Moving rows in a data frame - r

I'm trying to use the move_columns function from the sjmisc package. However I'm having a problem in that when I use numerals I get a different result from the one I get when I use variables standing for those indices. For example I want to move the column Petal.Width to position 3 (so after 2), but when I use variables it gets moved to the end of the data frame.
> library(sjmisc)
>
> data(iris)
> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
>
> index_rec<-4
> index<-2
> one<-move_columns(iris,index_rec,.after=index)
> head(one)
Sepal.Length Sepal.Width Petal.Length Species Petal.Width
1 5.1 3.5 1.4 setosa 0.2
2 4.9 3.0 1.4 setosa 0.2
3 4.7 3.2 1.3 setosa 0.2
4 4.6 3.1 1.5 setosa 0.2
5 5.0 3.6 1.4 setosa 0.2
6 5.4 3.9 1.7 setosa 0.4
>
> two<-move_columns(iris,4,.after=2)
> head(two)
Sepal.Length Sepal.Width Petal.Width Petal.Length Species
1 5.1 3.5 0.2 1.4 setosa
2 4.9 3.0 0.2 1.4 setosa
3 4.7 3.2 0.2 1.3 setosa
4 4.6 3.1 0.2 1.5 setosa
5 5.0 3.6 0.2 1.4 setosa
6 5.4 3.9 0.4 1.7 setosa
The documentation says that if neither of .before or .after are specified, the column is moved to the end of the data frame by default. So is the problem in the first case that I'm not specifying .after? I think it's clearly there...

EDIT
It works with quasi-quotation.
library(sjmisc)
index_rec<-4
index <- 2
move_columns(iris,4,.after=!!index) %>% head
# Sepal.Length Sepal.Width Petal.Width Petal.Length Species
#1 5.1 3.5 0.2 1.4 setosa
#2 4.9 3.0 0.2 1.4 setosa
#3 4.7 3.2 0.2 1.3 setosa
#4 4.6 3.1 0.2 1.5 setosa
#5 5.0 3.6 0.2 1.4 setosa
#6 5.4 3.9 0.4 1.7 setosa
Earlier Answer
It seems like a bug to me when you pass the number as a variable to the function.
#This works fine
move_columns(iris,4,.after=2) %>% head
# Sepal.Length Sepal.Width Petal.Width Petal.Length Species
#1 5.1 3.5 0.2 1.4 setosa
#2 4.9 3.0 0.2 1.4 setosa
#3 4.7 3.2 0.2 1.3 setosa
#4 4.6 3.1 0.2 1.5 setosa
#5 5.0 3.6 0.2 1.4 setosa
#6 5.4 3.9 0.4 1.7 setosa
#This doesn't
move_columns(iris,4,.after=index) %>% head
# Sepal.Length Sepal.Width Petal.Length Species Petal.Width
#1 5.1 3.5 1.4 setosa 0.2
#2 4.9 3.0 1.4 setosa 0.2
#3 4.7 3.2 1.3 setosa 0.2
#4 4.6 3.1 1.5 setosa 0.2
#5 5.0 3.6 1.4 setosa 0.2
#6 5.4 3.9 1.7 setosa 0.4
Why not use the new relocate function from dplyr? It does not have a bug and works as expected when passed a variable.
library(dplyr)
relocate(iris, 4, .after=2) %>% head
# Sepal.Length Sepal.Width Petal.Width Petal.Length Species
#1 5.1 3.5 0.2 1.4 setosa
#2 4.9 3.0 0.2 1.4 setosa
#3 4.7 3.2 0.2 1.3 setosa
#4 4.6 3.1 0.2 1.5 setosa
#5 5.0 3.6 0.2 1.4 setosa
#6 5.4 3.9 0.4 1.7 setosa
relocate(iris,index_rec,.after=index) %>% head
# Sepal.Length Sepal.Width Petal.Width Petal.Length Species
#1 5.1 3.5 0.2 1.4 setosa
#2 4.9 3.0 0.2 1.4 setosa
#3 4.7 3.2 0.2 1.3 setosa
#4 4.6 3.1 0.2 1.5 setosa
#5 5.0 3.6 0.2 1.4 setosa
#6 5.4 3.9 0.4 1.7 setosa

Related

How to subtract two columns using tidyverse mutate with columns named by external variables

I’d like to dynamically assign which columns to subtract from each other. I’ve read around and looks like I need to use all_of, and maybe across (How to subtract one column from multiple columns in a dataframe in R using dplyr, How to you use objects in dplyr filter?). I can get it working for one variable in a mutate phrase (e.g. mutate(y = all_of(x))), but I can’t seem to do even simple calculations using two. Here’s a simplified example of what I want to do:
var1 <- c("Sepal.Length")
var2 <- c("Sepal.Width")
result <- iris %>%
mutate(calculation = all_of(var1) - all_of(var2))
We may use .data to subset the column as a vector. The all_of/any_of are used along with across to loop across the columns
library(dplyr)
iris %>%
mutate(calculation = .data[[var1]] - .data[[var2]])%>%
head
-output
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
Or may also use cur_data()
iris %>%
head %>%
mutate(calculation = cur_data()[[var1]] - cur_data()[[var2]])
-output
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
Or another option is to pass both the variables in across, and then reduce with -
library(purrr)
iris %>%
head %>%
mutate(calculation = reduce(across(all_of(c(var1, var2))), `-`))
-output
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
Or could convert to symbol and evaluate (!!)
iris %>%
head %>%
mutate(calculation = !! rlang::sym(var1) - !! rlang::sym(var2))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
Or if we want to use all_of in across, just subset the column with [[
iris %>%
head %>%
mutate(calculation = across(all_of(var1))[[1]] -
across(all_of(var2))[[1]])
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
The reason we need to subset is because, across by default will update the original column when the .names is not present. The calculation will be a data.frame with a single column
out <- iris %>%
head %>%
mutate(calculation = across(all_of(var1)) -
across(all_of(var2)))
out
Sepal.Length Sepal.Width Petal.Length Petal.Width Species Sepal.Length
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
str(out)
data.frame': 6 obs. of 6 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1
$ calculation :'data.frame': 6 obs. of 1 variable:
..$ Sepal.Length: num 1.6 1.9 1.5 1.5 1.4 1.5
We could use get to access the variable values where the name of variable is stored in a string (thanks to akrun for assist):
iris %>%
mutate(calculation = get(var1) - get(var2))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
7 4.6 3.4 1.4 0.3 setosa 1.2
8 5 3.4 1.5 0.2 setosa 1.6
9 4.4 2.9 1.4 0.2 setosa 1.5
10 4.9 3.1 1.5 0.1 setosa 1.8
# ... with 140 more rows

Creating new columns with mutate() and across()

This is a simplified version of the actual problem I'm dealing with. In this example, I'll be working with four columns, and the actual problem requires working with about 20-30 columns.
Consider the iris dataset. Suppose that I wanted to, for some reason, append new columns which would be equal to double the .Length and the .Width columns. With the following code, this would change the existing columns:
library(dplyr)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
df_iris <- iris %>% mutate(across(matches("(\\.)(Length|Width)"),
function(x) { x * 2 }))
head(df_iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 10.2 7.0 2.8 0.4 setosa
2 9.8 6.0 2.8 0.4 setosa
3 9.4 6.4 2.6 0.4 setosa
4 9.2 6.2 3.0 0.4 setosa
5 10.0 7.2 2.8 0.4 setosa
6 10.8 7.8 3.4 0.8 setosa
However, instead, I would like to have this doubled calculation create NEW columns, say .Length.2 and .Width.2. One way this could be done is the following:
double <- function(x) {
x * 2
}
df_iris <- iris %>%
mutate(Sepal.Length.2 = double(Sepal.Length),
Sepal.Width.2 = double(Sepal.Width),
Petal.Length.2 = double(Petal.Length),
Petal.Width.2 = double(Petal.Width))
head(df_iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species Sepal.Length.2 Sepal.Width.2 Petal.Length.2 Petal.Width.2
1 5.1 3.5 1.4 0.2 setosa 10.2 7.0 2.8 0.4
2 4.9 3.0 1.4 0.2 setosa 9.8 6.0 2.8 0.4
3 4.7 3.2 1.3 0.2 setosa 9.4 6.4 2.6 0.4
4 4.6 3.1 1.5 0.2 setosa 9.2 6.2 3.0 0.4
5 5.0 3.6 1.4 0.2 setosa 10.0 7.2 2.8 0.4
6 5.4 3.9 1.7 0.4 setosa 10.8 7.8 3.4 0.8
Is there a way to do this in dplyr without:
relying on superseded/deprecated functions?
having to manually specify each column name?
We can use across (used dplyr 1.0.6 version)
library(dplyr)
df_iris <- iris %>%
mutate(across(where(is.numeric), double, .names = '{.col}.2'))
-output
head(df_iris, 3)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species Sepal.Length.2 Sepal.Width.2 Petal.Length.2 Petal.Width.2
1 5.1 3.5 1.4 0.2 setosa 10.2 7.0 2.8 0.4
2 4.9 3.0 1.4 0.2 setosa 9.8 6.0 2.8 0.4
3 4.7 3.2 1.3 0.2 setosa 9.4 6.4 2.6 0.4

How to use lag/lead in mutate with only one initial value?

Sample df:
library(tidyverse)
iris <- iris[1:10,]
iris$testlag <- NA
iris[[1,"testlag"]] <- 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species testlag
1 5.1 3.5 1.4 0.2 setosa 5
2 4.9 3.0 1.4 0.2 setosa NA
3 4.7 3.2 1.3 0.2 setosa NA
4 4.6 3.1 1.5 0.2 setosa NA
5 5.0 3.6 1.4 0.2 setosa NA
6 5.4 3.9 1.7 0.4 setosa NA
7 4.6 3.4 1.4 0.3 setosa NA
8 5.0 3.4 1.5 0.2 setosa NA
9 4.4 2.9 1.4 0.2 setosa NA
10 4.9 3.1 1.5 0.1 setosa NA
In the testlag column, I'm interesting in using dplyr::lag() to retrieve the previous value and add some column, for example Petal.Length to it. As I have only one initial value, each subsequent calculation requires it to work iteratively, so I thought something like mutate would work.
I first tried doing something like this:
iris %>% mutate_at("testlag", ~ lag(.) + Petal.Length)
But this removed the first value, and only gave a valid value for the second row and NAs for the rest. Intuitively I know why it's removing the first value, but I thought the nature of mutate would allow it to work for the rest of the values, so I don't know how to fix that.
Of course using base R I could something like:
for (idx in 2:nrow(iris)) {
iris[[idx, "testlag"]] <-
lag(iris$testlag)[idx] + iris[[idx, "Petal.Length"]]
}
But I would prefer to implement this in tidyverse syntax.
Edit: Desired output (from my for loop)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species testlag
1 5.1 3.5 1.4 0.2 setosa 5.0
2 4.9 3.0 1.4 0.2 setosa 6.4
3 4.7 3.2 1.3 0.2 setosa 7.7
4 4.6 3.1 1.5 0.2 setosa 9.2
5 5.0 3.6 1.4 0.2 setosa 10.6
6 5.4 3.9 1.7 0.4 setosa 12.3
7 4.6 3.4 1.4 0.3 setosa 13.7
8 5.0 3.4 1.5 0.2 setosa 15.2
9 4.4 2.9 1.4 0.2 setosa 16.6
10 4.9 3.1 1.5 0.1 setosa 18.1
Does this work for you?
library(tidyverse)
library("data.table")
iris <- iris[1:10,]
iris$testlag <- NA
iris[[1,"testlag"]] <- 5
iris %>% mutate (testlag = lag(first(testlag) + cumsum(Petal.Length)))
Result:
Sepal.Length Sepal.Width Petal.Length Petal.Width Species testlag
1 5.1 3.5 1.4 0.2 setosa NA
2 4.9 3.0 1.4 0.2 setosa 6.4
3 4.7 3.2 1.3 0.2 setosa 7.8
4 4.6 3.1 1.5 0.2 setosa 9.1
5 5.0 3.6 1.4 0.2 setosa 10.6
6 5.4 3.9 1.7 0.4 setosa 12.0
7 4.6 3.4 1.4 0.3 setosa 13.7
8 5.0 3.4 1.5 0.2 setosa 15.1
9 4.4 2.9 1.4 0.2 setosa 16.6
10 4.9 3.1 1.5 0.1 setosa 18.0
Since technically there is no N-1 Petal length when N = 1, I left the first value of testlag NA. Do you really need it to be initial value? If you need, this will work:
iris %>% mutate (testlag = lag(first(testlag) + cumsum(Petal.Length), default=first(testlag)))
The function you're looking for is tidyr::fill
library(tidyverse)
iris <- iris[1:10,]
iris$testlag <- NA
iris[[1,"testlag"]] <- 5
iris %>% fill(testlag, .direction = "down")
# Note the default is 'down', but I included here for completeness
This takes the specified column (testlag in this case), and copies any values in that column to the values below. This also works if you have a value in a subset of the rows: it copies the value down until it reaches a new value, then it picks up with that one.
For example:
library(tidyverse)
iris <- iris[1:10,]
iris$testlag <- NA
iris[[1,"testlag"]] <- 5
iris[[5,"testlag"]] <- 10
Sepal.Length Sepal.Width Petal.Length Petal.Width Species testlag
1 5.1 3.5 1.4 0.2 setosa 5
2 4.9 3.0 1.4 0.2 setosa NA
3 4.7 3.2 1.3 0.2 setosa NA
4 4.6 3.1 1.5 0.2 setosa NA
5 5.0 3.6 1.4 0.2 setosa 10
6 5.4 3.9 1.7 0.4 setosa NA
7 4.6 3.4 1.4 0.3 setosa NA
8 5.0 3.4 1.5 0.2 setosa NA
9 4.4 2.9 1.4 0.2 setosa NA
10 4.9 3.1 1.5 0.1 setosa NA
Applying this function...
iris %>% fill(testlag, .direction = "down")
Gives
Sepal.Length Sepal.Width Petal.Length Petal.Width Species testlag
1 5.1 3.5 1.4 0.2 setosa 5
2 4.9 3.0 1.4 0.2 setosa 5
3 4.7 3.2 1.3 0.2 setosa 5
4 4.6 3.1 1.5 0.2 setosa 5
5 5.0 3.6 1.4 0.2 setosa 10
6 5.4 3.9 1.7 0.4 setosa 10
7 4.6 3.4 1.4 0.3 setosa 10
8 5.0 3.4 1.5 0.2 setosa 10
9 4.4 2.9 1.4 0.2 setosa 10
10 4.9 3.1 1.5 0.1 setosa 10

Duplicating a row in a data-frame n number of times with positional spec

Sample df:
iris_subset <- iris[1:5, ]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
I'm looking for the best solution where I can duplicate a specific row, n number of times, with the opportunity to state positionally where to insert the duplicate rows.
For example, I want to duplicate row 2 two times, after the original row.
Desired output:
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.9 3.0 1.4 0.2 setosa
4 4.9 3.0 1.4 0.2 setosa
5 4.7 3.2 1.3 0.2 setosa
6 4.6 3.1 1.5 0.2 setosa
7 5.0 3.6 1.4 0.2 setosa
Sloppily, I can do something like:
iris_subset <- rbind(iris_subset, iris[2,], iris[2,])
iris_subset <- iris_subset[c(1:2, 6:7, 3:5),]
row.names(iris_subset) <- 1:nrow(iris_subset)
But if I want to functionalise this, I need a better way of repeating the row I want duplicated than manually passing in additional arguments n times in rbind or other alternatives, which is incredibly inefficient.
row_ind = 2
repeat_n = 3
place_at_row = 3
inds = append(x = 1:NROW(iris_subset),
values = rep(row_ind, repeat_n),
after = place_at_row - 1)
iris_subset[inds,]
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#1 5.1 3.5 1.4 0.2 setosa
#2 4.9 3.0 1.4 0.2 setosa
#2.1 4.9 3.0 1.4 0.2 setosa
#2.2 4.9 3.0 1.4 0.2 setosa
#2.3 4.9 3.0 1.4 0.2 setosa
#3 4.7 3.2 1.3 0.2 setosa
#4 4.6 3.1 1.5 0.2 setosa
#5 5.0 3.6 1.4 0.2 setosa
We can use add_row from tidyverse
library(tidyverse)
add_row(iris_subset, !!! as.list(iris_subset[rep(2, each = 3),]), .after = 2)
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#1 5.1 3.5 1.4 0.2 setosa
#2 4.9 3.0 1.4 0.2 setosa
#3 4.9 3.0 1.4 0.2 setosa
#4 4.9 3.0 1.4 0.2 setosa
#5 4.9 3.0 1.4 0.2 setosa
#6 4.7 3.2 1.3 0.2 setosa
#7 4.6 3.1 1.5 0.2 setosa
#8 5.0 3.6 1.4 0.2 setosa

Combining multiple dataframe in R

I have 5 dataframe (df1, df2, df3, df4, df5). All have same columns and column names (NIR database). I would like to frist combine df1 and df2 into df12 and then df3, df4 and df5 into df345 and finally combine df12 and df345 into df. (It has to be this two stages).
df12 <- do.call(rbind, list(df1,df2))
df345 <- do.call(rbind, list(df3,df4,df5))
df <- do.call(rbind, list(df12,df345))
newdf <- data.frame(oiltype="olive",nir=df[2:276]);
With this I got one of the column names become nir.nir.V4 while I need it to be nir.V4.
I think this is due to the use of list. I would like to know if there's any alternative to combine multiple dataframes without having to face this trouble. Appreciate any suggestion.
I have 5 data.frame df1, df2, df3, df4, df5 having same columns and column names.
> df1
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
> df2
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
> df3
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
> df4
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
> df5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
13 4.8 3 1.4 0.1 setosa
14 4.3 3 1.1 0.1 setosa
15 5.8 4 1.2 0.2 setosa
For combining df1 and df2
> df12 <- rbind(df1,df2)
> df12
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
For combining df3, df4, df5 do the same as above
> df345 <- rbind(df3,df4,df5)
> df345
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa
15 5.8 4.0 1.2 0.2 setosa
And at last combining newly formed data frame can be done in similar way
> df <- rbind(df12,df345)
> df
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa
15 5.8 4.0 1.2 0.2 setosa

Resources