Non numeric to binary operator error in R console - r

I am trying to add the % symbol i front of my perc.of.adult function in a bar diagram but the non numeric to binary code keeps appearing for some reason. How do I accomplish this without this error?
perc.of.adults<- c(1.8,36.7,35.3,26.2)
labels1 = paste0(" (", perc.of.adults, "%)")
perc.of.adults=labels1
barplot(
perc.of.adults, names.arg=c("Underweight", "Healthy weight" , "Overweight" , "Obese"),
xlab="Weight category", ylab="Percentage" ,
main="Bar Graph of Weight Category Against Percent of Adults")

Keep the numeric form of perc.of.adults and add the labels second.
perc.of.adults <- c(1.8, 36.7, 35.3, 26.2)
labels1 <- paste0(" (", perc.of.adults, "%)")
bp <- barplot(
perc.of.adults, names.arg=c("Underweight", "Healthy weight" , "Overweight" , "Obese"),
xlab="Weight category", ylab="Percentage" ,
main="Bar Graph of Weight Category Against Percent of Adults")
bp
# [,1]
# [1,] 0.7
# [2,] 1.9
# [3,] 3.1
# [4,] 4.3
text(bp[,1], perc.of.adults + ifelse(perc.of.adults < 5, 4, -4), labels1)
(It's worth noting that barplot returns a matrix with the centers of the x positions of the bars. What's really noteworthy is that with four bars, they are not centered on 1:4, but a little spread out. Whatever the history or rationale for this, it's easy to capture and use.)

Related

Generate multiple plots in base R with loop function then concatenate by matching group variables

I have a data frame (below, my apologies for the verbose code, this is my first attempt at generating reproducible random data) that I'd like to loop through and generate individual plots in base R (specifically, ethograms) for each subject's day and video clip (e.g. subj-1/day1/clipB). After generating n graphs, I'd like to concatenate a PDF for each subj that includes all days + clips, and have each row correspond to a single day. I haven't been able to get past the generating individual graphs, however, so any help would be greatly appreciated!
Data frame
n <- 20000
library(stringi)
test <- as.data.frame(sprintf("%s", stri_rand_strings(n, 2, '[A-Z]')))
colnames(test)<-c("Subj")
test$Day <- sample(1:3, size=length(test$Subj), replace=TRUE)
test$Time <- sample(0:600, size=length(test$Subj), replace=TRUE)
test$Behavior <- as.factor(sample(c("peck", "eat", "drink", "fly", "sleep"), size = length(test$Time), replace=TRUE))
test$Vid_Clip <- sample(c("Clip_A", "Clip_B", "Clip_C"), size = length(test$Time), replace=TRUE)
Sample data from data frame:
> head(test)
Subj Day Time Behavior Vid_Clip
1 BX 1 257 drink Clip_B
2 NP 2 206 sleep Clip_B
3 ZF 1 278 peck Clip_B
4 MF 2 391 sleep Clip_A
5 VE 1 253 fly Clip_C
6 ID 2 359 eat Clip_C
After adapting this code, I am able to successfully generate a single plot (one at a time):
Subset single subj/day/clip:
single_subj_day_clip <- test[test$Vid_Clip == "Clip_B" & test$Subj == "AA" & test$Day == 1,]
After which, I can generate the graph I'm after by running the following lines:
beh_numb <- nlevels(single_subj_day_clip$Behavior)
mar.default <- c(5,4,4,2) + 0.1
par(mar = mar.default + c(0, 4, 0, 0))
plot(single_subj_day_clip$Time,
xlim=c(0,max(single_subj_day_clip$Time)), ylim=c(0, beh_numb), type="n",
ann=F, yaxt="n", frame.plot=F)
for (i in 1:length(single_subj_day_clip$Behavior)) {
ytop <- as.numeric(single_subj_day_clip$Behavior[i])
ybottom <- ytop - 0.5
rect(xleft=single_subj_day_clip$Subj[i], xright=single_subj_day_clip$Time[i+1],
ybottom=ybottom, ytop=ytop, col = ybottom)}
axis(side=2, at = (1:beh_numb -0.25), labels=levels(single_subj_day_clip$Behavior), las = 1)
mtext(text="Time (sec)", side=1, line=3, las=1)
Example graph from randomly generate data(sorry for link - newb SO user so until I'm at 10 reputation pts, I can't embed an image directly)
Example graph from actual data
Ideal per subject graph
Thank you all in advance for your input.
Cheers,
Dan
New and hopefully correct answer
The code is too long to post it here, so there is a link to the Dropbox folder with data and code. You can check this html document or run this .Rmd file on your machine. Please check if all required packages are installed. There is the output of the script.
There are additional problem in the analysis - some events are registered only once, at a single time point between other events. So there is no "width" of such bars. I assigned width of such events to 1000 ms, so some (around 100 per 20000 observations) of them are out of scale if they are at the beginning or at the end of the experiment (and if the width for such events is equal to zero). You can play with the code to fix this behavior.
Another problem is the different colors for the same factors on the different plots. I need some fresh air to fix it as well.
Looking into the graphs, you can notice that sometimes, it seems that some observation with a very short time are overlapping with other observations. But if you zoom the pdf to the maximum - you will see that they are not, and there is a 'holes' in underlying intervals, where they are supposed to be.
Lines, connecting the intervals for different kinds of behavior are helping to follow the timecourse of the experiment. You can uncomment corresponding parts of the code, if you wish.
Please let me know if it works.
Old answer
I am not sure it is the best way to do it, but probably you can use split() and after that lapply through your tables:
Split your data.frame by Subj, Day, and Vid_clip:
testl <- split(test, test[, c(1, 2, 5)], drop = T)
testl[[1123]]
# Subj Day Time Behavior Vid_Clip
#8220 ST 2 303 fly Clip_A
#9466 ST 2 463 fly Clip_A
#9604 ST 2 32 peck Clip_A
#10659 ST 2 136 peck Clip_A
#13126 ST 2 47 fly Clip_A
#14458 ST 2 544 peck Clip_A
Loop through the list with your data and plot to .pdf:
mar.default <- c(5,4,4,2) + 0.1
par(mar = mar.default + c(0, 4, 0, 0))
nbeh = nlevels(test$Behavior)
pdf("plots.pdf")
invisible(
lapply(testl, function(l){
plot(x = l$Time, xlim = c(0, max(l$Time)), ylim = c(0, nbeh),
type = "n", ann = F, yaxt = "n", frame.plot = F)
lapply(1:nbeh, function(i){
ytop <- as.numeric(l$Behavior[i]); ybot <- ytop - .5
rect(l$Subj[i], ybot, l$Time[i + 1], ytop, col = ybot)
})
axis(side = 2, at = 1:nbeh - .25, labels = levels(l$Behavior), las = 1)
mtext(text = "Time (sec)", side = 1, line = 3, las = 1)
})
)
dev.off()
You should probably check output here before you run code on your PC. I didn't edit much your plot-code, so please check it twice.

Mapping slope of an area and returning percent above and below a threshold in R

I am trying to figure our the proportion of an area that has a slope of 0, +/- 5 degrees. Another way of saying it is anything above 5 degrees and below 5 degrees are bad. I am trying to find the actual number, and a graphic.
To achieve this I turned to R and using the Raster package.
Let's use a generic country, in this case, the Philippines
{list.of.packages <- c("sp","raster","rasterVis","maptools","rgeos")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)}
library(sp) # classes for spatial data
library(raster) # grids, rasters
library(rasterVis) # raster visualisation
library(maptools)
library(rgeos)
Now let's get the altitude information and plot the slopes.
elevation <- getData("alt", country = "PHL")
x <- terrain(elevation, opt = c("slope", "aspect"), unit = "degrees")
plot(x$slope)
Not very helpful due to the scale, so let's simply look at the Island of Palawan
e <- drawExtent(show=TRUE) #to crop out Palawan (it's the long skinny island that is roughly midway on the left and is oriented between 2 and 8 O'clock)
gewataSub <- crop(x,e)
plot(gewataSub, 1)## Now visualize the new cropped object
A little bit better to visualize. I get a sense of the magnitude of the slopes and that with a 5 degree restriction, I am mostly confined to the coast. But I need a little bit more for analysis.
I would like Results to be something to be in two parts:
1. " 35 % (made up) of the selected area has a slope exceeding +/- 5 degrees" or " 65 % of the selected area is within +/- 5 degrees". (with the code to get it)
2. A picture where everything within +/- 5 degrees is one color, call it good or green, and everything else is in another color, call it bad or red.
Thanks
There are no negative slopes, so I assume you want those that are less than 5 degrees
library(raster)
elevation <- getData('alt', country='CHE')
x <- terrain(elevation, opt='slope', unit='degrees')
z <- x <= 5
Now you can count cells with freq
f <- freq(z)
If you have a planar coordinate reference system (that is, with units in meters or similar) you can do
f <- cbind(f, area=f[,2] * prod(res(z)))
to get areas. But for lon/lat data, you would need to correct for different sized cells and do
a <- area(z)
zonal(a, z, fun=sum)
And there are different ways to plot, but the most basic one
plot(z)
You can use reclassify from the raster package to achieve that. The function assigns each cell value that lies within a defined interval a certain value. For example, you can assign cell values within interval (0,5] to value 0 and cell values within the interval (5, maxSlope] to value 1.
library(raster)
library(rasterVis)
elevation <- getData("alt", country = "PHL")
x <- terrain(elevation, opt = c("slope", "aspect"), unit = "degrees")
plot(x$slope)
e <- drawExtent(show = TRUE)
gewataSub <- crop(x, e)
plot(gewataSub$slope, 1)
m <- c(0, 5, 0, 5, maxValue(gewataSub$slope), 1)
rclmat <- matrix(m, ncol = 3, byrow = TRUE)
rc <- reclassify(gewataSub$slope, rclmat)
levelplot(
rc,
margin = F,
col.regions = c("wheat", "gray"),
colorkey = list(at = c(0, 1, 2), labels = list(at = c(0.5, 1.5), labels = c("<= 5", "> 5")))
)
After the reclassification you can calculate the percentages:
length(rc[rc == 0]) / (length(rc[rc == 0]) + length(rc[rc == 1])) # <= 5 degrees
[1] 0.6628788
length(rc[rc == 1]) / (length(rc[rc == 0]) + length(rc[rc == 1])) # > 5 degrees
[1] 0.3371212

Measuring bandwidth of a signal in R

I am trying to measure the bandwidth of a signal from the power spectra. I want to be able to extract the min and max values given a relative amplitude value. I have been using "seewave" to calculate the power spectra, and I can make a density plot, and provide the abline, but I cannot figure out how to get R to tell me where the abline intersects with the plot. I will need to change the relative amplitude values of interest, depending on the signal quality, but want to find a straightforward way to measure bandwidth using R. Thanks in advance!
power.spec <- spec(IBK.trill.1, flim=c(0,2))
pow.spec <- as.matrix(power.spec)
head(pow.spec)
# x y
# [1,] 0.000000000 0.007737077
# [2,] 0.007470703 0.029795630
# [3,] 0.014941406 0.021248476
# [4,] 0.022412109 0.015603801
# [5,] 0.029882813 0.014103307
# [6,] 0.037353516 0.014584454
freq <- pow.spec[1:2941,1]
head(freq)
# [1] 0.000000000 0.007470703 0.014941406 0.022412109 0.029882813 0.037353516
ampl <- pow.spec[,2]
head(ampl)
# [1] 0.007737077 0.029795630 0.021248476 0.015603801 0.014103307 0.014584454
plot(ampl ~ freq, type="l",xlim=c(0,2))
abline(h=0.45)
Save the results of the identification of "y" values that exceed your threshold:
wspec <- which( power.spec[, "y"] > 0.45)
Then used those indices to pull from the "x" values to place vertical lines at the first and last indices:
abline( v= power.spec[ c( wspec[1], tail(wspec, 1) ) , "x"], col="blue" )
BTW, I suggested the original "power.spec" values rather than your as.matrix version because spec returns a matrix so coercion is not needed. I tested this on the first example from the ?spec page. I suppose you could get real picky and try to take the mean of "x" where the thresholds were in excess and the ones just before and after. Which would then be:
abline( v= c( mean( myspec[ c( wspec[1]-1, wspec[1]), "x"]) ,
mean( myspec[ c( tail(wspec, 1), tail(wspec, 1)+1 ) , "x"]) ), col="blue" )
I did look at the differences with diff and the typical separation in my example was
mean( diff(myspec[ , "x"]) )
[1] 0.0005549795
So I could have gone back and ahead by half that amount to get a reasonable estimate. (I used this as my estimate for "half-height": max(myspec[, "y"])/2)

Print frequencies (as numbers) in plot

In R, I would like to insert frequencies (as numbers) in a plot:
my code to create the plot:
par(mar=c(4.5,4.5,9.5,4), xpd=TRUE)
plot(factor(ArtMehrspr)~Mehrspr_Vielf, data=datProjektMehr, col=terrain.colors(4),
bty='L', main="Vielfalt nutzen")
legend("topright", inset=c(0,-.225), title="Art der Mehrsprachigkeit", levels(factor(datProjektMehr$ArtMehrspr)),
fill=terrain.colors(4), horiz=TRUE)
par(mar=c(5,4,4,2)+0.1)
In the plot, 2 columns of my dataframe are depicted: ArtMehrspr and Mehrspr_Vielf.
Now what I would like to know is, how many "Kombi" are in category "1", how many "Paral" are in category "1" and so on, and then to print this number in the plot, so that in every box of the plot, I can see the corresponding number of observations. R must know these numbers, otherwise it could not vary the height of the different boxes according to the number of observations. So it cannot be that hard to get these numbers into the plot, can it?
With the command table(), I can get these numbers, but I would have to have 5 table()-commands to get all the numbers. Example for category = 1:
> table(subset(datProjektMehr, Mehrspr_Vielf=="1")$ArtMehrspr)
einspr Kombi Paral Versc Wechs
0 1 9 2 1
Apparently, you can achieve what I am looking for by adding the command labels = TRUE. But it does not work:
par(mar=c(4.5,4.5,9.5,4), xpd=TRUE, labels = TRUE)
plot(factor(ArtMehrspr)~Mehrspr_Vielf, data=datProjektMehr, col=terrain.colors(4),
bty='L', main="Vielfalt nutzen")
legend("topright", inset=c(0,-.225), title="Art der Mehrsprachigkeit", levels(factor(datProjektMehr$ArtMehrspr)),
fill=terrain.colors(4), horiz=TRUE)
par(mar=c(5,4,4,2)+0.1)
R gives me the following warning message:
Warning message:
In par(mar = c(4.5, 4.5, 9.5, 4), xpd = TRUE, labels = TRUE) :
"labels" is not a graphical parameter
Is this not the right command? Does anyone know how to do this?
First of all, the warning informs that there is not a labels argument you can use inside par.
Regarding the plotting of the table output, I'm not aware if there is an easy way of doing this, but I managed a pretty UNreliable and, maybe, inefficient code. In my machine, though, it works every time I run it.
The concept I had in mind is to text all values from your table inside the plot. To do so, coordinates in xx' and yy' had to be estimated. I prefer the term "estimated" instead of "calculated" because I didn't find a way to compute absolute values for the coordinates, due to the fact that the plot method was plot.factor.
So:
#random data. DF = datProjektMehr, artmehr = ArtMehrspr, mehrviel = Mehrspr_Vielf
DF <- data.frame(artmehr = sample(letters[1:4], 20, T), mehrviel = as.factor(sample(1:5, 20, T)))
#your code of plotting
par(mar = c(4.5,4.5,9.5,4), xpd = TRUE)
plot(factor(artmehr) ~ mehrviel, data = DF, col = terrain.colors(4),
bty = 'L', main = "Vielfalt nutzen")
legend("topright", inset=c(0,-.225), title="Art der Mehrsprachigkeit", levels(factor(DF$artmehr)),
fill=terrain.colors(4), horiz=TRUE)
#no need to "table()" many times
tab = table(DF$artmehr, DF$mehrviel)
#maximum value of x axis (at least in my machine)
#I found -through trial and error- that for a factor of n levels, x.max = 1 + (n-1)*0.02
x.max = 1 + (length(levels(DF$mehrviel)) - 1) * 0.02
#coordinates of "mehrviel" (as I named it)
mehrviel.coords = ((cumsum(apply(tab, 2, sum)) / sum(tab)) * x.max) - ((apply(tab, 2, sum) / sum(tab)) / 2)
#coordinates of "artmehr" (as I named it)
artmehr.coords <- apply(tab, 2, function(x) { cumsum(x / sum(x)) })
artmehr.coords <- apply(artmehr.coords, 2, function(x) { x - c(x[1]/2, diff(x)/2) })
#"text" the values in your table
#don't plot "0"s
for(i in 1:ncol(artmehr.coords))
{
text(x = mehrviel.coords[i], y = artmehr.coords[,i], labels = ifelse(tab[,i] != 0, tab[,i], ""), cex = 2)
}
The values of table:
tab
1 2 3 4 5
a 1 1 0 1 0
b 0 0 2 1 2
c 1 1 2 1 0
d 2 0 0 3 2
The plot:
EDIT: 1) "Tidied" the answer. 2) Aadded an extra level to the factor ploted in xx' axis to match your data exactly. 3)texted the frequencies in the middle of each box.

Generate multiple serial graphs/scatterplots from data in two dataframes

I have 2 dataframes, Tg and Pf, each of 127 columns. All columns have at least one row and can have up to thousands of them. All the values are between 0 and 1 and there are some missing values (empty cells). Here is a little subset:
Tg
Tg1 Tg2 Tg3 ... Tg127
0.9 0.5 0.4 0
0.9 0.3 0.6 0
0.4 0.6 0.6 0.3
0.1 0.7 0.6 0.4
0.1 0.8
0.3 0.9
0.9
0.6
0.1
Pf
Pf1 Pf2 Pf3 ...Pf127
0.9 0.5 0.4 1
0.9 0.3 0.6 0.8
0.6 0.6 0.6 0.7
0.4 0.7 0.6 0.5
0.1 0.6 0.5
0.3
0.3
0.3
Note that some cell are empty and the vector lengths for the same subset (i.e. 1 to 127) can be of very different length and are rarely the same exact length.
I want to generate 127 graph as follow for the 127 vectors (i.e. graph is for col 1 from each dataframe, graph 2 is for col 2 for each dataframe etc...):
Hope that makes sense. I'm looking forward to your assistance as I don't want to make those graphs one by one...
Thanks!
Here is an example to get you started (data at https://gist.github.com/1349300). For further tweaking, check out the excellent ggplot2 documentation that is all over the web.
library(ggplot2)
# Load data
Tg = read.table('Tg.txt', header=T, fill=T, sep=' ')
Pf = read.table('Pf.txt', header=T, fill=T, sep=' ')
# Format data
Tg$x = as.numeric(rownames(Tg))
Tg = melt(Tg, id.vars='x')
Tg$source = 'Tg'
Tg$variable = factor(as.numeric(gsub('Tg(.+)', '\\1', Tg$variable)))
Pf$x = as.numeric(rownames(Pf))
Pf = melt(Pf, id.vars='x')
Pf$source = 'Pf'
Pf$variable = factor(as.numeric(gsub('Pf(.+)', '\\1', Pf$variable)))
# Stack data
data = rbind(Tg, Pf)
# Plot
dev.new(width=5, height=4)
p = ggplot(data=data, aes(x=x)) + geom_line(aes(y=value, group=source, color=source)) + facet_wrap(~variable)
p
Highlighting the area between the lines
First, interpolate the data onto a finer grid. This way the ribbon will follow the actual envelope of the lines, rather than just where the original data points were located.
data = ddply(data, c('variable', 'source'), function(x) data.frame(approx(x$x, x$value, xout=seq(min(x$x), max(x$x), length.out=100))))
names(data)[4] = 'value'
Next, calculate the data needed for geom_ribbon - namely ymax and ymin.
ribbon.data = ddply(data, c('variable', 'x'), summarize, ymin=min(value), ymax=max(value))
Now it is time to plot. Notice how we've added a new ribbon layer, for which we've substituted our new ribbon.data frame.
dev.new(width=5, height=4)
p + geom_ribbon(aes(ymin=ymin, ymax=ymax), alpha=0.3, data=ribbon.data)
Dynamic coloring between the lines
The trickiest variation is if you want the coloring to vary based on the data. For that, you currently must create a new grouping variable to identify the different segments. Here, for example, we might use a function that indicates when the "Tg" group is on top:
GetSegs <- function(x) {
segs = x[x$source=='Tg', ]$value > x[x$source=='Pf', ]$value
segs.rle = rle(segs)
on.top = ifelse(segs, 'Tg', 'Pf')
on.top[is.na(on.top)] = 'Tg'
group = rep.int(1:length(segs.rle$lengths), times=segs.rle$lengths)
group[is.na(segs)] = NA
data.frame(x=unique(x$x), group, on.top)
}
Now we apply it and merge the results back with our original ribbon data.
groups = ddply(data, 'variable', GetSegs)
ribbon.data = join(ribbon.data, groups)
For the plot, the key is that we now specify a grouping aesthetic to the ribbon geom.
dev.new(width=5, height=4)
p + geom_ribbon(aes(ymin=ymin, ymax=ymax, group=group, fill=on.top), alpha=0.3, data=ribbon.data)
Code is available together at: https://gist.github.com/1349300
Here is a three-liner to do the same :-). We first reshape from base to convert the data into long form. Then, it is melted to suit ggplot2. Finally, we generate the plot!
mydf <- reshape(cbind(Tg, Pf), varying = 1:8, direction = 'long', sep = "")
mydf_m <- melt(mydf, id.var = c(1, 4), variable = 'source')
qplot(id, value, colour = source, data = mydf_m, geom = 'line') +
facet_wrap(~ time, ncol = 2)
NOTE. The reshape function in base R is extremely powerful, albeit very confusing to use. It is used to transform data between long and wide formats.
Kudos for automating something you used to do in Excel using R! That's exactly how I got started with R and a common path to R enlightenment :)
All you really need is a little looping. Here's an example, most of which is creating example data that represents your data structure:
## create some example data
Tg <- data.frame(Tg1 = rnorm(10))
for (i in 2:10) {
vec <- rep(NA, 8)
vec <- c(rnorm(sample(5:10,1)), vec)
Tg[paste("Tg", i, sep="")] <- vec[1:10]
}
Pf <- data.frame(Pf1 = rnorm(10))
for (i in 2:10) {
vec <- rep(NA, 8)
vec <- c(rnorm(sample(5:10,1)), vec)
Pf[paste("Pf", i, sep="")] <- vec[1:10]
}
## ok, sample data created
## now lets loop through all the columns
## if you didn't know how many columns there are you could
## use ncol(Tg) to figure out
for (i in 1:10) {
plot(1:10, Tg[,i], type = "l", col="blue", lwd=5, ylim=c(-3,3),
xlim=c(1, max(length(na.omit(Tg[,i])), length(na.omit(Pf[,i])))))
lines(1:10, Pf[,i], type = "l", col="red", lwd=5, ylim=c(-3,3))
dev.copy(png, paste('rplot', i, '.png', sep=""))
dev.off()
}
This will result in 10 graphs in your working directory that look like the following:

Resources