Pi Estimator in R - r

The code below estimates pi in R, now I am trying to find the minimum number of terms N_Min
you would have to include in your estimate of pie to make it accurate to three decimal places.
pi_Est<- function(NTerms){
NTerms = 5 # start with an estimate of just five terms
pi_Est = 0 # initialise the value of pi to zero
Sum_i = NA # initialise the summation variable to null
for(ii in 1:NTerms)
{
Sum_i[ii] = (-1)^(ii+1)/(2*ii - 1) # this is the series equation for calculating pi
}
Sum_i = 4*Sum_i # multiply by four as required in the formula (see lecture notes)
pi_Est = sum(Sum_i)
cat('\nThe estimate of pi with terms = ', NTerms ,' is ',pi_Est)
}

First of all, I would change some things about your function. Instead of getting it to print out a message, get it to return a value. Otherwise it becomes very difficult to do anything with its output, including testing it for convergence to pi.
Also, no matter what the value of NTerms is you feed this function, you are immediately over-writing NTerms inside the function.
You could rewrite the function like this:
pi_Est <- function(NTerms) {
pi_Est <- 0
Sum_i <- numeric()
for(ii in seq(NTerms))
{
Sum_i[ii] <- (-1)^(ii+1)/(2*ii - 1)
}
return(sum(4 * Sum_i))
}
And to show it converges to pi, let's test it with 50,000 terms:
pi_Est(50000)
#> [1] 3.141573
Now, if we want to find the first value of NTerms that is correct to 3 decimal places, we are going to need to be able to call this function on a vector of NTerms - at the moment it is only working on a single number. So let's define the function f that vectorizes pi_Est:
f <- Vectorize(pi_Est)
Now, let's create the estimate for all values of NTerms between 1 and 2,000 and store them in a vector:
estimates <- f(1:2000)
We can see that the values of estimates seem to oscillate round and converge to pi if we plot the first 100 values:
plot(estimates[1:100], type = 'l')
abline(h = pi)
Our answer is just the first value which, when rounded to three decimal places, is the same as pi rounded to three decimal places:
result <- which(round(estimates, 3) == round(pi, 3))[1]
result
#> [1] 1103
And we can check this is correct by feeding 1103 into our original function:
pi_Est(result)
#> [1] 3.142499
You will see that this gives us 3.142, which is the same as pi rounded to 3 decimal places.
Created on 2022-01-31 by the reprex package (v2.0.1)

1000 terms are required to make the estimate accurate to within 0.001:
pi_Est1 <- function(n) {
if (n == 0) return(0)
neg <- 1/seq(3, 2*n + 1, 4)
if (n%%2) neg[length(neg)] <- 0
4*sum(1/seq(1, 2*n, 4) - neg)
}
pi_Est2 <- function(tol) {
for (i in ceiling(1/tol + 0.5):0) {
est <- pi_Est1(i)
if (abs(est - pi) > tol) break
est1 <- est
}
list(NTerms = i + 1, Estimate = est1)
}
tol <- 1e-3
pi_Est2(tol)
#> $NTerms
#> [1] 1000
#>
#> $Estimate
#> [1] 3.140593
tol - abs(pi - pi_Est2(tol)$Estimate)
#> [1] 2.500001e-10
tol - abs(pi - pi_Est1(pi_Est2(tol)$NTerms - 1))
#> [1] -1.00075e-06
Created on 2022-01-31 by the reprex package (v2.0.1)

Perhaps we can try the code below
pi_Est <- function(digits = 3) {
s <- 0
ii <- 1
repeat {
s <- s + 4 * (-1)^(ii + 1) / (2 * ii - 1)
if (round(s, digits) == round(pi, digits)) break
ii <- ii + 1
}
list(est = s, iter = ii)
}
and you will see
> pi_Est()
$est
[1] 3.142499
$iter
[1] 1103
> pi_Est(5)
$est
[1] 3.141585
$iter
[1] 130658

Why not use a single line of code for the calculation?
Pi <- tail(cumsum(4*(1/seq(1,4*50000000,2))*rep(c(1,-1), 50000000)),1)

Related

Combinatorial optimization with discrete options in R

I have a function with five variables that I want to maximize using only an specific set of parameters for each variable.
Are there any methods in R that can do this, other than by brutal force? (e.g. Particle Swarm Optimization, Genetic Algorithm, Greedy, etc.). I have read a few packages but they seem to create their own set of parameters from within a given range. I am only interested in optimizing the set of options provided.
Here is a simplified version of the problem:
#Example of 5 variable function to optimize
Fn<-function(x){
a=x[1]
b=x[2]
c=x[3]
d=x[4]
e=x[5]
SUM=a+b+c+d+e
return(SUM)
}
#Parameters for variables to optimize
Vars=list(
As=c(seq(1.5,3, by = 0.3)), #float
Bs=c(1,2), #Binary
Cs=c(seq(1,60, by=10)), #Integer
Ds=c(seq(60,-60, length.out=5)), #Negtive
Es=c(1,2,3)
)
#Full combination
FullCombn= expand.grid(Vars)
Results=data.frame(I=as.numeric(), Sum=as.numeric())
for (i in 1:nrow(FullCombn)){
ParsI=FullCombn[i,]
ResultI=Fn(ParsI)
Results=rbind(Results,c(I=i,Sum=ResultI))
}
#Best iteration (Largest result)
Best=Results[Results[, 2] == max(Results[, 2]),]
#Best parameters
FullCombn[Best$I,]
Two more possibilities. Both minimize by default, so I flip the sign in your objective function (i.e. return -SUM).
#Example of 5 variable function to optimize
Fn<-function(x, ...){
a=x[1]
b=x[2]
c=x[3]
d=x[4]
e=x[5]
SUM=a+b+c+d+e
return(-SUM)
}
#Parameters for variables to optimize
Vars=list(
As=c(seq(1.5,3, by = 0.3)), #float
Bs=c(1,2), #Binary
Cs=c(seq(1,60, by=10)), #Integer
Ds=c(seq(60,-60, length.out=5)), #Negtive
Es=c(1,2,3)
)
First, a grid search. Exactly what you did, just convenient. And the implementation allows you to distribute the evaluations of the objective function.
library("NMOF")
gridSearch(fun = Fn,
levels = Vars)[c("minfun", "minlevels")]
## 5 variables with 6, 2, 6, 5, ... levels: 1080 function evaluations required.
## $minfun
## [1] -119
##
## $minlevels
## [1] 3 2 51 60 3
An alternative: a simple Local Search. You start with a valid initial guess, and then move randomly through possible feasible solutions. The key ingredient is the neighbourhood function. It picks one element randomly and then, again randomly, sets this element to one allowed value.
nb <- function(x, levels, ...) {
i <- sample(length(levels), 1)
x[i] <- sample(levels[[i]], 1)
x
}
(There would be better algorithms for neighbourhood functions; but this one is simple and so demonstrates the idea well.)
LSopt(Fn, list(x0 = c(1.8, 2, 11, 30, 2), ## a feasible initial solution
neighbour = nb,
nI = 200 ## iterations
),
levels = Vars)$xbest
## Local Search.
## ##...
## Best solution overall: -119
## [1] 3 2 51 60 3
(Disclosure: I am the maintainer of package NMOF, which provides functions gridSearch and LSopt.)
In response to the comment, a few remarks on Local Search and the neighbourhood function above (nb). Local Search, as implemented in
LSopt, will start with an arbitrary solution, and
then change that solution slightly. This new solution,
called a neighbour, will be compared (by its
objective-function value) to the old solution. If the new solution is
better, it becomes the current solution; otherwise it
is rejected and the old solution remains the current one.
Then the algorithm repeats, for a number of iterations.
So, in short, Local Search is not random sampling, but
a guided random-walk through the search space. It's
guided because only better solutions get accepted, worse one's get rejected. In this sense, LSopt will narrow down on good parameter values.
The implementation of the neighbourhood is not ideal
for two reasons. The first is that a solution may not
be changed at all, since I sample from feasible
values. But for a small set of possible values as here,
it might often happen that the same element is selected
again. However, for larger search spaces, this
inefficiency is typically negligible, since the
probability of sampling the same value becomes
smaller. Often so small, that the additional code for
testing if the solution has changed becomes more
expensive that the occasionally-wasted iteration.
A second thing could be improved, albeit through a more
complicated function. And again, for this small problem it does not matter. In the current neighbourhood, an
element is picked and then set to any feasible value.
But that means that changes from one solution to the
next might be large. Instead of picking any feasible values of the As,
in realistic problems it will often be better to pick a
value close to the current value. For example, when you are at 2.1, either move to 1.8 or 2.4, but not to 3.0. (This reasoning is only relevant, of course, if the variable in question is on a numeric or at least ordinal scale.)
Ultimately, what implementation works well can be
tested only empirically. Many more details are in this tutorial.
Here is one alternative implementation. A solution is now a vector of positions for the original values, e.g. if x[1] is 2, it "points" to 1.8, if x[2] is 2, it points to 1, and so on.
## precompute lengths of vectors in Vars
lens <- lengths(Vars)
nb2 <- function(x, lens, ...) {
i <- sample(length(lens), 1)
if (x[i] == 1L) {
x[i] <- 2
} else if (x[i] == lens[i]) {
x[i] <- lens[i] - 1
} else
x[i] <- x[i] + sample(c(1, -1), 1)
x
}
## the objective function now needs to map the
## indices in x back to the levels in Vars
Fn2 <- function(x, levels, ...){
y <- mapply(`[`, levels, x)
## => same as
## y <- numeric(length(x))
## y[1] <- Vars[[1]][x[1]]
## y[2] <- Vars[[2]][x[2]]
## ....
SUM <- sum(y)
return(-SUM)
}
xbest <- LSopt(Fn2,
list(x0 = c(1, 1, 1, 1, 1), ## an initial solution
neighbour = nb2,
nI = 200 ## iterations
),
levels = Vars,
lens = lens)$xbest
## Local Search.
## ....
## Best solution overall: -119
## map the solution back to the values
mapply(`[`, Vars, xbest)
## As Bs Cs Ds Es
## 3 2 51 60 3
Here is a genetic algorithm solution with package GA.
The key is to write a function decode enforcing the constraints, see the package vignette.
library(GA)
#> Loading required package: foreach
#> Loading required package: iterators
#> Package 'GA' version 3.2.2
#> Type 'citation("GA")' for citing this R package in publications.
#>
#> Attaching package: 'GA'
#> The following object is masked from 'package:utils':
#>
#> de
decode <- function(x) {
As <- Vars$As
Bs <- Vars$Bs
Cs <- Vars$Cs
Ds <- rev(Vars$Ds)
# fix real variable As
i <- findInterval(x[1], As)
if(x[1L] - As[i] < As[i + 1L] - x[1L])
x[1L] <- As[i]
else x[1L] <- As[i + 1L]
# fix binary variable Bs
if(x[2L] - Bs[1L] < Bs[2L] - x[2L])
x[2L] <- Bs[1L]
else x[2L] <- Bs[2L]
# fix integer variable Cs
i <- findInterval(x[3L], Cs)
if(x[3L] - Cs[i] < Cs[i + 1L] - x[3L])
x[3L] <- Cs[i]
else x[3L] <- Cs[i + 1L]
# fix integer variable Ds
i <- findInterval(x[4L], Ds)
if(x[4L] - Ds[i] < Ds[i + 1L] - x[4L])
x[4L] <- Ds[i]
else x[4L] <- Ds[i + 1L]
# fix the other, integer variable
x[5L] <- round(x[5L])
setNames(x , c("As", "Bs", "Cs", "Ds", "Es"))
}
Fn <- function(x){
x <- decode(x)
# a <- x[1]
# b <- x[2]
# c <- x[3]
# d <- x[4]
# e <- x[5]
# SUM <- a + b + c + d + e
SUM <- sum(x, na.rm = TRUE)
return(SUM)
}
#Parameters for variables to optimize
Vars <- list(
As = seq(1.5, 3, by = 0.3), # Float
Bs = c(1, 2), # Binary
Cs = seq(1, 60, by = 10), # Integer
Ds = seq(60, -60, length.out = 5), # Negative
Es = c(1, 2, 3)
)
res <- ga(type = "real-valued",
fitness = Fn,
lower = c(1.5, 1, 1, -60, 1),
upper = c(3, 2, 51, 60, 3),
popSize = 1000,
seed = 123)
summary(res)
#> ── Genetic Algorithm ───────────────────
#>
#> GA settings:
#> Type = real-valued
#> Population size = 1000
#> Number of generations = 100
#> Elitism = 50
#> Crossover probability = 0.8
#> Mutation probability = 0.1
#> Search domain =
#> x1 x2 x3 x4 x5
#> lower 1.5 1 1 -60 1
#> upper 3.0 2 51 60 3
#>
#> GA results:
#> Iterations = 100
#> Fitness function value = 119
#> Solutions =
#> x1 x2 x3 x4 x5
#> [1,] 2.854089 1.556080 46.11389 49.31045 2.532682
#> [2,] 2.869408 1.638266 46.12966 48.71106 2.559620
#> [3,] 2.865254 1.665405 46.21684 49.04667 2.528606
#> [4,] 2.866494 1.630416 46.12736 48.78017 2.530454
#> [5,] 2.860940 1.650015 46.31773 48.92642 2.521276
#> [6,] 2.851644 1.660358 46.09504 48.81425 2.525504
#> [7,] 2.855078 1.611837 46.13855 48.62022 2.575492
#> [8,] 2.857066 1.588893 46.15918 48.60505 2.588992
#> [9,] 2.862644 1.637806 46.20663 48.92781 2.579260
#> [10,] 2.861573 1.630762 46.23494 48.90927 2.555612
#> ...
#> [59,] 2.853788 1.640810 46.35649 48.87381 2.536682
#> [60,] 2.859090 1.658127 46.15508 48.85404 2.590679
apply(res#solution, 1, decode) |> t() |> unique()
#> As Bs Cs Ds Es
#> [1,] 3 2 51 60 3
Created on 2022-10-24 with reprex v2.0.2

Why am I getting NAs in this calculation in R?

While working on an Rcpp program, I used the sample() function, which gave me the following error: "NAs not allowed in probability." I traced this issue to the fact that the probability vector I used had NA values in it. I have no idea how. Below is some R code that captures the errors:
n.0=20
n.1=20
n.reps=1
beta0.vals=rep(seq(-.3,.1,,n.0),n.reps)
beta1.vals=rep(seq(-7,0,,n.1),n.reps)
beta.grd=as.matrix(expand.grid(beta0.vals,beta1.vals))
n.rnd=200
beta.rnd.grd=cbind(runif(n.rnd,min(beta0.vals),max(beta0.vals)),runif(n.rnd,min(beta1.vals),max(beta1.vals)))
beta.grd=rbind(beta.grd,beta.rnd.grd)
N = 22670
count = 0
for(i in 1:dim(beta.grd)[1]){ # iterate through 600 possible beta values in beta grid
beta.ind = 0 # indicator for current pair of beta values
for(j in 1:N){ # iterate through all possible Nsums
logit = beta.grd[i,1]/N*(j - .1*N)^2 + beta.grd[i,2];
phi01 = exp(logit)/(1 + exp(logit))
if(is.na(phi01)){
count = count + 1
}
}
}
cat("Total number of invalid probabilities: ", count)
Here, $\beta_0 \in (-0.3, 0.1), \beta_1 \in (-7, 0), N = 22670, N_\text{sum} \in (1, N)$. Note that $N$ and $N_\text{sum}$ are integers, whereas the beta values may not be.
Since mathematically, $\phi_{01} \in (0,1)$, I'm assuming that NAs are arising because R is not liking extremely small values. I am receiving an overwhelming amount of NA values, too. More so than numbers. Why would I be getting NAs in this code?
Include print(logit) next to count = count + 1 and you will find lots of logit > 1000 values. exp(1000) == Inf so you divide Inf by Inf which will get you a NaN and NaN is NA:
> exp(500)
[1] 1.403592e+217
> Inf/Inf
[1] NaN
> is.na(NaN)
[1] TRUE
So your problems are not too small but to large numbers coming first out of the evaluation of exp(x) with x larger then roughly 700:
> exp(709)
[1] 8.218407e+307
> exp(710)
[1] Inf
Bernhard's answer correctly identifies the problem:
If logit is large, exp(logit) = Inf.
Here is a solution:
for(i in 1:dim(beta.grd)[1]){ # iterate through 600 possible beta values in beta grid
beta.ind = 0 # indicator for current pair of beta values
for(j in 1:N){ # iterate through all possible Nsums
logit = beta.grd[i,1]/N*(j - .1*N)^2 + beta.grd[i,2];
## This one isn't great because exp(logit) can be very large
# phi01 = exp(logit)/(1 + exp(logit))
## So, we say instead
## phi01 = 1 / ( 1 + exp(-logit) )
phi01 = plogis(logit)
if(is.na(phi01)){
count = count + 1
}
}
}
cat("Total number of invalid probabilities: ", count)
# Total number of invalid probabilities: 0
We can use the more stable 1 / (1 + exp(-logit)
(to convince yourself of this, multiply your expression with exp(-logit) / exp(-logit)),
and luckily either way, R has a builtin function plogis() that can calculate these probabilities quickly and accurately.
You can see from the help file (?plogis) that this function evaluates the expression I gave, but you can also double check to assure yourself
x = rnorm(1000)
y = 1 / (1 + exp(-x))
z = plogis(x)
all.equal(y, z)
[1] TRUE

Functions for multivariate numerical integration in R [duplicate]

I am using the following R code, taken from a published paper (citation below). This is the code:
int2=function(x,r,n,p) {
(1+x)^((n-1-p)/2)*(1+(1-r^2)*x)^(-(n-1)/2)*x^(-3/2)*exp(-n/(2*x))}
integrate(f=int2,lower=0,upper=Inf,n=530,r=sqrt(.245),p=3, stop.on.error=FALSE)
When I run it, I get the error "non-finite function value". Yet Maple is able to compute this as 4.046018765*10^27.
I tried using "integral" in package pracma, which gives me a different error:
Error in if (delta < tol) break : missing value where TRUE/FALSE needed
The overall goal is to compute a ratio of two integrals, as described in Wetzels & Wagenmakers (2012) "A default Bayesian hypothesis test for correlations" (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505519/). The entire function is as follows:
jzs.pcorbf = function(r0, r1, p0, p1, n) {
int = function(r,n,p,g) {
(1+g)^((n-1-p)/2)*(1+(1-r^2)*g)^(-(n-1)/2)*g^(-3/2)*exp(-n/(2*g))};
bf10=integrate(int, lower=0,upper=Inf,r=r1,p=p1,n=n)$value/
integrate(int,lower=0,upper=Inf,r=r0,p=p0,n=n)$value;
return(bf10)
}
Thanks!
The issue is that your integral function is generating NaN values when called with x values in its domain. You're integrating from 0 to Infinity, so let's check a valid x value of 1000:
int2(1000, sqrt(0.245), 530, 3)
# [1] NaN
Your objective multiplies four pieces:
x <- 1000
r <- sqrt(0.245)
n <- 530
p <- 3
(1+x)^((n-1-p)/2)
# [1] Inf
(1+(1-r^2)*x)^(-(n-1)/2)
# [1] 0
x^(-3/2)
# [1] 3.162278e-05
exp(-n/(2*x))
# [1] 0.7672059
We can now see that the issue is that you're multiplying infinity by 0 (or rather something numerically equal to infinity times something numerically equal to 0), which is causing the numerical issues. Instead of calculating a*b*c*d, it will be more stable to calculate exp(log(a) + log(b) + log(c) + log(d)) (using the identity that log(a*b*c*d) = log(a)+log(b)+log(c)+log(d)). One other quick note -- the value x=0 needs a special case.
int3 = function(x, r, n, p) {
loga <- ((n-1-p)/2) * log(1+x)
logb <- (-(n-1)/2) * log(1+(1-r^2)*x)
logc <- -3/2 * log(x)
logd <- -n/(2*x)
return(ifelse(x == 0, 0, exp(loga + logb + logc + logd)))
}
integrate(f=int3,lower=0,upper=Inf,n=530,r=sqrt(.245),p=3, stop.on.error=FALSE)
# 1.553185e+27 with absolute error < 2.6e+18

root values of simultaneous nonlinear equations in R

I've been trying to code this problem:
https://sg.answers.yahoo.com/question/index?qid=20110127015240AA9RjyZ
I believe there is a R function somewhere to solve for the root values of the following equations:
(x+3)^2 + (y-50)^2 = 1681
(x-11)^2 + (y+2)^2 = 169
(x-13)^2 + (y-34)^2 = 625
I tried using the 'solve' function but they're only for linear equations(?)
Also tried 'nls'
dt = data.frame(a=c(-3,11,13), b = c(50, -2, 34), c = c(1681,169,625))
nls(c~(x-a)^2 + (y-b)^2, data = dt, start = list(x = 1, y = 1))
but getting an error all the time. (and yes I already tried changing the max iteration)
Error in nls(c ~ (x - a)^2 + (y - b)^2, data = dt, start = list(x = 1, :
number of iterations exceeded maximum of 50
how do you solve the root values in R?
nls does not work with zero residual data -- see ?nls where this is mentioned. nlxb in the nlmrt package is mostly similar to nls in terms of input arguments and does support zero residual data. Using dt from the question just replace nls with nlxb:
library(nlmrt)
nlxb(c~(x-a)^2 + (y-b)^2, data = dt, start = list(x = 1, y = 1))
giving:
nlmrt class object: x
residual sumsquares = 2.6535e-20 on 3 observations
after 5 Jacobian and 6 function evaluations
name coeff SE tstat pval gradient JSingval
x 6 7.21e-12 8.322e+11 7.649e-13 -1.594e-09 96.93
y 10 1.864e-12 5.366e+12 1.186e-13 -1.05e-08 22.45
You cannot always solve three equations for two variables.You can solve two equations for two variables and test if the solution satisfies the third equation.
Use package nleqslv as follows.
library(nleqslv)
f1 <- function(z) {
f <- numeric(2)
x <- z[1]
y <- z[2]
f[1] <- (x+3)^2 + (y-50)^2 - 1681
f[2] <- (x-11)^2 + (y+2)^2 - 169
f
}
f2 <- function(z) {
x <- z[1]
y <- z[2]
(x-13)^2 + (y-34)^2 - 625
}
zstart <- c(0,0)
z1 <- nleqslv(zstart,f1)
z1
f2(z1$x)
which gives you the following output:
>z1
$x
[1] 6 10
$fvec
[1] 7.779818e-09 7.779505e-09
$termcd
[1] 1
$message
[1] "Function criterion near zero"
$scalex
[1] 1 1
$nfcnt
[1] 9
$njcnt
[1] 1
$iter
[1] 9
>f2(z1$x)
[1] 5.919242e-08
So a solution has been found and the solution follows from the vector z$x. Inserting z$x in function f2 also gives almost zero.
So a solution has been found.
You could also try package BB.
Just go through rootSolve package and you will be done:
https://cran.r-project.org/web/packages/rootSolve/vignettes/rootSolve.pdf

"non-finite function value" when using integrate() in R

I am using the following R code, taken from a published paper (citation below). This is the code:
int2=function(x,r,n,p) {
(1+x)^((n-1-p)/2)*(1+(1-r^2)*x)^(-(n-1)/2)*x^(-3/2)*exp(-n/(2*x))}
integrate(f=int2,lower=0,upper=Inf,n=530,r=sqrt(.245),p=3, stop.on.error=FALSE)
When I run it, I get the error "non-finite function value". Yet Maple is able to compute this as 4.046018765*10^27.
I tried using "integral" in package pracma, which gives me a different error:
Error in if (delta < tol) break : missing value where TRUE/FALSE needed
The overall goal is to compute a ratio of two integrals, as described in Wetzels & Wagenmakers (2012) "A default Bayesian hypothesis test for correlations" (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505519/). The entire function is as follows:
jzs.pcorbf = function(r0, r1, p0, p1, n) {
int = function(r,n,p,g) {
(1+g)^((n-1-p)/2)*(1+(1-r^2)*g)^(-(n-1)/2)*g^(-3/2)*exp(-n/(2*g))};
bf10=integrate(int, lower=0,upper=Inf,r=r1,p=p1,n=n)$value/
integrate(int,lower=0,upper=Inf,r=r0,p=p0,n=n)$value;
return(bf10)
}
Thanks!
The issue is that your integral function is generating NaN values when called with x values in its domain. You're integrating from 0 to Infinity, so let's check a valid x value of 1000:
int2(1000, sqrt(0.245), 530, 3)
# [1] NaN
Your objective multiplies four pieces:
x <- 1000
r <- sqrt(0.245)
n <- 530
p <- 3
(1+x)^((n-1-p)/2)
# [1] Inf
(1+(1-r^2)*x)^(-(n-1)/2)
# [1] 0
x^(-3/2)
# [1] 3.162278e-05
exp(-n/(2*x))
# [1] 0.7672059
We can now see that the issue is that you're multiplying infinity by 0 (or rather something numerically equal to infinity times something numerically equal to 0), which is causing the numerical issues. Instead of calculating a*b*c*d, it will be more stable to calculate exp(log(a) + log(b) + log(c) + log(d)) (using the identity that log(a*b*c*d) = log(a)+log(b)+log(c)+log(d)). One other quick note -- the value x=0 needs a special case.
int3 = function(x, r, n, p) {
loga <- ((n-1-p)/2) * log(1+x)
logb <- (-(n-1)/2) * log(1+(1-r^2)*x)
logc <- -3/2 * log(x)
logd <- -n/(2*x)
return(ifelse(x == 0, 0, exp(loga + logb + logc + logd)))
}
integrate(f=int3,lower=0,upper=Inf,n=530,r=sqrt(.245),p=3, stop.on.error=FALSE)
# 1.553185e+27 with absolute error < 2.6e+18

Resources