geom_ribbon() with shape aesthetic causes differences in opacity - r

When using geom_ribbon() with the shape aesthetic, there appears to be a difference in the opacity on the shaded area creating blocks in the region.
I have recreated the problem where I identified that these opacity changes are only present when the shape aesthetic is included.
Data set up:
alpha <- c("A","B","C","D", "E", "F", "G")
percent <- c(0.012, -0.02, 0.015, -0.01, 0.89, 0.12, -0.25)
flow <- c(-5, 2, -3, 3, 1, 4, -2)
shape <- c("D", "D", "L", "L", "L", "D", "L")
df <- data.frame(alpha,percent,flow, shape)
x_min = min(df$percent)
x_min = round(x_min/0.01)*0.01 - 0.01
x_max = max(df$percent)
x_max = round(x_max/0.01)*0.01 + 0.01
y_min = min(df$flow)
y_min = round(y_min)
y_max = max(df$flow)
y_max = round(y_max)
n_row = nrow(df)
Chart with no shape aesthetic, geom_ribbon() works:
df %>%
ggplot(aes(x = percent, y = flow, label = alpha)) +
geom_point() +
geom_text_repel(show.legend = FALSE, size = 3) +
scale_size_continuous(labels = scales::percent) +
theme_bw() +
scale_x_continuous(labels = scales::percent_format(accuracy = 0.1L)) +
scale_y_continuous(labels = scales::dollar_format(negative_parens = TRUE, suffix = "m")) +
geom_ribbon(aes(x = seq(x_min, x_max + 0.01, length.out = n_row), ymin = 0, ymax = y_max), alpha = 0.04, linetype = 0, show.legend = FALSE, fill = "green") +
geom_ribbon(aes(x = seq(x_min, x_max + 0.01, length.out = n_row), ymin = y_min, ymax = 0), alpha = 0.04, linetype = 0, show.legend = FALSE, fill = "red")
Chart with shape aesthetic, geom_ribbon() seems not to work:
df %>%
ggplot(aes(x = percent, y = flow, label = alpha, shape = shape)) +
geom_point() +
geom_text_repel(show.legend = FALSE, size = 3) +
scale_size_continuous(labels = scales::percent) +
theme_bw() +
scale_x_continuous(labels = scales::percent_format(accuracy = 0.1L)) +
scale_y_continuous(labels = scales::dollar_format(negative_parens = TRUE, suffix = "m")) +
geom_ribbon(aes(x = seq(x_min, x_max + 0.01, length.out = n_row), ymin = 0, ymax = y_max), alpha = 0.04, linetype = 0, show.legend = FALSE, fill = "green") +
geom_ribbon(aes(x = seq(x_min, x_max + 0.01, length.out = n_row), ymin = y_min, ymax = 0), alpha = 0.04, linetype = 0, show.legend = FALSE, fill = "red")

The issue is some kind of overplotting and the way you add the background fills via geom_ribbon. Basically, by adding shape as a global aesthetic your data gets grouped and your ribbons are drawn multiple times, once for each group. To solve this issue make shape a local aes by moving it inside geom_point:
library(ggplot2)
ggplot(df, aes(x = percent, y = flow, label = alpha)) +
geom_point(aes(shape = shape)) +
ggrepel::geom_text_repel(show.legend = FALSE, size = 3) +
scale_size_continuous(labels = scales::percent) +
theme_bw() +
scale_x_continuous(labels = scales::percent_format(accuracy = 0.1L)) +
scale_y_continuous(labels = scales::dollar_format(negative_parens = TRUE, suffix = "m")) +
geom_ribbon(aes(x = seq(x_min, x_max + 0.01, length.out = n_row), ymin = 0, ymax = y_max), alpha = 0.04, linetype = 0, show.legend = FALSE, fill = "green") +
geom_ribbon(aes(x = seq(x_min, x_max + 0.01, length.out = n_row), ymin = y_min, ymax = 0), alpha = 0.04, linetype = 0, show.legend = FALSE, fill = "red")
However, instead of making use of geom_ribbon in my opinion you could get your result much easier and less error prone by adding your background rectangles via annotate, which depending on your desired result does not even require to compute the min and max values. Instead you could simply use -Inf and Inf:
ggplot(df, aes(x = percent, y = flow, label = alpha, shape = shape)) +
geom_point() +
ggrepel::geom_text_repel(show.legend = FALSE, size = 3) +
scale_size_continuous(labels = scales::percent) +
theme_bw() +
scale_x_continuous(labels = scales::percent_format(accuracy = 0.1)) +
scale_y_continuous(labels = scales::dollar_format(negative_parens = TRUE, suffix = "m")) +
annotate(geom = "rect", xmin = -Inf, xmax = Inf, ymin = 0, ymax = Inf, alpha = 0.04, fill = "green") +
annotate(geom = "rect", xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = 0, alpha = 0.04, fill = "red")

Related

How to create shaded effects to display confidence interval / error bar on a ggplot2 bar chart?

I would like to reproduce the visual effect from this chart in order to display the confidence interval for an indicator.
This looks a lot more intuitive than the regular error_bar / whisker.
I checked a bit some reference - like https://www.datanovia.com/en/lessons/ggplot-error-bars/ - and tried to play with errorbar and line range..
my_df <-
tibble::tribble(~response, ~estimate, ~lower_ci, ~upper_ci,
"little_bit", 0.353477, 0.255625, 0.451747,
"no", 0.307639, 0.250436, 0.375393,
"very", 0.338883, 0.301007, 0.37572310)
ggplot(my_df, aes(x = reorder(response, -estimate), y = estimate)) +
geom_linerange(aes( ymin = lower_ci, ymax = upper_ci),
width = 0.9,
size = 45,
color = "red",
alpha = 0.7
) +
geom_errorbar(aes(ymin = estimate, ymax = estimate),
width = 0.9,
size = 2 ,
color = "#6EB3FF")
Still not the nice shaded / gradient effects...
Thanks for help!
You'd probably need to do this "manually"
ggplot(my_df, aes(x = reorder(response, -estimate))) +
geom_linerange(data = my_df %>%
group_by(response) %>%
summarize(ymin = lead(seq(lower_ci, upper_ci, length = 100)),
ymax = lag(seq(lower_ci, upper_ci, length = 100)),
alpha = c(seq(0, 0.5, length = 50),
seq(0.5, 0, length = 50)),
estimate = estimate),
aes(ymin = ymin, ymax = ymax, alpha = alpha,
color = response),
size = 45) +
geom_errorbar(aes(ymin = estimate, ymax = estimate),
width = 0.9,
size = 2 ,
color = "#3453A2") +
scale_alpha_identity() +
guides(color = guide_none()) +
xlab("Response") +
theme_minimal(base_size = 20) +
theme(plot.background = element_rect(fill = "#fff2e6", color = NA),
panel.background = element_rect(fill = "#fff9f4", color = NA))

R: How to set full transparency in a quantile line in geom_density_ridges

First of all, some data similar to what I am working with.
rawdata <- data.frame(Score = rnorm(1000, seq(1, 0, length.out = 10), sd = 1),
Group = rep(LETTERS[1:3], 10000))
rawdata$Score <- ifelse(rawdata$Group == "A", rawdata$Score+2,rawdata$Score)
rawdata$Score <- ifelse(rawdata$Group == "C", rawdata$Score-2,rawdata$Score)
stdev <- c(10.78,10.51,9.42)
col <- c("#004d8d", "#cc2701", "#e5b400")
Now, the code of my geom_density_ridges with quantile lines, which in this case they will be white.
p <- ggplot(rawdata, aes(x = Score, y = Group)) +
scale_y_discrete() +
geom_rect(inherit.aes = FALSE, mapping = aes(ymin = 0, ymax = Inf, xmin = -0.1 * min(stdev), xmax = 0.1 * max(stdev)),
fill = "grey", alpha = 0.5) +
geom_density_ridges(scale = -0.5, size = 1, alpha=0.5, show.legend = FALSE,
quantile_lines = TRUE, quantiles = c(0.025, 0.975),
vline_color = "white", aes(fill = Group)) +
scale_color_manual(values = col) +
scale_fill_manual(values = col) +
labs(title="Toy Graph", y="Group", x="Value") +
coord_flip(xlim = c(-8, 8), ylim = NULL, expand = TRUE, clip = "on")
p
An we obtain the following plot, which is perfectly adjusted to expectation.
Now I was wondering if there was a way to make only this little white quantile line transparent to the background. I tried first to set the vline_color = "transparent" and leaving the aes(fill = Group) at the end of geom_density_ridges at the logic that options where drew in order but it gets transparent not to the different shades of grey background but to the density fill (so the quantile line disappears), which is not what I am trying to achieve.
Thanks in advance for your ideas!
Colors can be modified with scales::alpha. This can be passed to your color argument.
library(ggridges)
library(ggplot2)
rawdata <- data.frame(Score = rnorm(1000, seq(1, 0, length.out = 10), sd = 1),
Group = rep(LETTERS[1:3], 10000))
rawdata$Score <- ifelse(rawdata$Group == "A", rawdata$Score+2,rawdata$Score)
rawdata$Score <- ifelse(rawdata$Group == "C", rawdata$Score-2,rawdata$Score)
stdev <- c(10.78,10.51,9.42)
col <- c("#004d8d", "#cc2701", "#e5b400")
ggplot(rawdata, aes(x = Score, y = Group)) +
scale_y_discrete() +
geom_rect(inherit.aes = FALSE, mapping = aes(ymin = 0, ymax = Inf, xmin = -0.1 * min(stdev), xmax = 0.1 * max(stdev)),
fill = "grey", alpha = 0.5) +
geom_density_ridges(scale = -0.5, size = 1, alpha=0.5, show.legend = FALSE,
quantile_lines = TRUE, quantiles = c(0.025, 0.975),
### The only change is here
vline_color = alpha("white", .5), aes(fill = Group)) +
scale_color_manual(values = col) +
scale_fill_manual(values = col) +
labs(title="Toy Graph", y="Group", x="Value") +
coord_flip(xlim = c(-8, 8), ylim = NULL, expand = TRUE, clip = "on")
#> Picking joint bandwidth of 0.148
#> Warning: Using the `size` aesthietic with geom_segment was deprecated in ggplot2 3.4.0.
#> ℹ Please use the `linewidth` aesthetic instead.
Created on 2022-11-14 with reprex v2.0.2
No, if you make something transparent you will see what's underneath, which is the density plot.
However, you can replicate the visual effect of "seeing through to the background" by simply setting the line colour to the same as the background.
Your grey rectangle is currently plotted underneath the density plots, therefore the "background" doesn't have a single colour. This can be solved by plotting it on top instead. Instead of a 50% grey with 50% alpha, you can replicate the same effect with a 0% grey (aka black) with a 25% alpha. Move the geom_rect later than the density plots and it will be layered on top.
Finally, your geom_rect is being called once for each row of raw_data, since it inherits the same data as the main plot. You probably don't want that, so specify a (dummy) data source instead.
ggplot(rawdata, aes(x = Score, y = Group)) +
scale_y_discrete() +
geom_density_ridges(scale = -0.5, size = 1, alpha=0.5, show.legend = FALSE,
quantile_lines = TRUE, quantiles = c(0.025, 0.975),
vline_color = "grey90", aes(fill = Group)) +
scale_color_manual(values = col) +
scale_fill_manual(values = col) +
labs(title="Toy Graph", y="Group", x="Value") +
geom_rect(data=data.frame(), inherit.aes = FALSE, mapping = aes(
ymin = 0, ymax = Inf, xmin = -0.1 * min(stdev), xmax = 0.1 * max(stdev)
), fill = "black", alpha = 0.25) +
coord_flip(xlim = c(-8, 8), ylim = NULL, expand = TRUE, clip = "on")
Note: I'm not sure the background colour is really "grey90", I've eyeballed it. You may want to specify it explicitly with theme if you want to be exact.
If you want literal see-through portions of your density curves, you will need to make the gaps yourself:
library(tidyverse)
rawdata %>%
mutate(GroupNum = as.numeric(as.factor(Group))) %>%
group_by(GroupNum, Group) %>%
summarise(yval = first(GroupNum) - density(Score)$y,
xval = density(Score)$x,
q025 = quantile(Score, 0.025),
q975 = quantile(Score, 0.975)) %>%
mutate(Q = ifelse(xval < q025, 'low', ifelse(xval > q975, 'hi', 'mid'))) %>%
ggplot(aes(xval, yval, group = interaction(Group, Q))) +
geom_line(size = 1) +
geom_ribbon(aes(ymax = GroupNum, ymin = yval, fill = Group),
color = NA, alpha = 0.5, outline.type = 'full',
data = . %>% filter(abs(q025 - xval) > 0.03 &
abs(q975 - xval) > 0.03)) +
coord_flip() +
scale_fill_manual(values = col) +
scale_y_continuous(breaks = 1:3, labels = levels(factor(rawdata$Group)),
name = 'Group') +
labs(x = 'Score')

Draw a dashed transparent box around forecast lines

I have 3 forecast plots that are combined together by plotly::subplot. The next step is draw a transparent box (or 3 separate boxes) with red dashed lines around the forecast line of each plot so that they stand out to the reader.
How can I do this ?
Desired Output:
Data (df):
structure(list(year = 1980:2021, AvgTMean = c(24.2700686838937,
23.8852956598276, 25.094446596092, 24.1561175050287, 24.157183605977,
24.3047482638362, 24.7899738481466, 24.5756232655603, 24.5833086228592,
24.7344695534483, 25.3094451071121, 25.2100615173707, 24.3651692293534,
24.5423890611494, 25.2492166633908, 24.7005097837931, 24.2491591827443,
25.0912281781322, 25.0779264303305, 24.403294248319, 24.4983991453592,
24.4292324356466, 24.8179824927011, 24.7243948463075, 24.5086534543966,
24.2818632071983, 24.4567195220259, 24.8402224356034, 24.6574465515086,
24.5440715673563, 23.482670620977, 24.9979594684914, 24.5452453980747,
24.9271462811494, 24.7443215819253, 25.8929839790805, 25.1801908261063,
25.2079308058908, 25.0722425561207, 25.4554644289799, 25.4548979078736,
25.0756772250287), AvgTMin = c(19.6018663372126, 18.9935718486724,
20.8351710187356, 19.7723002680316, 19.8097384811782, 19.7280847671034,
20.2907499842098, 20.1950373662931, 20.1812715311494, 20.1808865070833,
21.0320272801006, 21.1252427976293, 20.1712830368678, 20.407655174727,
21.5430646243391, 20.6760574525862, 20.0822658237356, 21.0735574619397,
21.0871494406322, 20.1311178414224, 20.3191250001149, 20.3474683732557,
20.668169553204, 20.3772270269296, 20.2330157893678, 19.9486551337931,
20.1114496908333, 20.5816350393966, 20.4033879191236, 20.1582514856897,
19.2288879223678, 20.8451063140805, 20.4878865041092, 21.0259712576437,
20.5510100674138, 22.0143793370977, 21.3529094881753, 21.1688506012213,
21.040550304569, 21.4923981385632, 21.6580430460057, 21.2433069288506
), AvgTMax = c(28.9392198638937, 28.778245693046, 29.3549223685201,
28.5411393752011, 28.5058118063649, 28.8825532046983, 29.2903534709195,
28.9574051835776, 28.9865201368247, 29.2891997662069, 29.5881379007328,
29.2960976760201, 28.5602557685057, 28.6782844806753, 28.9566034394684,
28.7262054694971, 28.4171896994397, 29.1100747038649, 29.0698836095546,
28.6766350461063, 28.6788764437787, 28.5122026355891, 28.9690143596839,
29.0727844759914, 28.7854971337931, 28.6163189712069, 28.8032270024138,
29.1000460207471, 28.9127356101149, 28.9310646744109, 27.7376810545833,
29.1520129070402, 28.6037845089512, 28.8295359311638, 28.9388276133764,
29.7726939654598, 29.0086407880029, 29.2482097613937, 29.1050890698132,
29.4187571974569, 29.2519238543247, 28.9081913630029)), class = "data.frame", row.names = c(NA,
-42L))
Code
library(tidyverse)
library(plotly)
AvgTMeanYearFP = ggplot(df, aes(year, AvgTMean)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
labs(y = "Avg. Mean T (C)", x = "Year") +
geom_text(aes(x = 2000 , y = 25.5, label = "Historic Trend")) +
geom_text(aes(x = 2025 , y = 25.5, label = "Forecast Trend"))
AvgTMinYearFP = ggplot(df, aes(year, AvgTMin)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
ylim(18, 23) +
labs(y = "Avg. Min. T (C)", x = "Year")
AvgTMaxYearFP = ggplot(df, aes(year, AvgTMax)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
ylim(27, 30) +
labs(y = "Avg. Max. T (C)", x = "Year")
# Combine plots
subplot(AvgTMeanYearFP, AvgTMinYearFP, AvgTMaxYearFP, titleY = TRUE, shareX = TRUE, nrows = 3) %>%
layout(title ="Historic Average Temperature And Future Temperature Projection")
I actually like one box over all plots more aesthetically. Had a hard time doing this, because there seems to be a known issue with using ggplotly and the layout() function. That's why the shapes are put in p$x$layout$shapes like this.
# Combine plots
p <- subplot(AvgTMeanYearFP, AvgTMinYearFP, AvgTMaxYearFP, titleY = TRUE, shareX = TRUE, nrows = 3) %>%
layout(title ="Historic Average Temperature And Future Temperature Projection")
p$x$layout$shapes <- list(type = "rect",
line = list(color = "red",
dash = 'dash'),
x0 = 2021,
x1 = 2030,
xref = "x",
y0 = 0,
y1 = 1,
yref = "paper")
p
An alternative to a dashed box could be using the opacity.
list(type = "rect",
fillcolor = "red",
opacity = 0.1,
x0 = 2021,
x1 = 2030,
xref = "x",
y0 = 0,
y1 = 1,
yref = "paper")
I can also get you some of the way there - by making a red box in each figure, but putting a single box across the whole plot is going to be more challenging.
library(tidyverse)
library(plotly)
add_box <- function(p, start=2022, stop=NULL, prop_in=.05, ...){
pb <- ggplot_build(p)
rgy <- pb$layout$panel_params[[1]]$y.range
rgx <- pb$layout$panel_params[[1]]$x.range
px1 <- diff(rgx)*prop_in
py1 <- diff(rgy)*prop_in
rgx <- c(1,-1)*px1 + rgx
rgy <- c(1,-1)*py1 + rgy
rgx[1] <- start
if(!is.null(stop)){
rgx[2] <- stop
}
boxdf <- data.frame(x = rgx[c(1,2,2,1,1)],
y=rgy[c(1,1,2,2,1)])
p + geom_path(data=boxdf,
aes(x=x,
y=y),
col="red",
linetype=2)
}
AvgTMeanYearFP = ggplot(df, aes(year, AvgTMean)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
labs(y = "Avg. Mean T (C)", x = "Year") +
geom_text(aes(x = 2000 , y = 25.5, label = "Historic Trend")) +
geom_text(aes(x = 2025 , y = 25.5, label = "Forecast Trend"))
AvgTMinYearFP = ggplot(df, aes(year, AvgTMin)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
ylim(18, 23) +
labs(y = "Avg. Min. T (C)", x = "Year")
AvgTMaxYearFP = ggplot(df, aes(year, AvgTMax)) +
geom_smooth(method = 'lm', fullrange = TRUE) +
annotate('rect', xmin = -Inf, xmax = 2021, ymin = -Inf, ymax = Inf,
fill = 'gray92') +
geom_vline(xintercept = seq(1980, 2020, 5), color = 'white') +
geom_hline(yintercept = seq(23.5, 25.5, 0.5), color = 'white') +
geom_line() +
scale_x_continuous(limits = c(1980, 2030)) +
ylim(27, 30) +
labs(y = "Avg. Max. T (C)", x = "Year")
# Combine plots
subplot(AvgTMeanYearFP %>% add_box(stop=2030, prop_in=.05),
AvgTMinYearFP %>% add_box(stop=2030, prop_in=.05),
AvgTMaxYearFP %>% add_box(stop=2030, prop_in=.05),
titleY = TRUE, shareX = TRUE, nrows = 3) %>%
layout(title ="Historic Average Temperature And Future Temperature Projection")
The add_box() function does a few different things. First, it builds your plot so I can grab the ranges of the x and y axes. If you try to plot the box all the way to the end of the range, the top, bottom and right side lines don't print. So, I have it pull the those edges prop_in toward the interior of the plot. I found that .05 is about the smallest that worked. Then, I change the rgx and rgy objects accordingly. Then, I replace the first and optionally second value of rgx with the start and stop arguments from the function call. I take the range values and make them into a data frame that will be amenable to plot with geom_path() and then I add the appropriate geom_path() function to your existing plot.

using a grouping variable and geom_rect

I want to show covered ranges (including overlaps) and (after some failures with stacked bar plots) I chose geom_rect. The following code works well for one type.
library(tidyverse)
# create dummy data
foo <- tibble(start = c(1, 150, 140, 75, 300),
end = c(150, 180, 170, 160, 400))
ggplot() +
geom_rect(data = foo, aes(xmin = start, xmax = end, ymin = 0, ymax = 1), fill = "green", linetype = "blank", alpha = 0.3) +
geom_rect(data = foo, aes(xmin = 1, xmax = max(end), ymin = 0, ymax = 1), fill = NA, colour = "black") +
scale_y_continuous(name = "", breaks = NULL, limits = c(0, 1)) +
scale_x_continuous(name = "", breaks = NULL) +
theme_minimal() +
theme(panel.grid = element_blank())
If I add more data (only one more type, but in the original data I do have some more) like below, I can add the data "by hand", i.e. add two lines of code for each type, but I'm looking for a way to do this by grouping, but didn't succeed.
foo <- foo %>%
mutate(type = "A", .before = 1)
bar <- tibble(type = "B",
start = c(1, 30, 40, 100, 150, 200, 310),
end = c(20, 50, 100, 120, 200, 300, 380))
foo <- bind_rows(foo, bar)
ggplot() +
geom_rect(data = foo %>% filter(type == "A"), aes(xmin = start, xmax = end, ymin = 0, ymax = 1), fill = "green", linetype = "blank", alpha = 0.3) +
geom_rect(data = foo, aes(xmin = 1, xmax = max(end), ymin = 0, ymax = 1), fill = NA, colour = "black") +
geom_rect(data = foo %>% filter(type == "B"), aes(xmin = start, xmax = end, ymin = 2, ymax = 3), fill = "green", linetype = "blank", alpha = 0.3) +
geom_rect(data = foo, aes(xmin = 1, xmax = max(end), ymin = 2, ymax = 3), fill = NA, colour = "black") +
scale_y_continuous(name = "", breaks = NULL, limits = c(0, 3)) +
scale_x_continuous(name = "", breaks = NULL) +
geom_text(aes(x = c(0, 0), y = c(0.5, 2.5), label = c("A", "B")), size = 4, hjust = 2) +
theme_minimal() +
theme(panel.grid = element_blank())
So, the graph already looks the way I want, but I'd prefer to get here by using grouping (or any other non-manual way).
Maybe there's also a different geom or method to get this kind of graph?
You can write a small helper function that positions a categorical value in continuous space. Example below.
helper <- function(x) {(match(x, sort(unique(x))) - 1) * 2}
ggplot(foo) +
geom_rect(
aes(xmin = start, xmax = end,
ymin = helper(type),
ymax = helper(type) + 1),
fill = "green", linetype = "blank", alpha = 0.3
) +
geom_rect(
aes(xmin = min(start), xmax = max(end),
ymin = helper(type),
ymax = helper(type) + 1),
fill = NA, colour = "black"
) +
scale_y_continuous(name = "", breaks = NULL, limits = c(0, 3)) +
scale_x_continuous(name = "", breaks = NULL) +
annotate(
"text", x = c(0, 0), y = c(0.5, 2.5), label = c("A", "B"),
size = 4, hjust = 2
) +
theme_minimal() +
theme(panel.grid = element_blank())

waterfall chart in ggplot2 doesnt seem to render right

I am trying to recreate the waterfall chart as shown in
https://vita.had.co.nz/papers/ggplot2-wires.pdf
I am reproducing the code from the link
balance <- data.frame(event = c("Starting\nCash", "Sales", "Refunds",
"Payouts", "Court\nLosses", "Court\nWins", "Contracts", "End\nCash"),
change = c(2000, 3400, -1100, -100, -6600, 3800, 1400, -2800))
balance$balance <- cumsum(c(0, balance$change[-nrow(balance)]))
balance$time <- 1:nrow(balance)
balance$flow <- factor(sign(balance$change))
ggplot(balance) +
geom_hline(yintercept = 0, colour = "white", size = 2) +
geom_rect(aes(fill= 'red'),xmin = time - 0.45, xmax = time + 0.45, ymin = balance, ymax = balance)
geom_text(aes(x = time, y = pmin(balance, balance + change) - 50, label = dollar(change)),
hjust = 0.5, vjust = 1, size = 3)
scale_x_continuous( breaks = balance$time, labels = balance$event) +
scale_y_continuous("Balance") +
scale_fill_manual(values = c("-1" = "red", "1" = "black"))
it throws an error :Error in scale_x_continuous(breaks = balance$time, labels = balance$event) + : non-numeric argument to binary operator
THe final output, per the pdf should look like the image below
ggplot(balance %>%
mutate(flow = factor(flow, labels = c("Negative", "Positive")))) +
geom_hline(yintercept = 0, colour = "white", size = 2) +
geom_rect(aes(fill= flow, xmin = time - 0.45, xmax = time+0.45, ymin = change, ymax = balance),
color = "black") +
geom_text(aes(x = time, y = pmin(balance, balance + change) - 50, label = change),
hjust = 0.5, vjust = 1, size = 3) +
scale_x_continuous(breaks = balance$time, labels = balance$event) +
scale_y_continuous("Balance") +
scale_fill_manual(values = c("Negative" = "red", "Positive" = "green"))

Resources