Is there a Rust function which counts frequencies in a Vec? - vector

I want to count the frequencies of all elements in a given Vec, e.g. something like
count_frequencies(vec![1,1,1,4,1,2,3,5,4])
should return the following Vec:
[(1,4), (2,1), (3,1), (4,2), (5,1)]
(the order does not matter). While I know how I could implement such a function, it seems to me like there should already be an existing implementation in some crate. After some googling, I only found a crate named frequency, but didn't find any example in the documentation.
So, my question is: is there a crate that can achieve this task and, if so, how can I use it?
Edit: If you as well know a function which goes in the other direction, I would also be interested in that :)

Itertools offers counts, but you'd have to convert the result (a HashMap) into a Vec yourself.
Alternatively, sort the vector (costs O(n log n), but may - in practice - be faster than a HashMap-based approach) and use dedup_with_count on the sorted vector.

It isn't really needed because it is one-liner anyway:
let frequencies = v
.iter()
.copied()
.fold(HashMap::new(), |mut map, val|{
map.entry(val)
.and_modify(|frq|*frq+=1)
.or_insert(1);
map
});
There are different requirements for different tasks so there is no need to make some standard method for this.

Related

Rust reshape a vec into vec<vec>

let a: Vec<f32>;
let mut new: Vec<Vec<f32>>;
Assume that a has a size of n * n. How can I convert it into a 2D vector new?
Obviously, it would be very naive to simply iterate over the vector and do it by hand. Is there any way to do a quick and performant reshape?
No. If you're coming from numpy or similar tooling, numpy stores all arrays as one-dimensional and does arithmetic to make it look multi-dimensional, so performantly reshaping an array really does just involve changing an index somewhere. But a Vec in Rust is a one-dimensional structure, and a Vec<Vec<...>> is a nested datatype with a completely different structure, so you will actually have to copy all of the elements to the new vector. Iterating over the elements is the right way, in this case.
I applaud your efforts to find a better way, but in this case I do believe the answer is to just do it yourself.

"Adding" a value to a tuple?

I am attempting to represent dice rolls in Julia. I am generating all the rolls of a ndsides with
sort(collect(product(repeated(1:sides, n)...)), by=sum)
This produces something like:
[(1,1),(2,1),(1,2),(3,1),(2,2),(1,3),(4,1),(3,2),(2,3),(1,4) … (6,3),(5,4),(4,5),(3,6),(6,4),(5,5),(4,6),(6,5),(5,6),(6,6)]
I then want to be able to reasonably modify those tuples to represent things like dropping the lowest value in the roll or adding a constant number, etc., e.g., converting (2,5) into (10,2,5) or (5,).
Does Julia provide nice functions to easily modify (not necessarily in-place) n-tuples or will it be simpler to move to a different structure to represent the rolls?
Thanks.
Tuples are immutable, so you can't modify them in-place. There is very good support for other mutable data structures, so there aren't many methods that take a tuple and return a new, slightly modified copy. One way to do this is by splatting a section of the old tuple into a new tuple, so, for example, to create a new tuple like an existing tuple t but with the first element set to 5, you would write: tuple(5, t[2:end]...). But that's awkward, and there are much better solutions.
As spencerlyon2 suggests in his comment, a one dimensional Array{Int,1} is a great place to start. You can take a look at the Data Structures manual page to get an idea of the kinds of operations you can use; one-dimensional Arrays are iterable, indexable, and support the dequeue interface.
Depending upon how important performance is and how much work you're doing, it may be worthwhile to create your own data structure. You'll be able to add your own, specific methods (e.g., reroll!) for that type. And by taking advantage of some of the domain restrictions (e.g., if you only ever want to have a limited number of dice rolls), you may be able to beat the performance of the general Array.
You can construct a new tuple based on spreading or slicing another:
julia> b = (2,5)
(2, 5)
julia> (10, b...)
(10, 2, 5)
julia> b[2:end]
(5,)

in python what is the difference between map(func,list) and [func(x) for x in list]

As far as I can tell the only difference is speed and you have to be a bit tricker in how you define lambda functions.
For instance:
map(lambda x: x + 1, range(4)) == [(lambda x: x + 1)(y) for y in range(4)]
It seems to me like the second way is more pythonic, but I am not sure why.
EDIT:
Yes I understand that the lambda would be excluded in the second example, I was just trying to show as equivalent code as possible.
The right way to do this would be
[y + 1 for y in range(4)]
No need to construct a lambda function here. Your code would unnecessarily build a new function object in every single iteration of the list comprehension.
That said, you can write any call to map() as an equivalent list comprehension. If the first argument to map() is a lambda function, the list comprehension is usually preferred. If the first argument to map() is a function name, both variants are fine. Some people (including me) prefer, say,
map(str, my_list)
while others prefer
[str(x) for x in my_list]
There is no difference, but the pythonic way would be to omit the lambda completely:
[y + 1 for y in range(4)]
Note also that if your mapping function is a "built-in" (written in C) function, rather than a python function or a lambda, map will be faster.
Another pythonic, but uncommon, way (avoids unnecessary lambda) would be:
map(1 .__add__, range(4)) # thanks to SvenMarnach for this
It is usually preferable to avoid lambdas in mapping forms, because a list comprehension will always be more efficient, AND clearer. By contrast, using multi-line functions is perfectly acceptable - there is no way to write them inline, and even if you could, it would likely be less clear.
Another difference is that because map can take multiple sequences to map against, and passes them as positional parameters to the mapping function, one can avoid the zipping that would be required in a list comprehension:
[x+y for x,y in zip(range(4), range(2,6))]
#vs
from operator import add
map(add, range(4), range(2,6))

Mathematica Map question

Original question:
I know Mathematica has a built in map(f, x), but what does this function look like? I know you need to look at every element in the list.
Any help or suggestions?
Edit (by Jefromi, pieced together from Mike's comments):
I am working on a program what needs to move through a list like the Map, but I am not allowed to use it. I'm not allowed to use Table either; I need to move through the list without help of another function. I'm working on a recursive version, I have an empty list one down, but moving through a list with items in it is not working out. Here is my first case: newMap[#, {}] = {} (the map of an empty list is just an empty list)
I posted a recursive solution but then decided to delete it, since from the comments this sounds like a homework problem, and I'm normally a teach-to-fish person.
You're on the way to a recursive solution with your definition newMap[f_, {}] := {}.
Mathematica's pattern-matching is your friend. Consider how you might implement the definition for newMap[f_, {e_}], and from there, newMap[f_, {e_, rest___}].
One last hint: once you can define that last function, you don't actually need the case for {e_}.
UPDATE:
Based on your comments, maybe this example will help you see how to apply an arbitrary function:
func[a_, b_] := a[b]
In[4]:= func[Abs, x]
Out[4]= Abs[x]
SOLUTION
Since the OP caught a fish, so to speak, (congrats!) here are two recursive solutions, to satisfy the curiosity of any onlookers. This first one is probably what I would consider "idiomatic" Mathematica:
map1[f_, {}] := {}
map1[f_, {e_, rest___}] := {f[e], Sequence##map1[f,{rest}]}
Here is the approach that does not leverage pattern matching quite as much, which is basically what the OP ended up with:
map2[f_, {}] := {}
map2[f_, lis_] := {f[First[lis]], Sequence##map2[f, Rest[lis]]}
The {f[e], Sequence##map[f,{rest}]} part can be expressed in a variety of equivalent ways, for example:
Prepend[map[f, {rest}], f[e]]
Join[{f[e]}, map[f, {rest}] (#Mike used this method)
Flatten[{{f[e]}, map[f, {rest}]}, 1]
I'll leave it to the reader to think of any more, and to ponder the performance implications of most of those =)
Finally, for fun, here's a procedural version, even though writing it made me a little nauseous: ;-)
map3[f_, lis_] :=
(* copy lis since it is read-only *)
Module[{ret = lis, i},
For[i = 1, i <= Length[lis], i++,
ret[[i]] = f[lis[[i]]]
];
ret
]
To answer the question you posed in the comments, the first argument in Map is a function that accepts a single argument. This can be a pure function, or the name of a function that already only accepts a single argument like
In[1]:=f[x_]:= x + 2
Map[f, {1,2,3}]
Out[1]:={3,4,5}
As to how to replace Map with a recursive function of your own devising ... Following Jefromi's example, I'm not going to give to much away, as this is homework. But, you'll obviously need some way of operating on a piece of the list while keeping the rest of the list intact for the recursive part of you map function. As he said, Part is a good starting place, but I'd look at some of the other functions it references and see if they are more useful, like First and Rest. Also, I can see where Flatten would be useful. Finally, you'll need a way to end the recursion, so learning how to constrain patterns may be useful. Incidentally, this can be done in one or two lines depending on if you create a second definition for your map (the easier way), or not.
Hint: Now that you have your end condition, you need to answer three questions:
how do I extract a single element from my list,
how do I reference the remaining elements of the list, and
how do I put it back together?
It helps to think of a single step in the process, and what do you need to accomplish in that step.

Multidimensional vectors in Scheme?

I earlier asked a question about arrays in scheme (turns out they're called vectors but are basically otherwise the same as you'd expect).
Is there an easy way to do multidimensional arrays vectors in PLT Scheme though? For my purposes I'd like to have a procedure called make-multid-vector or something.
By the way if this doesn't already exist, I don't need a full code example of how to implement it. If I have to roll this myself I'd appreciate some general direction though. The way I'd probably do it is to just iterate through each element of the currently highest dimension of the vector to add another dimension, but I can see that being a bit ugly using scheme's recursive setup.
Also, this seems like something I should have been able to find myself so please know that I did actually google it and nothing came up.
The two common approaches are the same as in many languages, either use a vector of vectors, or (more efficiently) use a single vector of X*Y and compute the location of each reference. But there is a library that does that -- look in the docs for srfi/25, which you can get with (require srfi/25).

Resources