I have used the following code to generate a plot with ggplot:
I want the legend to show the runs 1-8 and only the volumes 12.5 and 25 why doesn't it show it?
And is it possible to show all the points in the plot even though there is an overlap? Because right now the plot only shows 4 of 8 points due to overlap.
OP. You've already been given a part of your answer. Here's a solution given your additional comment and some explanation.
For reference, you were looking to:
Change a continuous variable to a discrete/discontinuous one and have that reflected in the legend.
Show runs 1-8 labeled in the legend
Disconnect lines based on some criteria in your dataset.
First, I'm representing your data here again in a way that is reproducible (and takes away the extra characters so you can follow along directly with all the code):
library(ggplot2)
mydata <- data.frame(
`Run`=c(1:8),
"Time"=c(834, 834, 584, 584, 1184, 1184, 938, 938),
`Area`=c(55.308, 55.308, 79.847, 79.847, 81.236, 81.236, 96.842, 96.842),
`Volume`=c(12.5, 12.5, 12.5, 12.5, 25.0, 25.0, 25.0, 25.0)
)
Changing to a Discrete Variable
If you check the variable type for each column (type str(mydata)), you'll see that mydata$Run is an int and the rest of the columns are num. Each column is understood to be a number, which is treated as if it were a continuous variable. When it comes time to plot the data, ggplot2 understands this to mean that since it is reasonable that values can exist between these (they are continuous), any representation in the form of a legend should be able to show that. For this reason, you get a continuous color scale instead of a discrete one.
To force ggplot2 to give you a discrete scale, you must make your data discrete and indicate it is a factor. You can either set your variable as a factor before plotting (ex: mydata$Run <- as.factor(mydata$Run), or use code inline, referring to aes(size = factor(Run),... instead of just aes(size = Run,....
Using reference to factor(Run) inline in your ggplot calls has the effect of changing the name of the variable to be "factor(Run)" in your legend, so you will have to also add that to the labs() object call. In the end, the plot code looks like this:
ggplot(data = mydata, aes(x=Area, y=Time)) +
geom_point(aes(color =as.factor(Volume), size = Run)) +
geom_line() +
labs(
x = "Area", y = "Time",
# This has to be changed now
color='Volume'
) +
theme_bw()
Note in the above code I am also not referring to mydata$Run, but just Run. It is greatly preferable that you refer to just the name of the column when using ggplot2. It works either way, but much better in practice.
Disconnect Lines
The reason your lines are connected throughout the data is because there's no information given to the geom_line() object other than the aesthetics of x= and y=. If you want to have separate lines, much like having separate colors or shapes of points, you need to supply an aesthetic to use as a basis for that. Since the two lines are different based on the variable Volume in your dataset, you want to use that... but keep the same color for both. For this, we use the group= aesthetic. It tells ggplot2 we want to draw a line for each piece of data that is grouped by that aesthetic.
ggplot(data = mydata, aes(x=Area, y=Time)) +
geom_point(aes(color =as.factor(Volume), size = Run)) +
geom_line(aes(group=as.factor(Volume))) +
labs(
x = "Area", y = "Time", color='Volume'
) +
theme_bw()
Show Runs 1-8 Labeled in Legend
Here I'm reading a bit into what you exactly wanted to do in terms of "showing runs 1-8" in the legend. This could mean one of two things, and I'll assume you want both and show you how to do both.
Listing and showing sizes 1-8 in the legend.
To set the values you see in the scale (legend) for size, you can refer to the various scale_ functions for all types of aesthetics. In this case, recall that since mydata$Run is an int, it is treated as a continuous scale. ggplot2 doesn't know how to draw a continuous scale for size, so the legend itself shows discrete sizes of points. This means we don't need to change Run to a factor, but what we do need is to indicate specifically we want to show in the legend all breaks in the sequence from 1 to 8. You can do this using scale_size_continuous(breaks=...).
ggplot(data = mydata, aes(x=Area, y=Time)) +
geom_point(aes(color =as.factor(Volume), size = Run)) +
geom_line(aes(group=as.factor(Volume))) +
labs(
x = "Area", y = "Time", color='Volume'
) +
scale_size_continuous(breaks=c(1:8)) +
theme_bw()
Showing all of your runs as points.
The note about showing all runs might also mean you want to literally see each run represented as a discrete point in your plot. For this... well, they already are! ggplot2 is plotting each of your points from your data into the chart. Since some points share the same values of x= and y=, you are getting overplotting - the points are drawn over top of one another.
If you want to visually see each point represented here, one option could be to use geom_jitter() instead of geom_point(). It's not really great here, because it will look like your data has different x and y values, but it is an option if this is what you want to do. Note in the code below I'm also changing the shape of the point to be a hollow circle for better clarity, where the color= is the line around each point (here it's black), and the fill= aesthetic is instead used for Volume. You should get the idea though.
set.seed(1234) # using the same randomization seed ensures you have the same jitter
ggplot(data = mydata, aes(x=Area, y=Time)) +
geom_jitter(aes(fill =as.factor(Volume), size = Run), shape=21, color='black') +
geom_line(aes(group=as.factor(Volume))) +
labs(
x = "Area", y = "Time", fill='Volume'
) +
scale_size_continuous(breaks=c(1:8)) +
theme_bw()
Related
I'm trying to create a stacked barchart with gene sequencing data, where for each gene there is a tRF.type and Amino.Acid value. An example data set looks like this:
tRF <- c('tRF-26-OB1690PQR3E', 'tRF-27-OB1690PQR3P', 'tRF-30-MIF91SS2P46I')
tRF.type <- c('5-tRF', 'i-tRF', '3-tRF')
Amino.Acid <- c('Ser', 'Lys', 'Ser')
tRF.data <- data.frame(tRF, tRF.type, Amino.Acid)
I would like the x-axis to represent the amino acid type, the y-axis the number of counts of each tRF type and the the fill of the bars to represent each tRF type.
My code is:
ggplot(chart_data, aes(x = Amino.Acid, y = tRF.type, fill = tRF.type)) +
geom_bar(stat="identity") +
ggtitle("LAN5 - 4 days post CNTF treatment") +
xlab("Amino Acid") +
ylab("tRF type")
However, it generates this graph, where the y-axis is labelled with the categories of tRF type. How can I change my code so that the y-axis scale is numerical and represents the counts of each tRF type?
Barchart
OP and Welcome to SO. In future questions, please, be sure to provide a minimal reproducible example - meaning provide code, an image (if possible), and at least a representative dataset that can demonstrate your question or problem clearly.
TL;DR - don't use stat="identity", just use geom_bar() without providing a stat, since default is to use the counts. This should work:
ggplot(chart_data, aes(x = Amino.Acid, fill = tRF.type)) + geom_bar()
The dataset provided doesn't adequately demonstrate your issue, so here's one that can work. The example data herein consists of 100 observations and two columns: one called Capitals for randomly-selected uppercase letters and one Lowercase for randomly-selected lowercase letters.
library(ggplot2)
set.seed(1234)
df <- data.frame(
Capitals=sample(LETTERS, 100, replace=TRUE),
Lowercase=sample(letters, 100, replace=TRUE)
)
If I plot similar to your code, you can see the result:
ggplot(df, aes(x=Capitals, y=Lowercase, fill=Lowercase)) +
geom_bar(stat="identity")
You can see, the bars are stacked, but the y axis is all smooshed down. The reason is related to understanding the difference between geom_bar() and geom_col(). Checking the documentation for these functions, you can see that the main difference is that geom_col() will plot bars with heights equal to the y aesthetic, whereas geom_bar() plots by default according to stat="count". In fact, using geom_bar(stat="identity") is really just a complicated way of saying geom_col().
Since your y aesthetic is not numeric, ggplot still tries to treat the discrete levels numerically. It doesn't really work out well, and it's the reason why your axis gets smooshed down like that. What you want, is geom_bar(stat="count").... which is the same as just using geom_bar() without providing a stat=.
The one problem is that geom_bar() only accepts an x or a y aesthetic. This means you should only give it one of them. This fixes the issue and now you get the proper chart:
ggplot(df, aes(x=Capitals, fill=Lowercase)) + geom_bar()
You want your y-axis to be a count, not tRF.type. This code should give you the correct plot: I've removed the y = tRF.type from ggplot(), and stat = "identity from geom_bar() (it is using the default value of stat = "count instead).
ggplot(tRF.data, aes(x = Amino.Acid, fill = tRF.type)) +
geom_bar() +
ggtitle("LAN5 - 4 days post CNTF treatment") +
xlab("Amino Acid") +
ylab("tRF type")
I have some diffraction data from XRD. I'd like to plot it all in one chart but stacked. Because the range of y is quite large, stacking is not so straight forward. there's a link to data if you wish to play and the simple script is below
https://www.dropbox.com/s/b9kyubzncwxge9j/xrd.csv?dl=0
library(dplyr)
library(ggplot2)
#load it up
xrd <- read.csv("xrd.csv")
#melt it
xrd.m = melt(xrd, id.var="Degrees_2_Theta")
# Reorder so factor levels are grouped together
xrd.m$variable = factor(xrd.m$variable,
levels=sort(unique(as.character(xrd.m$variable))))
names(xrd.m)[names(xrd.m) == "variable"] <- "Sample"
names(xrd.m)[names(xrd.m) == "Degrees_2_Theta"] <- "angle"
#colours use for nearly everything
cbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
#plot
ggplot(xrd.m, aes(angle, value, colour=Sample, group=Sample)) +
geom_line(position = "stack") +
scale_colour_manual(values=cbPalette) +
theme_linedraw() +
theme(legend.position = "none",
axis.text.y=element_blank(),
axis.ticks.y=element_blank()) +
labs(x="Degrees 2-theta", y="Intensity - stacked for clarity")
Here is the plot- as you can see it's not quite stacked
Here is something I had in excel a way back. ugly - but slightly better
I'm not sure that I will actually use the stacked plot function from R because I find it always looks off from past experience and instead might use the same data manipulation I used from excel.
It seems that you have a different understanding of the result of applying position="stack" on your geom_line() than what actually is happening. What you're looking to do is probably best served by either using faceting or creating a ridgeline plot. I will give you solutions for both of those approaches here with some example data (sorry, I don't click dropbox links and they will eventually break anyway).
What does position="stack" actually do?
The result of position="stack" will be that your y values of each line will be added, or "stacked", together in the resulting plot. That means that the lines as drawn will only actually accurately reflect the actual value in the data for one of the lines, and the other will be "added on top" of that (stacked). The behavior is best illustrated via an example:
ex <- data.frame(x=c(1,1,2,2,3,3), y=c(1,5,1,2,1,1), grp=rep(c('A','B'),3))
ggplot(ex, aes(x,y, color=grp)) + geom_line()
The y values for "A" are equal to 1 at all values of x. This is the same as indicating position="identity". Now, let's see what happens if we use position="stack":
ggplot(ex, aes(x,y, color=grp)) + geom_line(position="stack")
You should see, the value of y plotted for "B" is equal to B, whereas the y value for "A" is actually the value for "A" added to the value for "B". Hope that makes sense.
Faceting
What you're trying to do is take the overlapping lines you have and "separate" them vertically, right? That's not quite stacking, as you likely want to maintain their y values as position="identity" (the default). One way to do that quite easily is to use faceting, which creates what you could call "stacked plots" according to one or two variables in your dataset. In this case, I'm using example data (for reasons outlined above), but you can use this to understand how you want to arrange your own data.
set.seed(1919191)
df <- data.frame(
x=rep(1:100, 5),
y=c(rnorm(100,0,0.1), rnorm(100,0,0.2), rnorm(100,0,0.3), rnorm(100,0,0.4), rnorm(100,0,0.5)),
sample_name=c(rep('A',100), rep('B',100), rep('C',100), rep('D',100), rep('E',100)))
# plot code
p <- ggplot(df, aes(x,y, color=sample_name))
p + geom_line() + facet_grid(sample_name ~ .)
Create a Ridgeline Plot
The other way that kind of does the same thing is to create what is known as a ridgeline plot. You can do this via the package ggridges and here's an example using geom_ridgeline():
p + geom_ridgeline(
aes(y=sample_name, height=y),
fill=NA, scale=1, min_height=-Inf)
The idea here is to understand that geom_ridgeline() changes your y axis to be the grouping variable (so we actually have to redefine that in aes()), and the actual y value for each of those groups should be assigned to the height= aesthetic. If you have data that has negative y values (now height= values), you'll also want to set the min_height=, or it will cut them off at 0 by default. You can also change how much each of the groups are separated by playing with scale= (does not always change in the way you think it would, btw).
I'm plotting a dense scatter plot in ggplot2 where each point might be labeled by a different color:
df <- data.frame(x=rnorm(500))
df$y = rnorm(500)*0.1 + df$x
df$label <- c("a")
df$label[50] <- "point"
df$size <- 2
ggplot(df) + geom_point(aes(x=x, y=y, color=label, size=size))
When I do this, the scatter point labeled "point" (green) is plotted on top of the red points which have the label "a". What controls this z ordering in ggplot, i.e. what controls which point is on top of which?
For example, what if I wanted all the "a" points to be on top of all the points labeled "point" (meaning they would sometimes partially or fully hide that point)? Does this depend on alphanumerical ordering of labels?
I'd like to find a solution that can be translated easily to rpy2.
2016 Update:
The order aesthetic has been deprecated, so at this point the easiest approach is to sort the data.frame so that the green point is at the bottom, and is plotted last. If you don't want to alter the original data.frame, you can sort it during the ggplot call - here's an example that uses %>% and arrange from the dplyr package to do the on-the-fly sorting:
library(dplyr)
ggplot(df %>%
arrange(label),
aes(x = x, y = y, color = label, size = size)) +
geom_point()
Original 2015 answer for ggplot2 versions < 2.0.0
In ggplot2, you can use the order aesthetic to specify the order in which points are plotted. The last ones plotted will appear on top. To apply this, you can create a variable holding the order in which you'd like points to be drawn.
To put the green dot on top by plotting it after the others:
df$order <- ifelse(df$label=="a", 1, 2)
ggplot(df) + geom_point(aes(x=x, y=y, color=label, size=size, order=order))
Or to plot the green dot first and bury it, plot the points in the opposite order:
ggplot(df) + geom_point(aes(x=x, y=y, color=label, size=size, order=-order))
For this simple example, you can skip creating a new sorting variable and just coerce the label variable to a factor and then a numeric:
ggplot(df) +
geom_point(aes(x=x, y=y, color=label, size=size, order=as.numeric(factor(df$label))))
ggplot2 will create plots layer-by-layer and within each layer, the plotting order is defined by the geom type. The default is to plot in the order that they appear in the data.
Where this is different, it is noted. For example
geom_line
Connect observations, ordered by x value.
and
geom_path
Connect observations in data order
There are also known issues regarding the ordering of factors, and it is interesting to note the response of the package author Hadley
The display of a plot should be invariant to the order of the data frame - anything else is a bug.
This quote in mind, a layer is drawn in the specified order, so overplotting can be an issue, especially when creating dense scatter plots. So if you want a consistent plot (and not one that relies on the order in the data frame) you need to think a bit more.
Create a second layer
If you want certain values to appear above other values, you can use the subset argument to create a second layer to definitely be drawn afterwards. You will need to explicitly load the plyr package so .() will work.
set.seed(1234)
df <- data.frame(x=rnorm(500))
df$y = rnorm(500)*0.1 + df$x
df$label <- c("a")
df$label[50] <- "point"
df$size <- 2
library(plyr)
ggplot(df) + geom_point(aes(x = x, y = y, color = label, size = size)) +
geom_point(aes(x = x, y = y, color = label, size = size),
subset = .(label == 'point'))
Update
In ggplot2_2.0.0, the subset argument is deprecated. Use e.g. base::subset to select relevant data specified in the data argument. And no need to load plyr:
ggplot(df) +
geom_point(aes(x = x, y = y, color = label, size = size)) +
geom_point(data = subset(df, label == 'point'),
aes(x = x, y = y, color = label, size = size))
Or use alpha
Another approach to avoid the problem of overplotting would be to set the alpha (transparancy) of the points. This will not be as effective as the explicit second layer approach above, however, with judicious use of scale_alpha_manual you should be able to get something to work.
eg
# set alpha = 1 (no transparency) for your point(s) of interest
# and a low value otherwise
ggplot(df) + geom_point(aes(x=x, y=y, color=label, size=size,alpha = label)) +
scale_alpha_manual(guide='none', values = list(a = 0.2, point = 1))
The fundamental question here can be rephrased like this:
How do I control the layers of my plot?
In the 'ggplot2' package, you can do this quickly by splitting each different layer into a different command. Thinking in terms of layers takes a little bit of practice, but it essentially comes down to what you want plotted on top of other things. You build from the background upwards.
Prep: Prepare the sample data. This step is only necessary for this example, because we don't have real data to work with.
# Establish random seed to make data reproducible.
set.seed(1)
# Generate sample data.
df <- data.frame(x=rnorm(500))
df$y = rnorm(500)*0.1 + df$x
# Initialize 'label' and 'size' default values.
df$label <- "a"
df$size <- 2
# Label and size our "special" point.
df$label[50] <- "point"
df$size[50] <- 4
You may notice that I've added a different size to the example just to make the layer difference clearer.
Step 1: Separate your data into layers. Always do this BEFORE you use the 'ggplot' function. Too many people get stuck by trying to do data manipulation from with the 'ggplot' functions. Here, we want to create two layers: one with the "a" labels and one with the "point" labels.
df_layer_1 <- df[df$label=="a",]
df_layer_2 <- df[df$label=="point",]
You could do this with other functions, but I'm just quickly using the data frame matching logic to pull the data.
Step 2: Plot the data as layers. We want to plot all of the "a" data first and then plot all the "point" data.
ggplot() +
geom_point(
data=df_layer_1,
aes(x=x, y=y),
colour="orange",
size=df_layer_1$size) +
geom_point(
data=df_layer_2,
aes(x=x, y=y),
colour="blue",
size=df_layer_2$size)
Notice that the base plot layer ggplot() has no data assigned. This is important, because we are going to override the data for each layer. Then, we have two separate point geometry layers geom_point(...) that use their own specifications. The x and y axis will be shared, but we will use different data, colors, and sizes.
It is important to move the colour and size specifications outside of the aes(...) function, so we can specify these values literally. Otherwise, the 'ggplot' function will usually assign colors and sizes according to the levels found in the data. For instance, if you have size values of 2 and 5 in the data, it will assign a default size to any occurrences of the value 2 and will assign some larger size to any occurrences of the value 5. An 'aes' function specification will not use the values 2 and 5 for the sizes. The same goes for colors. I have exact sizes and colors that I want to use, so I move those arguments into the 'geom_plot' function itself. Also, any specifications in the 'aes' function will be put into the legend, which can be really useless.
Final note: In this example, you could achieve the wanted result in many ways, but it is important to understand how 'ggplot2' layers work in order to get the most out of your 'ggplot' charts. As long as you separate your data into different layers before you call the 'ggplot' functions, you have a lot of control over how things will be graphed on the screen.
It's plotted in order of the rows in the data.frame. Try this:
df2 <- rbind(df[-50,],df[50,])
ggplot(df2) + geom_point(aes(x=x, y=y, color=label, size=size))
As you see the green point is drawn last, since it represents the last row of the data.frame.
Here is a way to order the data.frame to have the green point drawn first:
df2 <- df[order(-as.numeric(factor(df$label))),]
I would like to use customized linetypes in ggplot. If that is impossible (which I believe to be true), then I am looking for a smart hack to plot arrowlike symbols above, or below, my line.
Some background:
I want to plot some water quality data and compare it to the standard (set by the European Water Framework Directive) in a red line. Here's some reproducible data and my plot:
df <- data.frame(datum <- seq.Date(as.Date("2014-01-01"),
as.Date("2014-12-31"),by = "week"),y=rnorm(53,mean=100,sd=40))
(plot1 <-
ggplot(df, aes(x=datum,y=y)) +
geom_line() +
geom_point() +
theme_classic()+
geom_hline(aes(yintercept=70),colour="red"))
However, in this plot it is completely unclear if the Standard is a maximum value (as it would be for example Chloride) or a minimum value (as it would be for Oxygen). So I would like to make this clear by adding small pointers/arrows Up or Down. The best way would be to customize the linetype so that it consists of these arrows, but I couldn't find a way.
Q1: Is this at all possible, defining custom linetypes?
All I could think of was adding extra points below the line:
extrapoints <- data.frame(datum2 <- seq.Date(as.Date("2014-01-01"),
as.Date("2014-12-31"),by = "week"),y2=68)
plot1 + geom_point(data=extrapoints, aes(x=datum2,y=y2),
shape=">",size=5,colour="red",rotate=90)
However, I can't seem to rotate these symbols pointing downward. Furthermore, this requires calculating the right spacing of X and distance to the line (Y) every time, which is rather inconvenient.
Q2: Is there any way to achieve this, preferably as automated as possible?
I'm not sure what is requested, but it sounds as though you want arrows at point up or down based on where the y-value is greater or less than some expected value. If that's the case, then this satisfies using geom_segment:
require(grid) # as noted by ?geom_segment
(plot1 <-
ggplot(df, aes(x=datum,y=y)) + geom_line()+
geom_segment(data = data.frame( df$datum, y= 70, up=df$y >70),
aes(xend = datum , yend =70 + c(-1,1)[1+up]*5), #select up/down based on 'up'
arrow = arrow(length = unit(0.1,"cm"))
) + # adjust units to modify size or arrow-heads
geom_point() +
theme_classic()+
geom_hline(aes(yintercept=70),colour="red"))
If I'm wrong about what was desired and you only wanted a bunch of down arrows, then just take out the stuff about creating and using "up" and use a minus-sign.
I am using ggplot2 to create several plots about the same data. In particular I am interested in plotting observations according to a factor variable with 6 levels ("cluster").
But the plots produced by ggplot2 use different palettes every time!
For example, if I make a bar plot with this formula I get this result (this palette is what I expect to obtain):
qplot(cluster, data = data, fill = cluster) + ggtitle("Clusters")
And if I make a scatter plot and I try to color the observations according to their belonging to a cluster I get this result (notice that the color palette is different):
ggplot(data, aes(liens_ratio,RT_ratio)) +
geom_point(col=data$cluster, size=data$nombre_de_tweet/100+2) +
geom_smooth() +
ggtitle("Links - RTs")
Any idea on how to solve this issue?
I can't be certain this will work in your specific case without a reproducible example, but I'm reasonably confident that all you need to do is set your color inside an aes() call within the geom you want to color. That is,
ggplot(data, aes(x = liens_ratio, y = RT_ratio)) +
geom_point(aes(color = cluster, size = nombre_de_tweet/100+2)) +
geom_smooth() +
ggtitle("Links - RTs")
If all plots you make use the same data and this basic format, the color palette should be the same regardless of the geom used. Additional elements, such as the line from geom_smooth() will not be changed unless they are also explicitly colored.
The palette will just be the default one, of course; to change it look into scale_color_manual.