how-to-import-multiple-ndjson-files-into-r-as-a-dataframe? - r

I need to open 100 ndjson large files (with same columns) ,
I have prepared a script to apply to each file but I would not like to repeat this 100 times !
With ndjson::stream_in , I can only open 1 ndjson file into R as a data frame
I tried the process to open multiple csv files and consolidate them into 1 dafatframe only, but it does not work with ndjson files :(
library(data.table)
library(purrr)
map_df_fread <- function(path, pattern = "*.ndjson") {
list.files(path, pattern, full.names = TRUE) %>%
map_df(~fread(., stringsAsFactors = FALSE))
}
myfiles <-
list.files(path = "C:/Users/sandrine/Documents/Projet/CAD/A/",
pattern = "*.ndjson",
full.names = T) %>%
map_df_fread(~fread(., stringsAsFactors = FALSE))
I tried to find also a package to convert ndjson files into csv ...but did not find any.
Any idea?

Using your own approach that you mentioned first, does this work?
library(tidyverse)
library(ndjson)
final_df <-
list.files(path = "C:/Users/sandrine/Documents/Projet/CAD/A/",
pattern = "*.ndjson",
full.names = T) %>%
map_dfr(~stream_in(.))

Related

Apply function to files from different folders (R)

I have discovered R a couple of years ago and it has been very handy to clean up dataframes, prepare some data and to handle other basic tasks.
Now I would like to try using R to apply basic treatments but on many different files stored in different folders at once.
Here is the script I would like to improve into one function that would loop through my folder "dataset_2006" and "dataset_2007" to do all the work.
library(dplyr)
library(readr)
library(sf)
library(purrr)
setwd("C:/Users/Downloads/global_data/dataset_2006")
shp2006 <- list.files(pattern = 'data_2006.*\\.shp$', full.names = TRUE)
listOfShp <- lapply(shp2006, st_read)
combinedShp <- do.call(what = sf:::rbind.sf, args=listOfShp)
#import and merge CSV files into one data frame
folderfiles <- list.files(pattern = 'csv_2006_.*\\.csv$', full.names = TRUE)
csv_data <- folderfiles %>%
set_names() %>%
map_dfr(.f = read_delim,
delim = ";",
.id = "file_name")
new_shp_2006 <- merge(combinedShp, csv_data , by = "ID") %>% filter(label %in% c("AR45T", "GK879"))
st_write(new_shp_2006 , "new_shp_2006.shp", overwrite = TRUE)
setwd("C:/Users/Downloads/global_data/dataset_2007")
shp2007 <- list.files(pattern = 'data_2007.*\\.shp$', full.names = TRUE)
listOfShp <- lapply(shp2007, st_read)
combinedShp <- do.call(what = sf:::rbind.sf, args=listOfShp)
#import and merge CSV files into one data frame
folderfiles <- list.files(pattern = 'csv_2007_.*\\.csv$', full.names = TRUE)
csv_data <- folderfiles %>%
set_names() %>%
map_dfr(.f = read_delim,
delim = ";",
.id = "file_name")
new_shp_2007 <- merge(combinedShp, csv_data , by = "ID") %>% filter(label %in% c("AR45T", "GK879"))
st_write(new_shp_2007 , "new_shp_2007.shp", overwrite = TRUE)
This is easy to achieve with a for-loop to loop over multiple items. To allow us to use wildcards, we can also add the function Sys.glob():
myfunction <- function(directories) {
for(dir in Sys.glob(directories)) {
# do something with a single dir
print(dir)
}
}
# you can specify multiple directories manually:
myfunction(c('C:/Users/Downloads/global_data/dataset_2006',
'C:/Users/Downloads/global_data/dataset_2007'))
# or use a wildcard to automatically get all files/directories that match the pattern:
myfunction('C:/Users/Downloads/global_data/dataset_200*')

How to rbind similar csv files that are scattered in many different zip files, using a function?

Consider one file 'C:/ZFILE' that includes many zip files.
Now, consider that each of these zip includes many csv, among which one specific csv named 'NAME.CSV', all these scattered 'NAME.CSV' being similarly named and structured (i.e., same columns).
How to rbind all these scattered csv?
The script below allows that, but a function would be more appropriate.
How to do this?
Thanks
zfile <- "C:/ZFILE"
zlist <- list.files(path = zfile, pattern = "\\.zip$", recursive = FALSE, full.names = TRUE)
zlist # list all zip from the zfile file
zunzip <- lapply(zlist, unzip, exdir = zfile) # unzip all zip in the zfile file (may takes time depending on the number of zip)
library(data.table) # rbindlist & fread
csv_name <- "NAME.CSV"
csv_list <- list.files(path = zfile, pattern = paste0("\\", csv_name, "$"), recursive = TRUE, ignore.case = FALSE, full.names = TRUE)
csv_list # list all 'NAME.CSV' from the zfile file
csv_rbind <- rbindlist(sapply(csv_list, fread, simplify = FALSE), idcol = 'filename')
You can try this type of function ( you can pass the unzip call directly to the cmd param of data.table::fread())
get_zipped_csv <- function(path) {
fnames = list.files(path,full.names = T)
rbindlist(lapply(fnames, \(f) fread(cmd = paste0("unzip -p ",f))[,src:=f]))
}
Usage:
get_zipped_csv(path = "C:\ZFILE\")

Import multiple CSV files with Softball statistics and plot the progress [duplicate]

I have written the following function to combine 300 .csv files. My directory name is "specdata". I have done the following steps for execution,
x <- function(directory) {
dir <- directory
data_dir <- paste(getwd(),dir,sep = "/")
files <- list.files(data_dir,pattern = '\\.csv')
tables <- lapply(paste(data_dir,files,sep = "/"), read.csv, header = TRUE)
pollutantmean <- do.call(rbind , tables)
}
# Step 2: call the function
x("specdata")
# Step 3: inspect results
head(pollutantmean)
Error in head(pollutantmean) : object 'pollutantmean' not found
What is my mistake? Can anyone please explain?
There's a lot of unnecessary code in your function. You can simplify it to:
load_data <- function(path) {
files <- dir(path, pattern = '\\.csv', full.names = TRUE)
tables <- lapply(files, read.csv)
do.call(rbind, tables)
}
pollutantmean <- load_data("specdata")
Be aware that do.call + rbind is relatively slow. You might find dplyr::bind_rows or data.table::rbindlist to be substantially faster.
To update Prof. Wickham's answer above with code from the more recent purrr library which he coauthored with Lionel Henry:
Tbl <-
list.files(pattern="*.csv") %>%
map_df(~read_csv(.))
If the typecasting is being cheeky, you can force all the columns to be as characters with this.
Tbl <-
list.files(pattern="*.csv") %>%
map_df(~read_csv(., col_types = cols(.default = "c")))
If you are wanting to dip into subdirectories to construct your list of files to eventually bind, then be sure to include the path name, as well as register the files with their full names in your list. This will allow the binding work to go on outside of the current directory. (Thinking of the full pathnames as operating like passports to allow movement back across directory 'borders'.)
Tbl <-
list.files(path = "./subdirectory/",
pattern="*.csv",
full.names = T) %>%
map_df(~read_csv(., col_types = cols(.default = "c")))
As Prof. Wickham describes here (about halfway down):
map_df(x, f) is effectively the same as do.call("rbind", lapply(x, f)) but under the hood is much more efficient.
and a thank you to Jake Kaupp for introducing me to map_df() here.
This can be done very succinctly with dplyr and purrr from the tidyverse. Where x is a list of the names of your csv files you can simply use:
bind_rows(map(x, read.csv))
Mapping read.csv to x produces a list of dfs that bind_rows then neatly combines!
```{r echo = FALSE, warning = FALSE, message = FALSE}
setwd("~/Data/R/BacklogReporting/data/PastDue/global/") ## where file are located
path = "~/Data/R/BacklogReporting/data/PastDue/global/"
out.file <- ""
file.names <- dir(path, pattern = ".csv")
for(i in 1:length(file.names)){
file <- read.csv(file.names[i], header = TRUE, stringsAsFactors = FALSE)
out.file <- rbind(out.file, file)
}
write.csv(out.file, file = "~/Data/R/BacklogReporting/data/PastDue/global/global_stacked/past_due_global_stacked.csv", row.names = FALSE) ## directory to write stacked file to
past_due_global_stacked <- read.csv("C:/Users/E550143/Documents/Data/R/BacklogReporting/data/PastDue/global/global_stacked/past_due_global_stacked.csv", stringsAsFactors = FALSE)
files <- list.files(pattern = "\\.csv$") %>% t() %>% paste(collapse = ", ")
```
If your csv files are into an other directory, you could use something like this:
readFilesInDirectory <- function(directory, pattern){
files <- list.files(path = directory,pattern = pattern)
for (f in files){
file <- paste(directory,files, sep ="")
temp <- lapply(file, fread, sep=",")
data <- rbindlist( temp )
}
return(data)
}
In your current function pollutantmean is available only in the scope of the function x. Modify your function to this
x <- function(directory) {
dir <- directory
data_dir <- paste(getwd(),dir,sep = "/")
files <- list.files(data_dir,pattern = '\\.csv')
tables <- lapply(paste(data_dir,files,sep = "/"), read.csv, header = TRUE)
assign('pollutantmean',do.call(rbind , tables))
}
assign should put result of do.call(rbind, tables) into variable called pollutantmean in global environment.

Read multiple CSV files with separator in R

I'm trying to read 145 CSV. The idea then is to keep just the first row of each of them. I was able to find this suggestion on a blog: about how to read them.
library(readr)
files <- list.files(path = "~/Dropbox/Data/multiple_files", pattern = "*.csv", full.names = T)
tbl <- sapply(files, read_csv, simplify=FALSE) %>%
bind_rows(.id = "id")
But the columns of my csv are separated by | and I have not been able to find how to read them using the separator.
How should I include the separator in the code?
Thanks!

How do you read multiple .txt files into R? [duplicate]

This question already has answers here:
How to import multiple .csv files at once?
(15 answers)
Closed 4 years ago.
I'm using R to visualize some data all of which is in .txt format. There are a few hundred files in a directory and I want to load it all into one table, in one shot.
Any help?
EDIT:
Listing the files is not a problem. But I am having trouble going from list to content. I've tried some of the code from here, but I get a bug with this part:
all.the.data <- lapply( all.the.files, txt , header=TRUE)
saying
Error in match.fun(FUN) : object 'txt' not found
Any snippets of code that would clarify this problem would be greatly appreciated.
You can try this:
filelist = list.files(pattern = ".*.txt")
#assuming tab separated values with a header
datalist = lapply(filelist, function(x)read.table(x, header=T))
#assuming the same header/columns for all files
datafr = do.call("rbind", datalist)
There are three fast ways to read multiple files and put them into a single data frame or data table
First get the list of all txt files (including those in sub-folders)
list_of_files <- list.files(path = ".", recursive = TRUE,
pattern = "\\.txt$",
full.names = TRUE)
1) Use fread() w/ rbindlist() from the data.table package
#install.packages("data.table", repos = "https://cran.rstudio.com")
library(data.table)
# Read all the files and create a FileName column to store filenames
DT <- rbindlist(sapply(list_of_files, fread, simplify = FALSE),
use.names = TRUE, idcol = "FileName")
2) Use readr::read_table2() w/ purrr::map_df() from the tidyverse framework:
#install.packages("tidyverse",
# dependencies = TRUE, repos = "https://cran.rstudio.com")
library(tidyverse)
# Read all the files and create a FileName column to store filenames
df <- list_of_files %>%
set_names(.) %>%
map_df(read_table2, .id = "FileName")
3) (Probably the fastest out of the three) Use vroom::vroom():
#install.packages("vroom",
# dependencies = TRUE, repos = "https://cran.rstudio.com")
library(vroom)
# Read all the files and create a FileName column to store filenames
df <- vroom(list_of_files, .id = "FileName")
Note: to clean up file names, use basename or gsub functions
Benchmark: readr vs data.table vs vroom for big data
Edit 1: to read multiple csv files and skip the header using readr::read_csv
list_of_files <- list.files(path = ".", recursive = TRUE,
pattern = "\\.csv$",
full.names = TRUE)
df <- list_of_files %>%
purrr::set_names(nm = (basename(.) %>% tools::file_path_sans_ext())) %>%
purrr::map_df(read_csv,
col_names = FALSE,
skip = 1,
.id = "FileName")
Edit 2: to convert a pattern including a wildcard into the equivalent regular expression, use glob2rx()
There is a really, really easy way to do this now: the readtext package.
readtext::readtext("path_to/your_files/*.txt")
It really is that easy.
Look at the help for functions dir() aka list.files(). This allows you get a list of files, possibly filtered by regular expressions, over which you could loop.
If you want to them all at once, you first have to have content in one file. One option would be to use cat to type all files to stdout and read that using popen(). See help(Connections) for more.
Thanks for all the answers!
In the meanwhile, I also hacked a method on my own. Let me know if it is any useful:
library(foreign)
setwd("/path/to/directory")
files <-list.files()
data <- 0
for (f in files) {
tempData = scan( f, what="character")
data <- c(data,tempData)
}

Resources