Related
I tried binary logistic regression with BFGS using maxlik, but i have included the feature as per the syntax i attached below, but the result is, but i get output like this
Maximum Likelihood estimation
BFGS maximization, 0 iterations
*Return code 100: Initial value out of range.
https://docs.google.com/spreadsheets/d/1fVLeJznB9k29FQ_BdvdCF8ztkOwbdFpx/edit?usp=sharing&ouid=109040212946671424093&rtpof=true&sd=true (this is my data)*
library(maxLik)
library(optimx)
data=read_excel("Book2.xlsx")
data$JKLaki = ifelse(data$JK==1,1,0)
data$Daerah_Samarinda<- ifelse(data$Daerah==1,1,0)
data$Prodi2 = ifelse(data$Prodi==2,1,0)
data$Prodi3 = ifelse(data$Prodi==3,1,0)
data$Prodi4 = ifelse(data$Prodi==4,1,0)
str(data)
attach(data)
ll<- function(param){
mu <- param[1]
beta <- param[-1]
y<- as.vector(data$Y)
x<- cbind(1, data$JKLaki, data$IPK, data$Daerah_Samarinda, data$Prodi2, data$Prodi3, data$Prodi4)
xb<- x%*%beta
pi<- exp(xb)
val <- -sum(y * log(pi) + (1 - y) * log(1 - pi),log=TRUE)
return(val)
}
gl<- funtion(param){
mu <- param[1]
beta <- param[-1]
y <- as.vector(data$Y)
x <- cbind(0, data$JKLaki,data$IPK,data$Daerah_Samarinda,data$Prodi2,data$Prodi3,data$Prodi4)
sigma <- x*beta
pi<- exp(sigma)/(1+exp(sigma))
v= y-pi
vx=as.matrix(x)%*%as.vector(v)
gg= colSums(vx)
return(-gg)}
mle<-maxLik(logLik=ll, grad=gl,hess=NULL,
start=c(mu=1, beta1=0, beta2=0, beta3=0, beta4=0, beta5=0, beta6=0,beta7=0), method="BFGS")
summary(mle)
can i get some help, i tired get this solution, please.
I have been able to optimize the log-likelihood with the following code :
library(DEoptim)
library(readxl)
data <- read_excel("Book2.xlsx")
data$JKLaki <- ifelse(data$JK == 1, 1, 0)
data$Daerah_Samarinda <- ifelse(data$Daerah == 1, 1, 0)
data$Prodi2 <- ifelse(data$Prodi == 2, 1, 0)
data$Prodi3 <- ifelse(data$Prodi == 3, 1, 0)
data$Prodi4 <- ifelse(data$Prodi == 4, 1, 0)
ll <- function(param, data)
{
mu <- param[1]
beta <- param[-1]
y <- as.vector(data$Y)
x <- cbind(1, data$JKLaki, data$IPK, data$Daerah_Samarinda, data$Prodi2, data$Prodi3, data$Prodi4)
xb <- x %*% beta
pi <- exp(mu + xb)
val <- -sum(y * log(pi) + (1 - y) * log(1 - pi))
if(is.nan(val) == TRUE)
{
return(10 ^ 30)
}else
{
return(val)
}
}
lower <- rep(-500, 8)
upper <- rep(500, 8)
obj_DEoptim_Iter1 <- DEoptim(fn = ll, lower = lower, upper = upper,
control = list(itermax = 5000), data = data)
lower <- obj_DEoptim_Iter1$optim$bestmem - 0.25 * abs(obj_DEoptim_Iter1$optim$bestmem)
upper <- obj_DEoptim_Iter1$optim$bestmem + 0.25 * abs(obj_DEoptim_Iter1$optim$bestmem)
obj_DEoptim_Iter2 <- DEoptim(fn = ll, lower = lower, upper = upper,
control = list(itermax = 5000), data = data)
obj_Optim <- optim(par = obj_DEoptim_Iter2$optim$bestmem, fn = ll, data = data)
$par
par1 par2 par3 par4 par5 par6 par7
-350.91045436 347.79576145 0.05337466 0.69032735 -0.01089112 0.47465162 0.38284804
par8
0.42125664
$value
[1] 95.08457
$counts
function gradient
501 NA
$convergence
[1] 1
$message
NULL
I'm trying to transform two residual plots performed below into ggplot2.
As a description, in order to perform these graphs, it is necessary to previously define some functions associated with the specifics of the class of the adopted model, which I am providing below.
The model is in the fit argument whose data is from the nlme library, and the graphs are plotted at the end of the code using the qqPlot2 function.
rm(list = ls()); cat('\014')
library(ggplot2)
library(dplyr)
library(plotly)
library(nlme)
library(lme4)
library(MASS)
library(tidyverse)
library(splines)
library(gamlss)
library(gridExtra)
library(hnp)
library(car)
extract.lmeDesign2 <- function(m){
start.level = 1
data <- getData(m)
grps <- nlme::getGroups(m)
n <- length(grps)
X <- list()
grp.dims <- m$dims$ncol
Zt <- model.matrix(m$modelStruct$reStruct, data)
cov <- as.matrix(m$modelStruct$reStruct)
i.col <- 1
n.levels <- length(m$groups)
Z <- matrix(0, n, 0)
if (start.level <= n.levels) {
for (i in 1:(n.levels - start.level + 1)) {
if (length(levels(m$groups[[n.levels - i + 1]])) != 1)
{
X[[1]] <- model.matrix(~m$groups[[n.levels - i +
1]] - 1,
contrasts.arg = c("contr.treatment",
"contr.treatment"))
}
else X[[1]] <- matrix(1, n, 1)
X[[2]] <- as.matrix(Zt[, i.col:(i.col + grp.dims[i] -
1)])
i.col <- i.col + grp.dims[i]
Z <- cbind(mgcv::tensor.prod.model.matrix(X),Z)
}
Vr <- matrix(0, ncol(Z), ncol(Z))
start <- 1
for (i in 1:(n.levels - start.level + 1)) {
k <- n.levels - i + 1
for (j in 1:m$dims$ngrps[i]) {
stop <- start + ncol(cov[[k]]) - 1
Vr[ncol(Z) + 1 - (stop:start),ncol(Z) + 1 - (stop:start)] <- cov[[k]]
start <- stop + 1
}
}
}
X <- if (class(m$call$fixed) == "name" && !is.null(m$data$X)) {
m$data$X
} else {
model.matrix(formula(eval(m$call$fixed)),data)
}
y <- as.vector(matrix(m$residuals, ncol = NCOL(m$residuals))[,NCOL(m$residuals)] +
matrix(m$fitted, ncol = NCOL(m$fitted))[,NCOL(m$fitted)])
return(list(
Vr = Vr,
X = X,
Z = Z,
sigmasq = m$sigma ^ 2,
lambda = unique(diag(Vr)),
y = y,
k = n.levels
)
)
}
fit = lme(distance ~ age, method="REML",data = Orthodont)
data.fit <- extract.lmeDesign2(fit)
data <- getData(fit)
y <- data.fit$y
X <- data.fit$X
N <- length(y)
id <- sort(as.numeric(getGroups(fit, level = 1)), index.return = TRUE)$x
n <- length(as.numeric(names(table(id))))
vecni <- (table(id))
p <- ncol(X)
n.levels <- length(fit$groups)
start.level <- 1
Cgrps <- nlme::getGroups(fit, level = start.level)
CCind <- levels((Cgrps))
sigma2 <- fit$sigma^2
obs <- numeric()
for (i in 1:n)
{
obs <- append(obs,1:vecni[i])
}
if (n.levels > 1) {
lZi <- list()
lgi <- list()
numrow <- numeric()
mgroups <- fit$groups
for (n in 1:length(CCind)) {
dgi <- data.frame(as.matrix(mgroups[mgroups == CCind[n], ]))
nrowzi <- dim(dgi)[1]
ncolzi <- 0
girep <- as.numeric(length(levels(dgi[,1])))
for (k in 2:n.levels) {
girep <- c(girep,as.numeric(length(levels(dgi[,k]))))
}
for (k in 1:n.levels) {
ncolzi <- ncolzi + as.numeric(length(levels(dgi[,k])))
}
auxi <- as.vector(table(dgi[,1]))
for (i in 2:n.levels) {
auxi <- c(auxi,as.vector(table(dgi[,i])))
}
l <- 1
Zi <- matrix(0,nrowzi,ncolzi)
for (j in 1:ncolzi) {
Zi[l:(l + auxi[j] - 1),j] <- rep(1,auxi[j])
l <- l + auxi[j]
if (l == (nrowzi + 1)) l <- 1
}
lZi[[n]] <- Zi
numrow[n] <- dim(Zi)[1]
comp.var <- as.matrix(fit1$modelStruct$reStruct)
auxg <- rep(as.numeric(comp.var[1])*sigma2,girep[1])
for (i in 2:length(girep)) {
auxg <- c(auxg,rep(as.numeric(comp.var[i])*sigma2,girep[i]))
}
lgi[[n]] <- diag(auxg)
}
q <- dim(lgi[[1]])[1]
for (h in 2:length(CCind)) {
q <- c(q,dim(lgi[[h]])[1])
}
Z <- lZi[[1]]
for (k in 2:length(CCind)) {
Z <- bdiag(Z,(lZi[[k]]))
}
Z <- as.matrix(Z)
nrowZi <- lZi[[1]]
for (h in 2:length(CCind)) {
nrowZi <- c(nrowZi,dim(lZi[[h]])[1])
}
Gam <- lgi[[1]]
for (k in 2:length(CCind)) {
Gam <- bdiag(Gam,(lgi[[k]]))
}
Gam <- as.matrix(Gam)
}else{
mataux <- model.matrix(fit$modelStruct$reStruct,data)
mataux <- as.data.frame(cbind(mataux,id))
lZi <- list()
lgi <- list()
for (i in (as.numeric(unique(id)))) {
lZi[[i]] <- as.matrix((subset(split(mataux,id == i,
drop = T)$`TRUE`,select = -id)))
lgi[[i]] <- getVarCov(fit,type = "random.effects")
}
Z <- as.matrix(bdiag(lZi))
g <- getVarCov(fit,type = "random.effects")
q <- dim(g)[1]
Gam <- as.matrix(kronecker(diag(length(as.numeric(unique(id)))),g))
}
if (n.levels > 1) {
if (!inherits(fit, "lme"))
stop("object does not appear to be of class lme")
grps <- nlme::getGroups(fit)
n <- length(grps)
n.levels <- length(fit$groups)
if (is.null(fit$modelStruct$corStruct))
n.corlevels <- 0
else n.corlevels <- length(all.vars(nlme::getGroupsFormula(fit$modelStruct$corStruct)))
if (n.levels < n.corlevels) {
getGroupsFormula(fit$modelStruct$corStruct)
vnames <- all.vars(nlme::getGroupsFormula(fit$modelStruct$corStruct))
lab <- paste(eval(parse(text = vnames[1]), envir = fit$data))
if (length(vnames) > 1)
for (i in 2:length(vnames)) {
lab <- paste(lab, "/", eval(parse(text = vnames[i]),
envir = fit$data), sep = "")
}
grps <- factor(lab)
}
if (n.levels >= start.level || n.corlevels >= start.level) {
if (n.levels >= start.level)
Cgrps <- nlme::getGroups(fit, level = start.level)
else Cgrps <- grps
Cind <- sort(as.numeric(Cgrps), index.return = TRUE)$ix
rCind <- 1:n
rCind[Cind] <- 1:n
Clevel <- levels(Cgrps)
n.cg <- length(Clevel)
size.cg <- array(0, n.cg)
for (i in 1:n.cg) size.cg[i] <- sum(Cgrps == Clevel[i])
}
else {
n.cg <- 1
Cind <- 1:n
}
if (is.null(fit$modelStruct$varStruct))
w <- rep(fit$sigma, n)
else {
w <- 1/nlme::varWeights(fit$modelStruct$varStruct)
group.name <- names(fit$groups)
order.txt <- paste("ind<-order(data[[\"", group.name[1],
"\"]]", sep = "")
if (length(fit$groups) > 1)
for (i in 2:length(fit$groups)) order.txt <- paste(order.txt,
",data[[\"", group.name[i], "\"]]", sep = "")
order.txt <- paste(order.txt, ")")
eval(parse(text = order.txt))
w[ind] <- w
w <- w * fit$sigma
}
w <- w[Cind]
if (is.null(fit$modelStruct$corStruct))
lR <- array(1, n)
else {
c.m <- nlme::corMatrix(fit$modelStruct$corStruct)
if (!is.list(c.m)) {
lR <- c.m
lR <- lR[Cind, ]
lR <- lR[, Cind]
}
else {
lR <- list()
ind <- list()
for (i in 1:n.cg) {
lR[[i]] <- matrix(0, size.cg[i], size.cg[i])
ind[[i]] <- 1:size.cg[i]
}
Roff <- cumsum(c(1, size.cg))
gr.name <- names(c.m)
n.g <- length(c.m)
j0 <- rep(1, n.cg)
ii <- 1:n
for (i in 1:n.g) {
Clev <- unique(Cgrps[grps == gr.name[i]])
if (length(Clev) > 1)
stop("inner groupings not nested in outer!!")
k <- (1:n.cg)[Clevel == Clev]
j1 <- j0[k] + nrow(c.m[[i]]) - 1
lR[[k]][j0[k]:j1, j0[k]:j1] <- c.m[[i]]
ind1 <- ii[grps == gr.name[i]]
ind2 <- rCind[ind1]
ind[[k]][j0[k]:j1] <- ind2 - Roff[k] + 1
j0[k] <- j1 + 1
}
for (k in 1:n.cg) {
lR[[k]][ind[[k]], ] <- lR[[k]]
lR[[k]][, ind[[k]]] <- lR[[k]]
}
}
}
if (is.list(lR)) {
for (i in 1:n.cg) {
wi <- w[Roff[i]:(Roff[i] + size.cg[i] - 1)]
lR[[i]] <- as.vector(wi) * t(as.vector(wi) * lR[[i]])
}
}
else if (is.matrix(lR)) {
lR <- as.vector(w) * t(as.vector(w) * lR)
}
else {
lR <- w^2 * lR
}
if (is.list(lR)) {
R <- lR[[1]]
for (k in 2:n.cg) {
R <- bdiag(R,lR[[k]])
}
R <- as.matrix(R)
}
else{
R <- diag(lR)
}
}else{
R <- getVarCov(fit,type = "conditional",individual = 1)[[1]]
for (i in 2:length(as.numeric(unique(id)))) {
R <- as.matrix(bdiag(R,getVarCov(fit,
type = "conditional",individual = i)[[1]] ) )
}
}
sqrt.matrix <- function(mat) {
mat <- as.matrix(mat)
singular_dec <- svd(mat,LINPACK = F)
U <- singular_dec$u
V <- singular_dec$v
D <- diag(singular_dec$d)
sqrtmatrix <- U %*% sqrt(D) %*% t(V)
}
V <- (Z %*% Gam %*% t(Z)) + R
iV <- solve(V)
varbeta <- solve((t(X) %*% iV %*% X))
Q <- (iV - iV %*% X %*% (varbeta) %*% t(X) %*% iV )
zq <- t(Z) %*% Q
norm.frob.ZtQ <- sum(diag(zq %*% t(zq)))
eblue <- as.vector(fixef(fit))
eblup <- Gam %*% t(Z) %*% iV %*% (y - X %*% eblue)
predm <- X %*% eblue
predi <- X %*% eblue + Z %*% eblup
resm <- (y - predm)
resc <- (y - predi)
var.resm <- V - X %*% solve(t(X) %*% iV %*% X) %*% t(X)
var.resc <- R %*% Q %*% R
ident <- diag(N)
auxnum <- (R %*% Q %*% Z %*% Gam %*% t(Z) %*% Q %*% R)
auxden <- R %*% Q %*% R
CF <- diag(auxnum)/diag(auxden)
rescp <- resc/sqrt(diag(var.resc))
R.half <- sqrt.matrix(R)
auxqn <- eigen((R.half %*% Q %*% R.half), symmetric = T, only.values = FALSE)
lt <- sqrt(solve(diag((auxqn$values[1:(N-p)])))) %*% t(auxqn$vectors[1:N,1:(N-p)]) %*% solve(sqrt.matrix(R[1:N,1:N]))
var.resmcp <- lt %*% var.resc[1:N,1:N] %*% t(lt)
resmcp <- (lt %*% resc[1:N] )/sqrt(diag(var.resmcp))
if (n.levels > 1) {
aux <- Gam %*% t(Z) %*% Q %*% Z %*% Gam
qm <- q - 1
dm <- matrix(0,length(CCind),1)
gbi <- aux[1:(q[1]),(1:q[1])]
eblupi <- eblup[1:(q[1]),]
dmi <- t(eblupi) %*% ginv(gbi) %*% eblupi
dm[1] <- dmi
for (j in 2:length(CCind)) {
gbi <- aux[((j - 1)*q[(j - 1)] + 1 ):(q[j] + q[(j - 1)]),((j - 1)*q[(j - 1)] + 1 ):(q[j] + q[(j - 1)])]
eblupi <- eblup[((j - 1)*q[(j - 1)] + 1 ):(q[j] + q[(j - 1)]),]
dmi <- t(eblupi) %*% ginv(gbi) %*% eblupi
dm[j] <- dmi
}
}else{
aux <- Gam %*% t(Z) %*% Q %*% Z %*% Gam
qm <- q - 1
dm <- matrix(0,n,1)
for (j in 1:length(CCind))
{
if (q == 1)
{
gbi <- aux[j,j]
eblupi <- eblup[(q*j - qm):(q*j)]
dmi <- t(eblupi) %*% ginv(gbi) %*% eblupi
dm[j] <- dmi
}
else
{
gbi <- aux[(q*j - qm):(q*j),(q*j - qm):(q*j)]
cat(gbi,'\n','\t')
eblupi <- eblup[(q*j - qm):(q*j)]
dmi <- t(eblupi) %*% ginv(gbi) %*% eblupi
dm[j] <- dmi
}
}
}
qqPlot2 <- function(x, distribution="norm", ..., ylab=deparse(substitute(x)),
xlab=paste(distribution, "quantiles"), main = NULL,
las = par("las"),
envelope = .95,
col = palette()[1],
col.lines = palette()[2], lwd = 2, pch = 1, cex = par("cex"),
cex.lab = par("cex.lab"), cex.axis = par("cex.axis"),
line = c("quartiles", "robust", "none"),
labels = if (!is.null(names(x))) names(x) else seq(along = x),
id.method = "y",
id.n = if (id.method[1] == "identify") Inf else 0,
id.cex = 1, id.col=palette()[1], grid = TRUE)
{
line <- match.arg(line)
good <- !is.na(x)
ord <- order(x[good])
ord.x <- x[good][ord]
ord.lab <- labels[good][ord]
q.function <- eval(parse(text = paste("q", distribution, sep = "")))
d.function <- eval(parse(text = paste("d", distribution, sep = "")))
n <- length(ord.x)
P <- ppoints(n)
z <- q.function(P, ...)
plot(z, ord.x, type = "n", xlab = xlab,
ylab = ylab, main = main,
las = las,cex.lab = cex.lab, cex.axis = cex.axis)
if (grid) {
grid(lty = 1, equilogs = FALSE)
box()}
points(z, ord.x, col = col, pch = pch, cex = cex)
if (line == "quartiles" || line == "none") {
Q.x <- quantile(ord.x, c(.25,.75))
Q.z <- q.function(c(.25,.75), ...)
b <- (Q.x[2] - Q.x[1])/(Q.z[2] - Q.z[1])
a <- Q.x[1] - b*Q.z[1]
abline(a, b, col = col.lines, lwd = lwd)
}
if (line == "robust") {
coef <- coef(rlm(ord.x ~ z))
a <- coef[1]
b <- coef[2]
abline(a, b)
}
conf <- if (envelope == FALSE) .95 else envelope
zz <- qnorm(1 - (1 - conf)/2)
SE <- (b/d.function(z, ...))*sqrt(P*(1 - P)/n)
fit.value <- a + b*z
upper <- fit.value + zz*SE
lower <- fit.value - zz*SE
if (envelope != FALSE) {
lines(z, upper, lty = 2, lwd = lwd, col = col.lines)
lines(z, lower, lty = 2, lwd = lwd, col = col.lines)
}
}
x11()
qqPlot2(resmcp, ylab = "Resíduos",
xlab = "Quantil N(0,1)", pch = 20)
qqPlot2(dm, distribution = 'chisq', df = q, pch = 20,
ylab = expression(paste("Quantis de Mahalanobis")),
xlab = "Quantis da Qui-quadrado")
My attempt to reproduce them in ggplot2 was as follows:
P1 = qqPlot2(resmcp, ylab = "Resíduos",
xlab = "Quantil N(0,1)", pch = 20)
PP1 = ggplot(data = P1, aes(resmcp)) +
geom_point(aes(y = resmcp), show.legend = FALSE)
P2 = qqPlot2(dm, distribution = 'chisq', df = q, pch = 20,
ylab = expression(paste("Quantis de Mahalanobis")),
xlab = "Quantis da Qui-quadrado")
PP2 = ggplot(data = P2, aes(dm)) +
geom_point(aes(y = dm), show.legend = FALSE)
x11()
gridExtra::grid.arrange(PP1,PP2, ncol = 2)
However, something is happening, as I have gotten the following result:
See my attempt below for the quantile mahalanobis distance graph vs. chi-square quantiles:
gVals <- function(y, dist, conf){ # distribution; confidence interval
y <- sort(y) # make sure they're in order
p <- ppoints(length(y))
if(dist == "chisq") {
zi <- qchisq(p, df = length(p) - 1)
zd <- dchisq(zi, df = length(p) - 1)
qz <- qchisq(c(.25, .75), length(p) - 1)
} else {
zi <- qnorm(p)
zd <- dnorm(zi)
qz <- qnorm(c(.25, .75))
}
# if quartiles preferred
qx <- quantile(y, c(.25, .75))
b <- (qx[2] - qx[1]) / (qz[2] - qz[1])
a <- qx[1] - b * qz[1]
# if robust preferred
# coef <- coef(rlm(y~zi))
# a <- coef[1]
# b <- coef[2]
z <- qnorm(1 - (1 - conf)/2) # z = 1.96 for 95%...
se <- (b / zd) * sqrt(p * (1 - p)/length(p))
ft <- a + b * zi
uc <- ft + z * se
dc <- ft - z * se
dff = data.frame(z = zi, y = y, uc = uc, dc = dc)
list(a = a, b = b, dff = dff) # returns intercept, slope, and data frame
}
cdf <- gVals(dm, "chisq", .95) # dm is defined in the previous code above
ggplot(cdf$dff, aes(x = z, y = y)) +
geom_point() +
geom_abline(intercept = cdf$a[[1]], slope = cdf$b[[1]]) +
annotate("line", x = cdf$dff$z, y = cdf$dff$uc, color = "red", lty = 2) +
annotate("line", x = cdf$dff$z, y = cdf$dff$dc, color = "red", lty = 2)
Note that the x axis should go from 0 to 8, and the y axis should go from 0 to 14. Also, the shape of the simulation envelope is not similar. I am not able to fix this problem.
Update
Instead of having the code for the option quartile commented out, I have commented out the code for the option robust in the function. Additionally, instead of returning a data frame, it returns a list. FYI, you only need the MASS package if you use the robust option (for the function rlm).
This function is based on the code used in qqPlot2 in your question. However, it doesn't return a plot; it returns data.
library(car)
library(MASS)
library(tidyverse)
gVals <- function(y, dist, conf){ # distribution; confidence interval
y <- sort(y) # make sure they're in order
p <- ppoints(length(y))
if(dist == "chisq") {
zi <- qchisq(p, df = length(p) - 1)
zd <- dchisq(zi, df = length(p) - 1)
qz <- qchisq(c(.25, .75), length(p) - 1)
} else {
zi <- qnorm(p)
zd <- dnorm(zi)
qz <- qnorm(c(.25, .75))
}
# if quartiles preferred
qx <- quantile(y, c(.25, .75))
b <- (qx[2] - qx[1]) / (qz[2] - qz[1])
a <- qx[1] - b * qz[1]
# if robust preferred
# coef <- coef(rlm(y~zi))
# a <- coef[1]
# b <- coef[2]
z <- qnorm(1 - (1 - conf)/2) # z = 1.96 for 95%...
se <- (b / zd) * sqrt(p * (1 - p)/length(p))
ft <- a + b * zi
uc <- ft + z * se
dc <- ft - z * se
dff = data.frame(z = zi, y = y, uc = uc, dc = dc)
list(a = a, b = b, dff = dff) # returns intercept, slope, and data frame
}
Here is a comparison with some arbitrary data.
data(mtcars)
qqPlot2(mtcars$mpg)
qqPlot2(mtcars$mpg, dist = "chisq", df = 31)
ndf <- gVals(mtcars$mpg, "norm", .95)
ggplot(ndf$dff, aes(x = z, y = y)) +
geom_point() +
geom_abline(intercept = ndf$a[[1]], slope = ndf$b[[1]]) +
annotate("line", x = ndf$dff$z, y = ndf$dff$uc, color = "red", lty = 2) +
annotate("line", x = ndf$dff$z, y = ndf$dff$dc, color = "red", lty = 2)
cdf <- gVals(mtcars$mpg, "chisq", .95)
ggplot(cdf$dff, aes(x = z, y = y)) +
geom_point() +
geom_abline(intercept = cdf$a[[1]], slope = cdf$b[[1]]) +
annotate("line", x = cdf$dff$z, y = cdf$dff$uc, color = "red", lty = 2) +
annotate("line", x = cdf$dff$z, y = cdf$dff$dc, color = "red", lty = 2)
I managed to solve it through the library qqplotr.
library(qqplotr)
dist <- "chisq"
dpar <- list(df = q)
QT <- data.frame(QUANTIS = dm); ggplot(QT, aes(sample = QUANTIS)) +
stat_qq_band(distribution = dist, dparams = dpar) +
stat_qq_point(distribution = dist, dparams = dpar) +
stat_qq_line(distribution = dist, dparams = dpar, color = "blue");
qqPlot2(dm, distribution = 'chisq', df = q, pch = 20,
ylab = expression(paste("Quantis de Mahalanobis")),
xlab = "Quantis da Qui-quadrado")
I need little help. I try to do plot with ggplot package. When I want to make plot, depends of more than 1 factor (for example here: plot changes when średnia1 and odchylenie1 change):
alpha = 0.05
N = 100
sample_l = 10
srednia1 = seq(-7, 7, by = 1)
odchylenie1 = seq(1, 10, by = 1)
srednia2 = 2
odchylenie2 = 2
prob = 0.7
params = expand.grid(sample_l, srednia1, odchylenie1, srednia2, odchylenie2, prob)
str(params)
names(params) = c("dlugość", "średnia1", "odchylenie1", "średnia2", "odchyelnie2", "prawdopodobienstwo")
set.seed(100)
now <- Sys.time()
powers <- sapply(1:nrow(params), function(p){
l <- params[p, 1]
par_1 <- c(params[p, 2],params[p, 3])
par_2 <- c(params[p, 4], params[p, 5])
p <- params[p,6]
p_sim <-sapply(rep(l, N), function(x){
my_sample <- rmix(l,"norm", par_1, "norm", par_2, p)
shapiro.test(my_sample)$p.value
})
mean(p_sim < alpha)
})
Sys.time() - now
power_df <- bind_cols(params, power = powers)
power_df %>% ggplot(aes(x = średnia1,
y = power,
col = factor(odchylenie1))) +
geom_line()
it work perfect, but now, when I want to make plot only depends of 1 factor - prob something goes wrong. I have error : Error: Aesthetics must be either length 1 or the same as the data (150): x, y. Here is a code:
alpha = 0.05
N = 100
sample_l = 10
srednia1 = 2
odchylenie1 = 2
srednia2 = 1
odchylenie2 = 1
prob = seq(0.1,0.9,by=0.1)
set.seed(100)
now <- Sys.time()
powers <- sapply(1:nrow(params), function(p){
l <- params[p, 1]
par_1 <- c(params[p, 2],params[p, 3])
par_2 <- c(params[p, 4], params[p, 5])
p <- params[p,6]
p_sim <-sapply(rep(l, N), function(x){
my_sample <- rmix(l,"norm", par_1, "norm", par_2, p)
shapiro.test(my_sample)$p.value
})
mean(p_sim < alpha)
})
Sys.time() - now
power_df <- bind_cols(params, power = powers)
power_df %>% ggplot(aes(x = prob, y = power)) + geom_line()
PLEASE HELP ME :(
I have an R function that provides the 95% confidence Interval for the ncp (non-centrality parameter) of a t distribution.
Via simulation in R, is it possible to show that in the long-run the CIs from this R function capture a given TRUE ncp (here "2" same as input t) 95% of the time?
(I appreciate any ideas as to how to do this)
CI.ncp <- function(t, N){
f <- function (ncp, alpha, q, df) {
abs(suppressWarnings(pt(q = t, df = N - 1, ncp, lower.tail = FALSE)) - alpha) }
sapply(c(0.025, 0.975),
function(x) optim(1, f, alpha = x, q = t, df = N - 1, control = list(reltol = (.Machine$double.eps)))[[1]]) }
#Example of Use:
CI.ncp(t = 2, N = 20) # gives: -0.08293755 4.03548862
#(in the long-run 95% of the time, "2" is contained within these
# two numbers, how to show this in R?)
Here is what I have tried with no success:
fun <- function(t = 2, N = 20){
ncp = rt(1, N - 1, t)
CI.ncp(t = 2, N = 20)
mean(ncp <= 2 & 2 <= ncp )
}
R <- 1000
sim <- t(replicate(R, fun()))
coverage <- mean(sim[,1] <= 2 & 2 <= sim[,2])
The problem is the that we need to feed the random ncp obtained from the fun in the CI.ncp:
fun <- function(t = 2, N = 20){ ;
ncp = rt(1, N - 1, t);
CI.ncp(t = ncp, N = 20);
}
R <- 1e4 ;
sim <- t(replicate(R, fun()));
coverage <- mean(sim[,1] <= 2 & 2 <= sim[,2])
I would use package MBESS.
#install.packages("MBESS")
library(MBESS)
fun <- function(t = 2, N = 20, alpha = 0.95){
x = rt(1, N - 1, t)
conf.limits.nct(x, df = N, conf.level = alpha)[c(1, 3)]
}
set.seed(5221)
R <- 1000
sim <- t(replicate(R, fun()))
head(sim)
coverage <- mean(sim[,1] <= 2 & 2 <= sim[,2])
coverage
[1] 0.941
I just need help for the first loop! I would like to run the loop for each certain value of m (see first line in code) but its running only for 1:10? The outcome shoud be stored in the last rows msediff1 to msediff100! Also i need the graphics for each value of m!Thanks in advance!
m = c(1,2,3,4,5,6,7,8,9,10,25,50,100)
for (m in 1:length(unique(m))){
n <- 150
x1 <- rnorm(n = n, mean = 10, sd = 4)
R <- 100 # Number of reps
results.true <- matrix(NA , ncol = 2, nrow = R)
colnames(results.true) <- c("beta0.hat", "beta1.hat")
results.diff <- matrix(NA, ncol = 2, nrow = R)
colnames(results.diff) <- c("beta0.hat", "betadiff.hat")
sigma <- 1.2
beta <- c(1.2)
X <- cbind(x1)
if (m==1){d0 <- .7071; d <- c(-.7071)}
if (m==2){d0 = .8090; d = c(-.5,-.309)}
if (m==3){d0 = .8582; d = c(-.3832,-.2809,-.1942) }
if (m==4){d0 = .8873; d = c(-.3090,-.2464,-.1901,-.1409)}
if (m==5){d0 <- .9064; d <- c(-.2600,-.2167,-.1774,-.1420,-.1103)}
if (m==6){d0 = .92; d = c(-.2238,-.1925,-.1635,-.1369,-.1126,-.0906)}
if (m==7){d0 = .9302; d = c(-.1965,-.1728,-.1506,-.1299,-.1107,-.093,-.0768)}
if (m==8){d0 = .9380; d = c(-.1751,-.1565,-.1389,-.1224,-.1069,-.0925,-.0791,-.0666)}
if (m==9){d0 = .9443; d = c(-.1578,-.1429,-.1287,-.1152,-.1025,-.0905,-.0792,-.0687,-.0538)}
if (m==10){d0 <- .9494;
d <- c(-.1437, -.1314, -.1197, -.1085, -.0978, -.0877, -.0782, -.0691, -.0606, -.0527)}
if (m==25){d0 <- 0.97873;
d <- c(-0.06128, -0.05915, -0.05705, -0.05500, -0.05298, -0.05100, -0.04906, -0.04715, -0.04528, -0.04345, -0.04166, -0.03990, -0.03818, -0.03650, -0.03486, -0.03325, -0.03168, -0.03015, -0.02865, -0.02719,
-0.02577, -0.02438, -0.02303, -0.02171, -0.02043) }
if (m==50) {d0 <- 0.98918;
d <- c(-0.03132, -0.03077, -0.03023, -0.02969, -0.02916, -0.02863, -0.02811, -0.02759, -0.02708, -0.02657, -0.02606, -0.02556, -0.02507, -0.02458, -0.02409, -0.02361, -0.02314, -0.02266, -0.02220, -0.02174, -0.02128, -0.02083, -0.02038, -0.01994, -0.01950, -0.01907, -0.01864, -0.01822, -0.01780, -0.01739,-0.01698,-0.01658,-0.01618,-0.01578,-0.01539,-0.01501,-0.01463,-0.01425,-0.01388,-0.01352,
-0.01316,-0.01280,-0.01245,-0.01210,-0.01176,-0.01142,-0.01108,-0.01075,-0.01043,-0.01011) }
if (m==100) { d0 <- 0.99454083;
d <- c(-0.01583636,-0.01569757,-0.01555936,-0.01542178,-0.01528478,-0.01514841,-0.01501262,-0.01487745,-0.01474289,-0.01460892,
-0.01447556,-0.01434282,-0.01421067,-0.01407914,-0.01394819,-0.01381786,-0.01368816,-0.01355903,-0.01343053,-0.01330264,
-0.01317535,-0.01304868,-0.01292260,-0.01279714,-0.01267228,-0.01254803,-0.01242439,-0.01230136,-0.01217894,-0.01205713,
-0.01193592,-0.01181533,-0.01169534,-0.01157596,-0.01145719,-0.01133903,-0.01122148,-0.01110453,-0.01098819,-0.01087247,
-0.01075735,-0.01064283,-0.01052892,-0.01041563,-0.01030293,-0.01019085,-0.01007937,-0.00996850,-0.00985823,-0.00974857,
-0.00963952,-0.00953107,-0.00942322,-0.00931598,-0.00920935,-0.00910332,-0.00899789,-0.00889306,-0.00878884,-0.00868522,
-0.00858220,-0.00847978,-0.00837797,-0.00827675,-0.00817614,-0.00807612,-0.00797670,-0.00787788,-0.00777966,-0.00768203,
-0.00758500,-0.00748857,-0.00739273,-0.00729749,-0.00720284,-0.00710878,-0.00701532,-0.00692245,-0.00683017,-0.00673848,
-0.00664738,-0.00655687,-0.00646694,-0.00637761,-0.00628886,-0.00620070,-0.00611312,-0.00602612,-0.00593971,-0.00585389,
-0.00576864,-0.00568397,-0.00559989,-0.00551638,-0.00543345,-0.00535110,-0.00526933,-0.00518813,-0.00510750,-0.00502745) }
for(r in 1:R){
u <- rnorm(n = n, mean = 0, sd = sigma)
y <- X%*%beta + u
yy = d0* y[(m+1):n]; Xd <- d0* x1[(m+1):n];
for (i in 1:m) { yy <- yy + d[i]* y[(m+1-i):(n-i) ]
Xd = Xd + d[i]* x1[(m+1-i):(n-i)] }
reg.true <- lm(y ~ x1)
reg.diff <- lm(yy ~ Xd)
results.true[r, ] <- coef(reg.true)
results.diff[r, ] <- coef(reg.diff)
}
results.true
results.diff
beta
apply(results.true, MARGIN = 2, FUN = mean)
apply(results.diff, MARGIN = 2, FUN = mean)
co <- 2
dens.true <- density(results.true[, co])
dens.diff <- density(results.diff[, co])
win.graph()
plot(dens.true,
xlim = range(c(results.true[, co], results.diff[, co])),
ylim = range(c(dens.true$y, dens.diff$yy)),
main = "beta estimation true vs. diff", lwd = 2,)
lines(density(results.diff[, co]), col = "red", lwd = 2)
abline(v = beta, col = "blue", lwd = 2)
legend(x=1.24,y=12,c("outcome true","outcome diff"),lty=c(1,1),col =c("black","red") )
legend(x=1.12,y=12,c("m=",m))
#Mean Squared Error
mse=mean(reg.true$residuals^2)
if (m==1) {msediff1=mean(reg.diff$residuals^2)}
if (m==2) {msediff2=mean(reg.diff$residuals^2)}
if (m==3) {msediff3=mean(reg.diff$residuals^2)}
if (m==4) {msediff4=mean(reg.diff$residuals^2)}
if (m==5) {msediff5=mean(reg.diff$residuals^2)}
if (m==6) {msediff6=mean(reg.diff$residuals^2)}
if (m==7) {msediff7=mean(reg.diff$residuals^2)}
if (m==8) {msediff8=mean(reg.diff$residuals^2)}
if (m==9) {msediff9=mean(reg.diff$residuals^2)}
if (m==10) {msediff10=mean(reg.diff$residuals^2)}
if (m==25) {msediff25=mean(reg.diff$residuals^2)}
if (m==50) {msediff50=mean(reg.diff$residuals^2)}
if (m==100) {msediff100=mean(reg.diff$residuals^2)}
}
I can see an error in the code.
m = c(1,2,3,4,5,6,7,8,9,10,25,50,100)
for (m in 1:length(unique(m))){
As soon as the loop starts, m is changed. It's not what's in the first line anymore...
Try, for (ind in 1:length(unique(m))){ if that's not the intention.