R - Merging and aligning two CSVs using common values in multiple columns - r

I currently have two .csv files that look like this:
File 1:
Attempt
Result
Intervention 1
B
Intervention 2
H
and File 2:
Name
Outcome 1
Outcome 2
Outcome 3
Sample 1
A
B
C
Sample 2
D
E
F
Sample 3
G
H
I
I would like to merge and align the two .csvs such that the result each row of File 1 is aligned by its "result" cell, against any of the three "outcome" columns in File 2, leaving blanks or "NA"s if there are no similarities.
Ideally, would look like this:
Attempt
Result
Name
Outcome 1
Outcome 2
Outcome 3
Intervention 1
B
Sample 1
A
B
C
Sample 2
D
E
F
Intervention 2
H
Sample 3
G
H
I
I've looked and only found answers when merging two .csv files with one common column. Any help would be very appreciated.

I will assume that " Result " in File 1 is unique, since more File 1 rows with same result value (i.e "B") will force us to consider new columns in the final data frame.
By this way,
Attempt <- c("Intervention 1","Intervention 2")
Result <- c("B","H")
df1 <- as.data.frame(cbind(Attempt,Result))
one <- c("Sample 1","A","B","C")
two <- c("Sample 2","D","E","F")
three <- c("Sample 3","G","H","I")
df2 <- as.data.frame(rbind(one,two,three))
row.names(df2) <- 1:3
colnames(df2) <- c("Name","Outcome 1","Outcome 2","Outcome 3")
vec_at <- rep(NA,nrow(df2));vec_res <- rep(NA,nrow(df2)); # Define NA vectors
for (j in 1:nrow(df2)){
a <- which(is.element(df1$Result,df2[j,2:4])==TRUE) # Row names which satisfy same element in two dataframes?
if (length(a>=1)){ # Don't forget that "a" may not be a valid index if no element satify the condition
vec_at[j] <- df1$Attempt[a] #just create a vector with wanted information
vec_res[j] <- df1$Result[a]
}
}
desired_df <- as.data.frame(cbind(vec_at,vec_res,df2)) # define your wanted data frame
Output:
vec_at vec_res Name Outcome 1 Outcome 2 Outcome 3
1 Intervention 1 B Sample 1 A B C
2 <NA> <NA> Sample 2 D E F
3 Intervention 2 H Sample 3 G H I

I wonder if you could use fuzzyjoin for something like this.
Here, you can provide a custom function for matching between the two data.frames.
library(fuzzyjoin)
fuzzy_left_join(
df2,
df1,
match_fun = NULL,
multi_by = list(x = paste0("Outcome_", 1:3), y = "Result"),
multi_match_fun = function(x, y) {
y == x[, "Outcome_1"] | y == x[, "Outcome_2"] | y == x[, "Outcome_3"]
}
)
Output
Name Outcome_1 Outcome_2 Outcome_3 Attempt Result
1 Sample_1 A B C Intervention_1 B
2 Sample_2 D E F <NA> <NA>
3 Sample_3 G H I Intervention_2 H

Related

Counting character values in R

I have a dataframe which looks like below.
data <- data.frame(Var_1 = c("A","B","C","A","B"))
Var_1
A
B
C
A
B
Need to do count like below.
Var_1 Count
A 2
B 2
C 1
A 2
B 2
# sample data
df <- data.frame(Var_1 = c("A","B","C","A","B"))
# make a frequency table to determine the "count"
countsDF <- table(df$Var_1)
# use names to match the Var_1 in the countsDF, then assign
# the corresponding count
df$count <- countsDF[match(df$Var_1, names(countsDF))]
I believe you can try using the table and storing it as a dataframe, from this data frame you can access the frequency of your data.
> data <- data.frame(Var_1 = c("A","B","C","A","B"))
> df <- as.data.frame(table(data))
> df$data
[1] A B C
Levels: A B C
> df$Freq
[1] 2 2 1
> df
data Freq
1 A 2
2 B 2
3 C 1
PS: I am not sure if you mean to repeat the 'levels' of your data as mentioned in your question, but unless it is case specific (which is not mentioned) I would take a repetitive class or level into consideration.

Sum the values of a 2 dimensional table according to labels in R

Coming from Sum the values according to labels in R.
I've been notified that working with 2 dimensional tables is rather significantly different with 1 dimensional ones, like:
a a,b a,b,c c
d 5 2 1 2
d,e 2 1 1 1
And we want to achieve:
a b c
d 12 5 5
e 4 2 2
So how can this be achieved using R?
A little bit convoluted, but it should work :
m <- as.matrix(data.frame('a'=c(5,2),'a,b'=c(2,1),
'a,b,c'=c(1:1),'c'=c(2,1),
check.names = FALSE,row.names=c('d','d,e')))
colNamesSplits <- strsplit(colnames(m),',')
rowNamesSplits <- strsplit(rownames(m),',')
colNms <- unique(unlist(colNamesSplits))
rowNms <- unique(unlist(rowNamesSplits))
colIdxs <- unlist(sapply(1:length(colNamesSplits),
function(i) rep.int(i,length(colNamesSplits[[i]]))))
rowIdxs <- unlist(sapply(1:length(rowNamesSplits),
function(i) rep.int(i,length(rowNamesSplits[[i]]))))
colIdxsMapped <- unlist(sapply(colNamesSplits, function(n) match(n,colNms)))
rowIdxsMapped <- unlist(sapply(rowNamesSplits, function(n) match(n,rowNms)))
# let's create the fully expanded matrix
expanded <- as.matrix(m[rowIdxs,colIdxs])
rownames(expanded) <- rowNms[rowIdxsMapped]
colnames(expanded) <- colNms[colIdxsMapped]
# aggregate expanded by cols :
expanded <- do.call(cbind,lapply(split(1:ncol(expanded),colnames(expanded)),
function(ii) rowSums(expanded[,ii,drop=FALSE])))
# aggregate expanded by rows :
expanded <- do.call(rbind,lapply(split(1:nrow(expanded),rownames(expanded)),
function(ii) colSums(expanded[ii,,drop=FALSE])))
> expanded
a b c
d 12 5 5
e 4 2 2

How to replace values in multiple columns in a data.frame with values from a vector in R?

I would like to replace the values in the last three columns in my data.frame with the three values in a vector.
Example of data.frame
df
A B C D
5 3 8 9
Vector
1 2 3
what I would like the data.frame to look like.
df
A B C D
5 1 2 3
Currently I am doing:
df$B <- Vector[1]
df$C <- Vector[2]
df$D <- Vector[3]
I would like to not replace the values one by one. I would like to do it all at once.
Any help will be appreciated. Please let me know if any further information is needed.
We can subset the last three columns of the dataset with tail, replicate the 'Vector' to make the lengths similar and assign the values to those columns
df[,tail(names(df),3)] <- Vector[col(df[,tail(names(df),3)])]
df
# A B C D
#1 5 1 2 3
NOTE: I replicated the 'Vector' assuming that there will be more rows in the 'df' in the original dataset.
Try this:
df[-1] <- 1:3
giving:
> df
A B C D
1 5 1 2 3
Alternately, we could do it non-destructively like this:
replace(df, -1, 1:3)
Note: The input df in reproducible form is:
df <- data.frame(A = 5, B =3, C = 8, D = 9)

put duplicated rows in different data.frame(s)

Let
x=c(1,2,2,3,4,1)
y=c("A","B","C","D","E","F")
df=data.frame(x,y)
df
x y
1 1 A
2 2 B
3 2 C
4 3 D
5 4 E
6 1 F
How can I put duplicate rows in this data frame in different data frames
like this :
df1
x y
1 A
1 F
df2
x y
2 B
2 C
Thank you for help
You could use split
split(df, f = df$x)
f = df$x is used to specify the grouping column
check ?split for more details
to remove the non duplicated rows you could use
mylist = split(df, f = df$x)[df$x[duplicated(df$x)]]
names(mylist) = c('df1', 'df2')
list2env(mylist,envir=.GlobalEnv) # to separate the data frames

Convert the values in a column into row names in an existing data frame

I would like to convert the values in a column of an existing data frame into row names. Is is possible to do this without exporting the data frame and then reimporting it with a row.names = call?
For example I would like to convert:
> samp
names Var.1 Var.2 Var.3
1 A 1 5 0
2 B 2 4 1
3 C 3 3 2
4 D 4 2 3
5 E 5 1 4
Into:
> samp.with.rownames
Var.1 Var.2 Var.3
A 1 5 0
B 2 4 1
C 3 3 2
D 4 2 3
E 5 1 4
This should do:
samp2 <- samp[,-1]
rownames(samp2) <- samp[,1]
So in short, no there is no alternative to reassigning.
Edit: Correcting myself, one can also do it in place: assign rowname attributes, then remove column:
R> df<-data.frame(a=letters[1:10], b=1:10, c=LETTERS[1:10])
R> rownames(df) <- df[,1]
R> df[,1] <- NULL
R> df
b c
a 1 A
b 2 B
c 3 C
d 4 D
e 5 E
f 6 F
g 7 G
h 8 H
i 9 I
j 10 J
R>
As of 2016 you can also use the tidyverse.
library(tidyverse)
samp %>% remove_rownames %>% column_to_rownames(var="names")
in one line
> samp.with.rownames <- data.frame(samp[,-1], row.names=samp[,1])
It looks like the one-liner got even simpler along the line (currently using R 3.5.3):
# generate original data.frame
df <- data.frame(a = letters[1:10], b = 1:10, c = LETTERS[1:10])
# use first column for row names
df <- data.frame(df, row.names = 1)
The column used for row names is removed automatically.
With a one-row dataframe
Beware that if the dataframe has a single row, the behaviour might be confusing. As the documentation mentions:
If row names are supplied of length one and the data frame has a single row, the row.names is taken to specify the row names and not a column (by name or number).
This mean that, if you use the same command as above, it might look like it did nothing (when it actually named the first row "1", which won't look any different in the viewer).
In that case, you will have to stick to the more verbose:
df <- data.frame(a = "a", b = 1)
df <- data.frame(df, row.names = df[,1])
... but the column won't be removed. Also remember that, if you remove a column to end up with a single-column dataframe, R will simplify it to an atomic vector. In that case, you will want to use the extra drop argument:
df <- data.frame(df[,-1, drop = FALSE], row.names = df[,1])
You can execute this in 2 simple statements:
row.names(samp) <- samp$names
samp[1] <- NULL

Resources