Moral of the story from SICP Ex. 1.20? - sicp

In this exercise we are asked to trace Euclid's algorithm using first normal order then applicative order evaluation.
(define (gcd a b)
(if (= b 0)
a
(gcd b (remainder a b))))
I've done the manual trace, and checked it with the several solutions available on the internet. I'm curious here to consolidate the moral of the exercise.
In gcd above, note that b is re-used three times in the function body, plus this function is recursive. This being what gives rise to 18 calls to remainder for normal order, in contrast to only 4 for applicative order.
So, it seems that when a function uses an argument more than once in its body, (and perhaps recursively! as here), then not evaluating it when the function is called (i.e. applicative order), will lead to redundant recomputation of the same thing.
Note that the question is at pains to point out that the special form if does not change its behaviour when normal order is used; that is, if will always run first; if this didn't happen, there could be no termination in this example.
I'm curious regarding delayed evaluation we are seeing here.
As a plus, it might allow us to handle infinite things, like streams.
As a minus, if we have a function like here, it can cause great inefficiency.
To fix the latter it seems like there are two conceptual options. One, wrap it in some data structure that caches its result to avoid recomputation. Two, selectively force the argument to realise when you know it will otherwise cause repeated recomputation.
The thing is, neither of those options seem very nice, because both represent additional "levers" the programmer must know how to use and choose when to use.
Is all of this dealt with more thoroughly later in the book?
Is there any straightforward consolidation of these points which would be worth making clear at this point (without perhaps going into all the detail that is to come).

The short answer is yes, this is covered extensively later in the book.
It is covered in most detail in Chapter 4 where we implement eval and apply, and so get the opportunity to modify their behaviour. For example Exercise 4.31 suggests the following syntax:
(define (f a (b lazy) c (d lazy-memo))
As you can see this identifies three different behaviours.
Parameters a and c have applicative order (they are evaluated before they are passed to the f).
b is normal or lazy, it is evaluated everytime it is used (but only if it is used).
d lazy but it's value it memoized so it is evaluated at most once.
Although this syntax is possible it isn't used. I think the philosopy is that the the language has an expected behaviour (applicative order) and that normal order is only used by default when necessary (e.g., the consequent and alternative of an if statement, and in creating streams). When it is necssary (or desirable) to have a parameter with normal evaluation then we can use delay and force, and if necessary memo-proc (e.g. Exercise 3.77).
So at this point the authors are introducing the ideas of normal and applicative order so that we have some familiarity with them by the time we get into the nitty gritty later on.
In a sense this a recurring theme, applicative order is probably more intuitive, but sometimes we need normal order. Recursive functions are simpler to write, but sometimes we need the performance of iterative functions. Programs where we can use the substition model are easier to reason about, but sometimes we need environmental model because we need mutable state.

Related

Struggling with building an intuition for recursion

Though I have studied and able am able to understand some programs in recursion, I am still not able to intuitively obtain a solution using recursion as I do easily using Iteration. Is there any course or track available in order to build an intuition for recursion? How can one master the concept of recursion?
if you want to gain a thorough understanding of how recursion works, I highly recommend that you start with understanding mathematical induction, as the two are very closely related, if not arguably identical.
Recursion is a way of breaking down seemingly complicated problems into smaller bits. Consider the trivial example of the factorial function.
def factorial(n):
if n < 2:
return 1
return n * factorial(n - 1)
To calculate factorial(100), for example, all you need is to calculate factorial(99) and multiply 100. This follows from the familiar definition of the factorial.
Here are some tips for coming up with a recursive solution:
Assume you know the result returned by the immediately preceding recursive call (e.g. in calculating factorial(100), assume you already know the value of factorial(99). How do you go from there?)
Consider the base case (i.e. when should the recursion come to a halt?)
The first bullet point might seem rather abstract, but all it means is this: a large portion of the work has already been done. How do you go from there to complete the task? In the case of the factorial, factorial(99) constituted this large portion of work. In many cases, you will find that identifying this portion of work simply amounts to examining the argument to the function (e.g. n in factorial), and assuming that you already have the answer to func(n - 1).
Here's another example for concreteness. Let's say we want to reverse a string without using in-built functions. In using recursion, we might assume that string[:-1], or the substring until the very last character, has already been reversed. Then, all that is needed is to put the last remaining character in the front. Using this inspiration, we might come up with the following recursive solution:
def my_reverse(string):
if not string: # base case: empty string
return string # return empty string, nothing to reverse
return string[-1] + my_reverse(string[:-1])
With all of this said, recursion is built on mathematical induction, and these two are inseparable ideas. In fact, one can easily prove that recursive algorithms work using induction. I highly recommend that you checkout this lecture.

Why after pressing semicolon program is back in deep recursion?

I'm trying to understand the semicolon functionality.
I have this code:
del(X,[X|Rest],Rest).
del(X,[Y|Tail],[Y|Rest]) :-
del(X,Tail,Rest).
permutation([],[]).
permutation(L,[X|P]) :- del(X,L,L1), permutation(L1,P).
It's the simple predicate to show all permutations of given list.
I used the built-in graphical debugger in SWI-Prolog because I wanted to understand how it works and I understand for the first case which returns the list given in argument. Here is the diagram which I made for better understanding.
But I don't get it for the another solution. When I press the semicolon it doesn't start in the place where it ended instead it's starting with some deep recursion where L=[] (like in step 9). I don't get it, didn't the recursion end earlier? It had to go out of the recursions to return the answer and after semicolon it's again deep in recursion.
Could someone clarify that to me? Thanks in advance.
One analogy that I find useful in demystifying Prolog is that Backtracking is like Nested Loops, and when the innermost loop's variables' values are all found, the looping is suspended, the vars' values are reported, and then the looping is resumed.
As an example, let's write down simple generate-and-test program to find all pairs of natural numbers above 0 that sum up to a prime number. Let's assume is_prime/1 is already given to us.
We write this in Prolog as
above(0, N), between(1, N, M), Sum is M+N, is_prime(Sum).
We write this in an imperative pseudocode as
for N from 1 step 1:
for M from 1 step 1 until N:
Sum := M+N
if is_prime(Sum):
report_to_user_and_ask(Sum)
Now when report_to_user_and_ask is called, it prints Sum out and asks the user whether to abort or to continue. The loops are not exited, on the contrary, they are just suspended. Thus all the loop variables values that got us this far -- and there may be more tests up the loops chain that sometimes succeed and sometimes fail -- are preserved, i.e. the computation state is preserved, and the computation is ready to be resumed from that point, if the user presses ;.
I first saw this in Peter Norvig's AI book's implementation of Prolog in Common Lisp. He used mapping (Common Lisp's mapcan which is concatMap in Haskell or flatMap in many other languages) as a looping construct though, and it took me years to see that nested loops is what it is really all about.
Goals conjunction is expressed as the nesting of the loops; goals disjunction is expressed as the alternatives to loop through.
Further twist is that the nested loops' structure isn't fixed from the outset. It is fluid, the nested loops of a given loop can be created depending on the current state of that loop, i.e. depending on the current alternative being explored there; the loops are written as we go. In (most of the) languages where such dynamic creation of nested loops is impossible, it can be encoded with nested recursion / function invocation / inside the loops. (Here's one example, with some pseudocode.)
If we keep all such loops (created for each of the alternatives) in memory even after they are finished with, what we get is the AND-OR tree (mentioned in the other answer) thus being created while the search space is being explored and the solutions are found.
(non-coincidentally this fluidity is also the essence of "monad"; nondeterminism is modeled by the list monad; and the essential operation of the list monad is the flatMap operation which we saw above. With fluid structure of loops it is "Monad"; with fixed structure it is "Applicative Functor"; simple loops with no structure (no nesting at all): simply "Functor" (the concepts used in Haskell and the like). Also helps to demystify those.)
So, the proper slogan could be Backtracking is like Nested Loops, either fixed, known from the outset, or dynamically-created as we go. It's a bit longer though. :)
Here's also a Prolog example, which "as if creates the code to be run first (N nested loops for a given value of N), and then runs it." (There's even a whole dedicated tag for it on SO, too, it turns out, recursive-backtracking.)
And here's one in Scheme ("creates nested loops with the solution being accessible in the innermost loop's body"), and a C++ example ("create n nested loops at run-time, in effect enumerating the binary encoding of 2n, and print the sums out from the innermost loop").
There is a big difference between recursion in functional/imperative programming languages and Prolog (and it really became clear to me only in the last 2 weeks or so):
In functional/imperative programming, you recurse down a call chain, then come back up, unwinding the stack, then output the result. It's over.
In Prolog, you recurse down an AND-OR tree (really, alternating AND and OR nodes), selecting a predicate to call on an OR node (the "choicepoint"), from left to right, and calling every predicate in turn on an AND node, also from left to right. An acceptable tree has exactly one predicate returning TRUE under each OR node, and all predicates returning TRUE under each AND node. Once an acceptable tree has been constructed, by the very search procedure, we are (i.e. the "search cursor" is) on a rightmost bottommost node .
Success in constructing an acceptable tree also means a solution to the query entered at the Prolog Toplevel (the REPL) has been found: The variable values are output, but the tree is kept (unless there are no choicepoints).
And this is also important: all variables are global in the sense that if a variable X as been passed all the way down the call chain from predicate to predicate to the rightmost bottommost node, then constrained at the last possible moment by unifying it with 2 for example, X = 2, then the Prolog Toplevel is aware of that without further ado: nothing needs to be passed up the call chain.
If you now press ;, search doesn't restart at the top of the tree, but at the bottom, i.e. at the current cursor position: the nearest parent OR node is asked for more solutions. This may result in much search until a new acceptable tree has been constructed, we are at a new rightmost bottommost node. The new variable values are output and you may again enter ;.
This process cycles until no acceptable tree can be constructed any longer, upon which false is output.
Note that having this AND-OR as an inspectable and modifiable data structure at runtime allows some magical tricks to be deployed.
There is bound to be a lot of power in debugging tools which record this tree to help the user who gets the dreaded sphynxian false from a Prolog program that is supposed to work. There are now Time Traveling Debuggers for functional and imperative languages, after all...

Knowing when what you're looking at must be a macro

I know there is macro-function, explained here, which allows you to check, but is it also possible in simply reading lisp source to sometimes infer of what you're looking at "that must be a macro"? (assuming of course you have never seen the function/macro before).
I'm fairly sure the answer is yes, but as this seems so fundamental, I thought worth asking, especially because any nuances on this may be valuable & interesting to know about.
In Paul Graham's ANSI Common Lisp, p70, he is describing how to use defstruct.
When I see (defstruct point x y), were I to know absolutely nothing about what defstruct was, this could just as well be a function.
But when I see
(defstruct polemic
(subject "foo")
(effect "bar"))
I know that must be a macro because (let's assume), I also know that subject and effect are undefined functions. (I know that because they error with undefined function when called 'at the top level'(?)) (if that's the right term).
If the two list arguments to defstruct above were quoted, it would not be so simple. Because they're not quoted, it must be a macro.
Is it as simple as that?
I've changed the field names slightly from those used on the book to make this question clearer.
Finally, Graham writes:
"We can specify default values for structure fields by enclosing the field name and a default expression in a list in the original definition"
What I'm noticing is that that's true but it is not a (quoted) list. Would any readers of this post have phrased the above sentence at all differently (given that macros haven't been introduced in the book yet (though I have a basic awareness of what they are)).
My feeling is it's not a "data list" those default expressions are enclosed in. (apologies for bad terminology) - seeking how rightly to conceptualise here.
In general, you're right: if there's some nesting inside the call and you are sure that the car's of the nested lists aren't functions - it's a macro.
Also, almost always, def-something and with-something are macros.
But there's no guarantee. The question is, what are you trying to accomplish? Some code walking/transformation or external processing (like in an editor). For the latter, you should keep in mind that full control is possible only if you perform code evaluation, although heuristics (like in Emacs) can take you pretty far. Or you just want to develop your intuition for faster code reading...
There is a set of conventions that identify quite cleary what forms are supposed to be macros, simply by mimicking the syntax of existing macros or special operators of CL.
For example, the following is a mix of various imaginary macros, but even without knowing their definition, the code shouldn't be too hard to figure out:
(defun/typed example ((id (integer 0 10)))
(with-connection (connection (connect id))
(do-events (event connection)
(event-case event
(:quit (&optional code) (return code))))))
The usual advice about macros is to avoid them if possible, so if you spot something that doesn't make sense as a lisp expression, it probably is, or is enclosed in, a macro.
(defstruct point x y)
[...] were I to know absolutely nothing about what defstruct was, this could just as well be a function.
There are various hints that this is not a function. First of all, the name starts with def. Then, if defstruct was a function, then point, x and y would all be evaluated before calling the function, and that means the code would be relying on global variables, even though they are not wearing earmuffs (e.g. *point*, *x*, *y*), and you probably won't find any definition for them in the preceding forms (or later in the same compilation unit). Also, if it was a function, the result would be discarded directly since it is not used (this is a toplevel form). That only indicates the probable presence of side-effects, but still, this would be unusual.
A top-level function with side-effects would look like this instead, with quoted data:
(register-struct 'point '(x y))
Finally, there are cases where you cannot easily guess if you are using a macro or a function:
(my-get object :slot)
This could be a function call, or you could have a macro that turns the above to (aref object 0) (assuming :slot is the zeroth slot in object, because all your objects are assumed to be of a certain custom type backed by a vector). You could also have compiler macros. In case of doubt, try to macroexpand it and look at the documentation.

Simple example of call-by-need

I'm trying to understand the theorem behind "call-by-need." I do understand the definition, but I'm a bit confused. I would like to see a simple example which shows how call-by-need works.
After reading some previous threads, I found out that Haskell uses this kind of evaluation. Are there any other programming languages which support this feature?
I read about the call-by-name of Scala, and I do understand that call-by-name and call-by-need are similar but different by the fact that call-by-need will keep the evaluated value. But I really would love to see a real-life example (it does not have to be in Haskell), which shows call-by-need.
The function
say_hello numbers = putStrLn "Hello!"
ignores its numbers argument. Under call-by-value semantics, even though an argument is ignored, the parameter at the function call site may need to be evaluated, perhaps because of side effects that the rest of the program depends on.
In Haskell, we might call say_hello as
say_hello [1..]
where [1..] is the infinite list of naturals. Under call-by-value semantics, the CPU would run off trying to build an infinite list and never get to the say_hello at all!
Haskell merely outputs
$ runghc cbn.hs
Hello!
For less dramatic examples, the first ten natural numbers are
ghci> take 10 [1..]
[1,2,3,4,5,6,7,8,9,10]
The first ten odds are
ghci> take 10 $ filter odd [1..]
[1,3,5,7,9,11,13,15,17,19]
Under call-by-need semantics, each value — even a conceptually infinite one as in the examples above — is evaluated only to the extent required and no more.
update: A simple example, as asked for:
ff 0 = 1
ff 1 = 1
ff n = go (ff (n-1))
where
go x = x + x
Under call-by-name, each invocation of go evaluates ff (n-1) twice, each for each appearance of x in its definition (because + is strict in both arguments, i.e. demands the values of the both of them).
Under call-by-need, go's argument is evaluated at most once. Specifically, here, x's value is found out only once, and reused for the second appearance of x in the expression x + x. If it weren't needed, x wouldn't be evaluated at all, just as with call-by-name.
Under call-by-value, go's argument is always evaluated exactly once, prior to entering the function's body, even if it isn't used anywhere in the function's body.
Here's my understanding of it, in the context of Haskell.
According to Wikipedia, "call by need is a memoized variant of call by name where, if the function argument is evaluated, that value is stored for subsequent uses."
Call by name:
take 10 . filter even $ [1..]
With one consumer the produced value disappears after being produced so it might as well be call-by-name.
Call by need:
import qualified Data.List.Ordered as O
h = 1 : map (2*) h <> map (3*) h <> map (5*) h
where
(<>) = O.union
The difference is, here the h list is reused by several consumers, at different tempos, so it is essential that the produced values are remembered. In a call-by-name language there'd be much replication of computational effort here because the computational expression for h would be substituted at each of its occurrences, causing separate calculation for each. In a call-by-need--capable language like Haskell the results of computing the elements of h are shared between each reference to h.
Another example is, most any data defined by fix is only possible under call-by-need. With call-by-value the most we can have is the Y combinator.
See: Sharing vs. non-sharing fixed-point combinator and its linked entries and comments (among them, this, and its links, like Can fold be used to create infinite lists?).

Correct way of writing recursive functions in CLP(R) with Prolog

I am very confused in how CLP works in Prolog. Not only do I find it hard to see the benefits (I do see it in specific cases but find it hard to generalise those) but more importantly, I can hardly make up how to correctly write a recursive predicate. Which of the following would be the correct form in a CLP(R) way?
factorial(0, 1).
factorial(N, F):- {
N > 0,
PrevN = N - 1,
factorial(PrevN, NewF),
F = N * NewF}.
or
factorial(0, 1).
factorial(N, F):- {
N > 0,
PrevN = N - 1,
F = N * NewF},
factorial(PrevN, NewF).
In other words, I am not sure when I should write code outside the constraints. To me, the first case would seem more logical, because PrevN and NewF belong to the constraints. But if that's true, I am curious to see in which cases it is useful to use predicates outside the constraints in a recursive function.
There are several overlapping questions and issues in your post, probably too many to coherently address to your complete satisfaction in a single post.
Therefore, I would like to state a few general principles first, and then—based on that—make a few specific comments about the code you posted.
First, I would like to address what I think is most important in your case:
LP &subseteq; CLP
This means simply that CLP can be regarded as a superset of logic programming (LP). Whether it is to be considered a proper superset or if, in fact, it makes even more sense to regard them as denoting the same concept is somewhat debatable. In my personal view, logic programming without constraints is much harder to understand and much less usable than with constraints. Given that also even the very first Prolog systems had a constraint like dif/2 and also that essential built-in predicates like (=)/2 perfectly fit the notion of "constraint", the boundaries, if they exist at all, seem at least somewhat artificial to me, suggesting that:
LP &approx; CLP
Be that as it may, the key concept when working with CLP (of any kind) is that the constraints are available as predicates, and used in Prolog programs like all other predicates.
Therefore, whether you have the goal factorial(N, F) or { N > 0 } is, at least in principle, the same concept: Both mean that something holds.
Note the syntax: The CLP(&Rscr;) constraints have the form { C }, which is {}(C) in prefix notation.
Note that the goal factorial(N, F) is not a CLP(&Rscr;) constraint! Neither is the following:
?- { factorial(N, F) }.
ERROR: Unhandled exception: type_error({factorial(_3958,_3960)},...)
Thus, { factorial(N, F) } is not a CLP(&Rscr;) constraint either!
Your first example therefore cannot work for this reason alone already. (In addition, you have a syntax error in the clause head: factorial (, so it also does not compile at all.)
When you learn working with a constraint solver, check out the predicates it provides. For example, CLP(&Rscr;) provides {}/1 and a few other predicates, and has a dedicated syntax for stating relations that hold about floating point numbers (in this case).
Other constraint solver provide their own predicates for describing the entities of their respective domains. For example, CLP(FD) provides (#=)/2 and a few other predicates to reason about integers. dif/2 lets you reason about any Prolog term. And so on.
From the programmer's perspective, this is exactly the same as using any other predicate of your Prolog system, whether it is built-in or stems from a library. In principle, it's all the same:
A goal like list_length(Ls, L) can be read as: "The length of the list Ls is L."
A goal like { X = A + B } can be read as: The number X is equal to the sum of A and B. For example, if you are using CLP(Q), it is clear that we are talking about rational numbers in this case.
In your second example, the body of the clause is a conjunction of the form (A, B), where A is a CLP(&Rscr;) constraint, and B is a goal of the form factorial(PrevN, NewF).
The point is: The CLP(&Rscr;) constraint is also a goal! Check it out:
?- write_canonical({a,b,c}).
{','(a,','(b,c))}
true.
So, you are simply using {}/1 from library(clpr), which is one of the predicates it exports.
You are right that PrevN and NewF belong to the constraints. However, factorial(PrevN, NewF) is not part of the mini-language that CLP(&Rscr;) implements for reasoning over floating point numbers. Therefore, you cannot pull this goal into the CLP(&Rscr;)-specific part.
From a programmer's perspective, a major attraction of CLP is that it blends in completely seamlessly into "normal" logic programming, to the point that it can in fact hardly be distinguished at all from it: The constraints are simply predicates, and written down like all other goals.
Whether you label a library predicate a "constraint" or not hardly makes any difference: All predicates can be regarded as constraints, since they can only constrain answers, never relax them.
Note that both examples you post are recursive! That's perfectly OK. In fact, recursive predicates will likely be the majority of situations in which you use constraints in the future.
However, for the concrete case of factorial, your Prolog system's CLP(FD) constraints are likely a better fit, since they are completely dedicated to reasoning about integers.

Resources