, 0.00103543285342337, 0.000875585441608313, 0.000829083410412184, 0.000760316116414823, 0.000712211369823927, 0.000386744815307978, 0.000428331410721292, 0.000397681982571065, 0.000213938551710199, 0.000370800615243779, 0.000281234314553042, 0.000267359921177464, 0.000358376119030352, 0.000337361541022196, 0.0310029062887812, 0.0154963087949333, 0.00959302943445506, 0.00645674376405936, 0.00525321947702945, 0.00386084394749159, 0.00374364242039947, 0.00351047952579374, 0.00298556939927835, 0.00199158625919048, 0.00206559575086432, 0.00169077836254661, 0.00139156751815451, 0.00170363478493893, 0.00250481301085496, 0.00182474837251083, 0.00116804333227652, 0.00155778636185214, 0.00183778204100427, 0.00135012918459471, 0.00166904872503284, 0.00120137403943415, 0.00108307957787943, 0.00146041465872549, 0.0014437889563235, 0.000975926161359965, 0.00102580511345623, 0.00112145083941, 0.000921884915530595, 0.00082253191796126, 0.000634876416504371, 0.00108601324863747, 0.000830573067167897, 0.000965052460105379, 0.000922667052402736, 0.000863193817654785, 0.000982111173513293, 0.000763009170856168, 0.000921755812461313, 0.000771609983091022, 0.000669047474976222, 0.000773869648383834, 0.00072022523061129, 0.000742426347056781, 0.000718728249316847, 0.000761437280522971, 0.000833112611531319, 0.000794451658438637, 0.000907360341651947, 0.00112083735676435, 0.00102996529205731, 0.000651843453054939, 0.000640968179416338, 0.000549646466476441, 0.000778958256714525, 0.000627413038784969, 0.000523658918731223, 0.000418571973368359, 0.000643352520494588, 0.000351378727146459, 0.000504093577607682, 0.000333827596358531, 0.000339505558071773, 0.0181836504450303, 0.0135527124187004, 0.00780738765319868, 0.00643260738080874, 0.00476881905655232, 0.00406986745617877, 0.00400325917456592, 0.00277499160186111, 0.00198311377238581, 0.00241837807740304, 0.00141018451525995, 0.00166798657140732, 0.0013970042073337, 0.00237332662413329, 0.00146721126831566, 0.000990562316636778, 0.00186106889002752, 0.00186322276224556, 0.00140391140302307, 0.00139027556176293, 0.00125730361478641, 0.00127044200804939, 0.00126655503830484, 0.00133956330669488, 0.00128219844136096, 0.00109531452608613, 0.00112195611926977, 0.00101411381866565, 0.00104786051750783, 0.000798711632769435, 0.000852432172756047, 0.000852720107765923, 0.00110385307389073, 0.00081385514739304, 0.00102898862672826, 0.000710330768658628, 0.000803425598538879, 0.000723455383750816, 0.00075034248654992, 0.000864917906994041, 0.000799733114881449, 0.000608518601191706, 0.000855476747683942, 0.000988548021123443, 0.00104800683206201, 0.000997051779707941, 0.000796235203259423, 0.000910577791459715, 0.000869997383535945, 0.000557402535474327, 0.000757813148434336, 0.000480807445269952, 0.000553425518375578, 0.000633029237291637, 0.00050222863978579, 0.000390945889771328, 0.000430333228928208, 0.000425167676834459, 0.000239604519722651, 0.000357021364759551, 0.000292330910803864, 0.000288851701197491, 0.0198837196044917, 0.0142208140311702, 0.00733039271103269, 0.00609158853724431, 0.00487605866828399, 0.00382636157210858, 0.00411545257392807, 0.00235906433257981, 0.00228491326937568, 0.00109255715480326, 0.00158036861847788, 0.00122011020381908, 0.00223761733564904, 0.00173284341769128, 0.00117538923471357, 0.00219622963095698, 0.00214263916211795, 0.0013198229549172, 0.00172951959530242, 0.00128074705482347, 0.00124062569884766, 0.00144218669111025, 0.00148407512819099, 0.00100716026446858, 0.0010842890711437, 0.000800686408079248, 0.000890454658065465, 0.000887152794471706, 0.00105780722647994, 0.000874948318354744, 0.000569126715186268, 0.000924642167943982, 0.000857013884141074, 0.000823122890591976, 0.00073038777177409, 0.000522615873628494, 0.00070936497950782, 0.000823074755104667, 0.000720588701733105, 0.000722724038337836, 0.00063458965098969, 0.000620049346639466, 0.000842327487089008, 0.000617708212493797, 0.000783953750160813, 0.00112567150392384 )), .Names = c("x1", "x2", "y"), class = c("tbl_df", "data.frame" ), row.names = c(NA, -500L)) Initial parameters: initial_par structure(list(A1 = 0.0529486559121727, alpha1 = 0.00888818269595504, B1 = 0.250994319084551, beta1 = 0.471984946168959, A2 = 0.281956987357551, alpha2 = 0.325086771510541, B2 = 0.0562204262765557, beta2 = 0.725645614322275), class = "data.frame", row.names = c(NA, -1L), .Names = c("A1", "alpha1", "B1", "beta1", "A2", "alpha2", "B2", "beta2")) Formula: formula = y ~ (A1*exp(-alpha1*x1) + B1*exp(-beta1*x1)) * (A2*exp(-alpha2*x2) + B2*exp(-beta2*x2)) Nls and the error message final = nls(formula, data=df, start = as.list(as.vector(initial_par))) Error in nlsModel(formula, mf, start, wts) : singular gradient matrix at initial parameter estimates
The problem is that there is not a one to one relationship between your model and parameters. To see this write A1 = exp(a1+d), A2 = exp(a2-d), B1 = exp(b1+d), B2 = exp(b2-d) in which case we have: y ~ exp(-alpha1 * x1 + a1 + d) * exp(-alpha2 * x2 + a2 - d) + exp(-alpha1 * x1 + a1 + d) * exp(-beta2 * x2 + b2 - d) + exp(-beta1 * x1 + b1 + d) * exp(-alpha2 * x2 + a2 - d) + exp(-beta1 * x1 + b1 + d) * exp(-beta2 * x2 + b2 - d) But d cancels in each of the 4 terms and so cancels entirely from the RHS. That is, the RHS is the same for any value of d thus the model is overparameterized and so will give a singular gradient. Fix one of A1, A2, B1, B2 and then you should be able to get a solution: A1 <- 1 nls(formula, df, start = initial_par[-1]) giving: Nonlinear regression model model: y ~ (A1 * exp(-alpha1 * x1) + B1 * exp(-beta1 * x1)) * (A2 * exp(-alpha2 * x2) + B2 * exp(-beta2 * x2)) data: df alpha1 B1 beta1 A2 alpha2 B2 beta2 0.11902 1.21030 0.79076 0.04604 0.51697 0.00183 0.02317 residual sum-of-squares: 0.000685 Number of iterations to convergence: 11 Achieved convergence tolerance: 6.686e-06
Ranking according to value across two variables - r
I have this dataframe: df<-data.frame( var1 = c(rep(c(rep(1,2), rep(2,3), rep(3,2), rep(4,1)),2), 1), var2 = c(rep(1,8), rep(2,8),3) ) df var1 var2 #1 1 1 #2 1 1 #3 2 1 #4 2 1 #5 2 1 #6 3 1 #7 3 1 #8 4 1 #9 1 2 #10 1 2 #11 2 2 #12 2 2 #13 2 2 #14 3 2 #15 3 2 #16 4 2 #17 1 3 I would like to make a third variable that is a rank. Rows get the highest rank if 1) they have the lowest numbers in var2 - and then according to how low the numbers are in var1. e.g. Rows 1 and 2 with var2=1 and var1=1 should be ranked 1. Whereas, rows 9 and 10 with var2=2 and var1=1 would be ranked 5. If my data are arranged in ascending order of var2 and then var1, I did the following using my favorite R function rle to achieve the ranking I'm after: rle(df$var1) N <- length(rle(df$var1)$lengths) df$ranks <- rep(1:N, rle(df$var1)$lengths) df var1 var2 ranks #1 1 1 1 #2 1 1 1 #3 2 1 2 #4 2 1 2 #5 2 1 2 #6 3 1 3 #7 3 1 3 #8 4 1 4 #9 1 2 5 #10 1 2 5 #11 2 2 6 #12 2 2 6 #13 2 2 6 #14 3 2 7 #15 3 2 7 #16 4 2 8 #17 1 3 9 This works, but it requires my df to be pre-sorted. I'd like a solution that does not need this. I feel like this should be a simple one-liner using rank and that I'm having a blind-spot. Any help appreciated - thanks. EDIT 1: - adding a larger example for testing of suggested answer dput(df1) df1 <- structure(list(var1 = c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 6L, 9L, 10L, 10L, 10L, 11L, 12L, 12L, 12L, 13L, 14L, 14L, 14L, 14L, 15L, 16L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L, 18L, 19L, 19L, 20L, 20L, 21L, 22L, 22L, 22L, 22L, 22L, 23L, 23L, 23L, 23L, 23L, 24L, 24L, 24L, 24L, 24L, 25L, 25L, 25L, 25L, 25L, 1L, 2L, 2L, 2L, 2L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 8L, 9L, 10L, 10L, 10L, 10L, 3L, 11L, 11L, 11L, 11L, 12L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 12L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L, 18L, 19L, 19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L, 21L, 22L, 22L, 22L, 23L, 25L, 24L, 24L, 24L, 24L, 24L, 26L, 26L, 26L, 26L, 26L, 27L, 27L, 27L, 27L, 27L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 11L, 12L, 12L, 13L, 14L, 15L, 16L, 17L, 17L, 18L, 18L, 19L, 19L, 19L, 19L, 20L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 22L, 22L, 22L, 23L, 23L, 23L, 23L, 23L, 24L, 24L, 24L, 24L, 24L, 25L, 25L, 25L, 25L, 25L, 26L, 26L, 26L, 27L, 27L, 28L, 28L, 28L, 28L, 28L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 6L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L), var2 = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), ranks = c(1L, 1L, 1L, 1L, 1L, 12L, 12L, 12L, 12L, 12L, 19L, 19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L, 20L, 21L, 21L, 21L, 21L, 21L, 23L, 23L, 23L, 23L, 23L, 24L, 24L, 24L, 24L, 24L, 22L, 25L, 2L, 2L, 2L, 3L, 4L, 4L, 4L, 5L, 6L, 6L, 6L, 6L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 13L, 13L, 14L, 15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L, 18L, 26L, 37L, 37L, 37L, 37L, 47L, 48L, 48L, 48L, 48L, 49L, 49L, 49L, 49L, 49L, 50L, 50L, 50L, 50L, 51L, 52L, 27L, 27L, 27L, 27L, 46L, 28L, 28L, 28L, 28L, 29L, 30L, 30L, 30L, 30L, 31L, 31L, 31L, 31L, 31L, 32L, 32L, 32L, 32L, 32L, 29L, 33L, 33L, 33L, 33L, 34L, 34L, 34L, 34L, 34L, 35L, 35L, 35L, 35L, 35L, 36L, 36L, 36L, 36L, 36L, 38L, 38L, 38L, 38L, 39L, 40L, 40L, 40L, 41L, 43L, 42L, 42L, 42L, 42L, 42L, 44L, 44L, 44L, 44L, 44L, 45L, 45L, 45L, 45L, 45L, 53L, 64L, 64L, 64L, 64L, 74L, 74L, 74L, 74L, 74L, 75L, 75L, 75L, 75L, 75L, 76L, 76L, 76L, 76L, 76L, 77L, 77L, 77L, 77L, 77L, 78L, 78L, 78L, 78L, 78L, 79L, 80L, 80L, 80L, 80L, 54L, 54L, 54L, 54L, 55L, 56L, 56L, 57L, 58L, 59L, 60L, 61L, 61L, 62L, 62L, 63L, 63L, 63L, 63L, 65L, 66L, 66L, 66L, 66L, 66L, 67L, 67L, 67L, 67L, 67L, 68L, 68L, 68L, 68L, 68L, 69L, 69L, 69L, 69L, 69L, 70L, 70L, 70L, 70L, 70L, 71L, 71L, 71L, 72L, 72L, 73L, 73L, 73L, 73L, 73L, 81L, 81L, 81L, 81L, 81L, 82L, 82L, 82L, 82L, 82L, 83L, 83L, 83L, 83L, 83L, 84L, 84L, 84L, 84L, 85L, 86L, 87L, 87L, 87L, 87L, 88L, 88L, 88L, 88L, 88L)), .Names = c("var1", "var2", "ranks"), row.names = c(NA, -300L), class = "data.frame") The ranks variable was got from this suggested answer: df1$ranks1 <- dense_rank(paste(df1$var2, df1$var1))
Solutions involving paste[0] will only work if values within each vector are integer with a fixed number of digits. This is because paste converts to character and: character (lexicographic) ordering differs from numeric: rank(c(1 , 2, 11)); rank(as.character(c(1 , 2, 11))) concatenation introduces ambiguities: paste0(2,12); paste0(21,2) Peter Dalgaard made a relevant post in 2011 http://r.789695.n4.nabble.com/Function-rank-for-data-frames-or-multiple-vectors-td3765685.html For now ignore identical rows. Note that rank(x) == order(order(x)) and order accepts multiple ordering columns so if you don't mind how identical rows are split order(order(df$var2, df$var1)) does the job. This splits identical rows according to their original ordering. There are a number of ways of ranking identical rows http://en.wikipedia.org/wiki/Ranking#Strategies_for_assigning_rankings. In 2011 Peter Dalgaard suggested ave(order(order(df$var2, df$var1)), df$var2, df$var1) which gives what Wikipedia calls 'Fractional ranking' and in base::rank is the default ties.method="average". Your example is what Wikipedia calls 'Dense ranking' which isn't available in base::rank but - as commented by David Arenburg - is provided by dplyr::dense_rank, so you can library(dyplr) and use: dense_rank(ave(order(order(df$var2, df$var1)), df$var2, df$var1)) Looking at the code for dense_rank it is just function (x) { r <- rank(x) match(r, sort(unique(r))) } suggesting that if you don't want to load dplyr and are happy with a 2-statement solution creating another variable - e.g. r - you could use r <- ave(order(order(df$var2, df$var1)), df$var2, df$var1); match(r, sort(unique(r))) Edited to add ... You can make things a little neater by realising that a data frame is really a list so to rank by columns in order of occurrence: dense_rank(ave(order(do.call(order, df)), df)) You are ranking by columns in reverse order of occurrence so dense_rank(ave(order(do.call(order, rev(df))), df)) or explicitly specifying columns and their order dense_rank(ave(order(do.call(order, df[,2:1])), df[,2:1]))
How to work out the Net Promotion Score by prop.table()
############ uncoded data x10<- structure(c(0L, 0L, 0L, 0L, 1L, 1L, 1L, 5L, 8L, 9L, 31L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 2L, 7L, 2L, 10L, 0L, 2L, 0L, 2L, 2L, 5L, 2L, 4L, 6L, 8L, 4L, 1L, 1L, 3L, 2L, 2L, 6L, 1L, 12L, 18L, 7L, 29L, 8L, 4L, 6L, 8L, 6L, 19L, 3L, 9L, 12L, 3L, 12L, 14L, 1L, 2L, 1L, 3L, 1L, 0L, 4L, 6L, 3L, 11L, 0L, 0L, 0L, 1L, 3L, 7L, 5L, 8L, 21L, 26L, 51L, 0L, 1L, 0L, 3L, 5L, 10L, 9L, 29L, 55L, 60L, 125L, 3L, 0L, 1L, 1L, 3L, 10L, 1L, 6L, 18L, 17L, 13L, 6L, 3L, 4L, 13L, 6L, 33L, 17L, 48L, 84L, 54L, 103L, 34L, 11L, 20L, 27L, 26L, 50L, 29L, 30L, 54L, 28L, 34L, 31L, 5L, 7L, 3L, 4L, 20L, 8L, 16L, 16L, 8L, 41L, 1L, 0L, 0L, 3L, 1L, 3L, 3L, 11L, 19L, 16L, 56L, 0L, 0L, 0L, 0L, 3L, 11L, 3L, 18L, 25L, 21L, 62L, 3L, 0L, 1L, 4L, 2L, 7L, 8L, 15L, 22L, 12L, 19L, 5L, 2L, 8L, 9L, 9L, 42L, 18L, 51L, 70L, 45L, 103L, 29L, 15L, 23L, 34L, 25L, 57L, 23L, 38L, 55L, 30L, 33L, 36L, 5L, 5L, 6L, 6L, 16L, 6L, 10L, 17L, 9L, 35L, 2L, 0L, 1L, 1L, 2L, 4L, 6L, 8L, 22L, 33L, 73L, 0L, 0L, 0L, 1L, 2L, 7L, 7L, 15L, 27L, 21L, 56L, 1L, 2L, 2L, 0L, 2L, 9L, 4L, 8L, 24L, 13L, 17L, 14L, 2L, 8L, 10L, 16L, 51L, 16L, 51L, 69L, 29L, 99L, 44L, 18L, 25L, 34L, 19L, 49L, 26L, 43L, 63L, 15L, 30L, 42L, 9L, 17L, 7L, 3L, 16L, 8L, 13L, 22L, 18L, 45L, 0L, 0L, 1L, 3L, 0L, 7L, 4L, 14L, 15L, 20L, 47L, 0L, 1L, 0L, 1L, 1L, 3L, 3L, 5L, 6L, 11L, 21L, 1L, 0L, 0L, 4L, 2L, 3L, 8L, 7L, 17L, 3L, 13L, 5L, 2L, 6L, 13L, 15L, 34L, 19L, 42L, 62L, 37L, 83L, 52L, 16L, 26L, 26L, 29L, 53L, 28L, 45L, 45L, 15L, 22L, 26L, 8L, 12L, 11L, 5L, 12L, 5L, 7L, 17L, 10L, 28L), .Dim = c(11L, 6L, 5L), .Dimnames = structure(list( c("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10"), c("I've changed for work/ a new job/ gone on a work plan", "I want a phone that doesn't offer", "I want Best Mates/ Favourites", "I was offered or saw a better offer on another network", "Issues with the network (poor coverage)", "Other" ), YearQuarter = c("2011-09-01", "2011-12-01", "2012-03-01", "2012-06-01", "2012-09-01")), .Names = c("", "", "YearQuarter" )), class = "table") ############ recoded data x10 <- structure(c(40L, 3L, 13L, 12L, 3L, 9L, 12L, 13L, 10L, 36L, 16L, 30L, 15L, 54L, 21L, 14L, 22L, 10L, 77L, 16L, 29L, 185L, 28L, 84L, 30L, 19L, 24L, 157L, 82L, 132L, 62L, 197L, 84L, 49L, 78L, 32L, 72L, 11L, 30L, 83L, 17L, 43L, 31L, 25L, 37L, 148L, 93L, 121L, 63L, 206L, 93L, 44L, 80L, 27L, 106L, 16L, 30L, 77L, 17L, 42L, 30L, 20L, 32L, 128L, 117L, 120L, 45L, 215L, 106L, 63L, 102L, 35L, 67L, 15L, 29L, 32L, 9L, 11L, 16L, 18L, 24L, 120L, 94L, 104L, 37L, 230L, 90L, 38L, 79L, 24L), .Dim = c(3L, 6L, 5L), .Dimnames = structure(list( c("Promoters", "Detractors", "Passive"), c("I've changed for work/ a new job/ gone on a work plan", "I want a phone that doesn't offer", "I want Best Mates/ Favourites", "I was offered or saw a better offer on another network", "Issues with the network (poor coverage)", "Other" ), YearQuarter = c("2011-09-01", "2011-12-01", "2012-03-01", "2012-06-01", "2012-09-01")), .Names = c("", "", "YearQuarter" )), class = "table") x10.p <- round(prop.table(x10,c(3,2)),2)*100 Hi there The Net Promotion Score is a question which asks the consumers to rate the 'the likelihood to recommend the product or the service' on a zero to ten scale. People reported with 10 and 9 are called 'promoters', people rated 8 and 7 are seen as 'Passive', and people reported less than 6 are considered as detractors. The Net Promotion score is the difference between the percentage of 'Promoters' minus the the percentage of 'Detractors'. I summerised and recoded the answers from the question into a table x10 from Sep 2011 to Sep 2012. The numbers are actual people counts for each group (Promoter,Detractor and Passive). Apologies for the three dimensioanl table, I am interested in the Net Promoter Score for each reason( i.e what's the percentage difference among the promoters and detractors for "I've changed for work/ a new job/ gone on a work plan" in Sep 2012. The Net Promotion Score before I can plot it which requires a bit manipulation. I wonder if anyone knows to how do it? Cheers
First, don't round until you've done all your calculations (otherwise you will have percentages not adding to 1) x10.p <- prop.table(x10,c(3,2))*100 # get the total promoters promoters <- apply(x10.p, 2:3, function(x) sum(tail(x,2))) # and detractors detractors <- apply(x10.p, 2:3, function(x) sum(head(x,7))) # passive is everything else passive <- passive <- 100 - (detractors +promoters) # the net score net <- promoters - detractors net YearQuarter 2011-09-01 2011-12-01 2012-03-01 2012-06-01 2012-09-01 I've changed for work/ a new job/ gone on a work plan 66.071429 50.00000 53.982301 59.210526 46.846847 I want a phone that doesn't offer 37.500000 52.86195 46.153846 44.117647 44.230769 I want Best Mates/ Favourites -2.857143 15.06849 6.451613 12.195122 -3.448276 I was offered or saw a better offer on another network 24.390244 20.21563 15.193370 3.013699 8.176101 Issues with the network (poor coverage) -43.333333 -39.35860 -39.502762 -46.448087 -54.061625 Other -17.391304 -18.23899 -23.841060 -19.500000 -29.078014 You want september 2012, select just that column, with drop = FALSE to ensure it is still a matrix with 1 column. net[,'2012-09-01', drop = FALSE] YearQuarter 2012-09-01 I've changed for work/ a new job/ gone on a work plan 46.846847 I want a phone that doesn't offer 44.230769 I want Best Mates/ Favourites -3.448276 I was offered or saw a better offer on another network 8.176101 Issues with the network (poor coverage) -54.061625 Other -29.078014