How to mutate the slopes of lines - r

I have a question on how to mutate the slopes of lines into a new data frame into
by category.
d1 <-read.csv(file.choose(), header = T)
d2 <- d1 %>%
group_by(ID)%>%
mutate(Slope=sapply(split(df,df$ID), function(v) lm(x~y,v)$coefficients["y"]))
ID x y
1 3.429865279 2.431363764
1 3.595066124 2.681241237
1 3.735263469 2.352182518
1 3.316473584 2.51851394
1 3.285984642 2.380211242
1 3.860793029 2.62324929
1 3.397714117 2.819543936
1 3.452997088 2.176091259
1 3.718933278 2.556302501
1 3.518566578 2.537819095
1 3.689033452 2.40654018
1 3.349160923 2.113943352
1 3.658888644 2.556302501
1 3.251151343 2.342422681
1 3.911194909 2.439332694
1 3.432584505 2.079181246
1 4.031267043 2.681241237
1 3.168733129 1.544068044
1 4.032239897 3.084576278
1 3.663361648 2.255272505
1 3.582302046 2.62324929
1 3.606585565 2.079181246
1 3.541791347 2.176091259
4 3.844012861 2.892094603
4 3.608318477 2.767155866
4 3.588990218 2.883661435
4 3.607957917 2.653212514
4 3.306753044 2.079181246
4 4.002604841 2.880813592
4 3.195299837 2.079181246
4 3.512203238 2.643452676
4 3.66878494 2.431363764
4 3.598910385 2.511883361
4 3.721810134 2.819543936
4 3.352964661 2.113943352
4 4.008109343 3.084576278
4 3.584693332 2.556302501
4 4.019461819 3.084576278
4 3.359474563 2.079181246
4 3.950256012 2.829303773
I got the error message like'replacement has 2 rows, data has 119'. I am sure that the error is derived from mutate().
Best,

Once you do group_by, any function that succeeds uses on the columns in the grouped data.frame, in your case, it will only use x,y column within.
If you only want the coefficient, it goes like this:
df %>% group_by(ID) %>% summarize(coef=lm(x~y)$coefficients["y"])
# A tibble: 2 x 2
ID coef
<int> <dbl>
1 1 0.437
2 4 0.660
If you want the coefficient, which means a vector a long as the dataframe, you use mutate:
df %>% group_by(ID) %>% mutate(coef=lm(x~y)$coefficients["y"])
# A tibble: 40 x 4
# Groups: ID [2]
ID x y coef
<int> <dbl> <dbl> <dbl>
1 1 3.43 2.43 0.437
2 1 3.60 2.68 0.437
3 1 3.74 2.35 0.437
4 1 3.32 2.52 0.437
5 1 3.29 2.38 0.437
6 1 3.86 2.62 0.437
7 1 3.40 2.82 0.437
8 1 3.45 2.18 0.437
9 1 3.72 2.56 0.437
10 1 3.52 2.54 0.437
# … with 30 more rows

Related

The recast fun to spread the rows is omitting key columns in R?

I am trying to spread my data such that months are the columns associated with both site and spx. I tried to use recast but I lose the informaton about species. What do I do to get the expected output (attached)?
set.seed(111)
month <- rep(c("J","F","M"), each = 6)
site <- rep(c(1,2,3,4,5,6), times = 3)
spA <- rnorm(18,0,2)
spB <- rnorm(18,0,2)
spC <- rnorm(18,0,2)
spD <- rnorm(18,0,2)
df <- data.frame(month, site, spA, spB, spC, spD)
df.test <- reshape2::recast(df, site ~ month)
Here is what I am getting.
site F J M
1 1 5 5 5
2 2 5 5 5
3 3 5 5 5
4 4 5 5 5
5 5 5 5 5
6 6 5 5 5
#Expected output (It's dummy data)
site sp J F M
1 A 5 6 7
1 B 2 3 4
..
6 D 1 2 3
If the intention is not to aggregate, but just transpose, then we can use pivot_longer to reshape to long and then reshape back to wide with pivot_wider
library(dplyr)
library(tidyr)
df %>%
pivot_longer(cols = starts_with('sp'), names_prefix = 'sp',
names_to = 'sp') %>%
pivot_wider(names_from = month, values_from = value)
-output
# A tibble: 24 × 5
site sp J F M
<dbl> <chr> <dbl> <dbl> <dbl>
1 1 A 0.470 -2.99 3.69
2 1 B -2.39 0.653 -6.23
3 1 C -0.232 -2.72 4.97
4 1 D 0.350 -0.433 0.405
5 2 A -0.661 -2.02 0.788
6 2 B 0.728 1.20 -1.88
7 2 C 0.669 0.962 3.92
8 2 D -1.69 2.89 -1.61
9 3 A -0.623 -1.90 1.60
10 3 B 0.723 -3.68 2.80
# … with 14 more rows
Or using recast - specify the id.var and then include the variable also in the formula
library(reshape2)
reshape2::recast(df, site + variable ~ month, id.var = c("month", "site"))
site variable F J M
1 1 spA -2.99485331 0.4704414 3.6912725
2 1 spB 0.65309848 -2.3872179 -6.2264346
3 1 spC -2.72380897 -0.2323101 4.9713231
4 1 spD -0.43285732 0.3501913 0.4046144
5 2 spA -2.02037684 -0.6614717 0.7881082
6 2 spB 1.19650840 0.7283735 -1.8827148
7 2 spC 0.96224916 0.6685120 3.9199634
8 2 spD 2.89295633 -1.6945355 -1.6123984
9 3 spA -1.89695121 -0.6232476 1.5950570
10 3 spB -3.68306860 0.7233249 2.8005176
11 3 spC 1.48394325 -1.2417162 0.3833268
12 3 spD 0.81941960 1.9564633 0.5892684
13 4 spA -0.98792443 -4.6046913 -3.1333307
14 4 spB 5.43611120 0.6939287 -3.2409401
15 4 spC 0.05564925 -2.6196898 3.1050885
16 4 spD 1.82183314 3.6117365 2.8097662
...

Pivoting multiple sets of columns using pivot_longer in R

I want to pivot multiple sets of variables in a data frame. My data looks like this:
require(dplyr)
require(tidyr)
x_1=rnorm(10,0,1)
x_2=rnorm(10,0,1)
x_3=rnorm(10,0,1)
y_1=rnorm(10,0,1)
y_2=rnorm(10,0,1)
aid=rep(1:5,2)
data=data.frame(aid, x_1,x_2,y_1,y_2)
> data
aid x_1 x_2 y_1 y_2
1 1 -0.82305819 0.9366731 0.95419200 2.29544019
2 2 0.64424320 -0.2807793 0.51303834 0.02560463
3 3 -1.11108822 -0.2475625 0.05747951 -0.51218368
4 4 -1.04026895 -0.4138653 0.57751999 0.60942652
5 5 1.29097040 -1.7829966 1.59940532 0.75868562
6 1 -0.57845406 -1.0002074 0.04302291 0.86766265
7 2 0.08996163 -0.7949632 -2.10422124 -0.43432995
8 3 0.14331978 0.4203010 -1.12748270 0.14484670
9 4 -0.25207187 1.5559295 0.23621422 -0.04719046
10 5 -0.25617731 0.6241852 -1.21131110 1.02236458
I want to pivot x and y variables separately. I did that using following lines of codes.
data2 = data %>% reshape(.,direction = "long",
varying = list(c('x_1','x_2'),
c('y_1','y_2')),
v.names = c("x",'y'))
I need to generalize this to any number of columns. That means, in this example x and y have 2 columns each. But for a another data set it may be different. If there are more columns, it would be difficult to type everything under varying parameter.
In order to avoid specifying the columns when pivoting, I tried this code:
data1 <- data%>% pivot_longer(!aid, names_to = c("id"), names_pattern = "(.)(.)")
But it gave this error:
Error: `regex` should define 1 groups; found.
Can anyone help me to fix this?
Thank you.
The brackets around the matched pattern represents that we are capturing that pattern as a group. In the below code, we capture one or more lower-case letters ([a-z]+) followed by a _ (not inside the brackets, thus it is removed) and the second capture group matches one or more digits (\\d+), and this will be matched with the corresponding values of names_to - i.e. .value represents the value of the column, thus we get the columns 'x' and 'y' with the values and the second will be a new column names that returs the suffix digits of the column names i.e. 'time'
library(tidyr)
pivot_longer(data, cols = -aid, names_to = c(".value", "time"),
names_pattern = "^([a-z]+)_(\\d+)")
-output
# A tibble: 20 × 4
aid time x y
<int> <chr> <dbl> <dbl>
1 1 1 -0.823 0.954
2 1 2 0.937 2.30
3 2 1 0.644 0.513
4 2 2 -0.281 0.0256
5 3 1 -1.11 0.0575
6 3 2 -0.248 -0.512
7 4 1 -1.04 0.578
8 4 2 -0.414 0.609
9 5 1 1.29 1.60
10 5 2 -1.78 0.759
11 1 1 -0.578 0.0430
12 1 2 -1.00 0.868
13 2 1 0.0900 -2.10
14 2 2 -0.795 -0.434
15 3 1 0.143 -1.13
16 3 2 0.420 0.145
17 4 1 -0.252 0.236
18 4 2 1.56 -0.0472
19 5 1 -0.256 -1.21
20 5 2 0.624 1.02
In the OP's code, there are two groups ((.) and (.)) and only one element in names_to, thus it fails along with the fact that there is _ between the 'x', 'y' and the digit. Also, by default, the names_pattern will be in regex mode and some characters are thus in metacharacter mode i.e. . represents any character and not the literal .
In this case names_sep is a handy alternative to names_pattern as the column names are already separated by _:
library(dplyr)
library(tidyr)
data %>%
pivot_longer(-aid,
names_to =c(".value","time"),
names_sep ="_"
)
aid time x y
<int> <chr> <dbl> <dbl>
1 1 1 1.08 -1.49
2 1 2 0.871 0.449
3 2 1 -1.01 -0.577
4 2 2 1.23 -0.0890
5 3 1 -0.905 -0.289
6 3 2 1.16 -0.380
7 4 1 -0.316 -0.446
8 4 2 0.902 1.05
9 5 1 -0.908 1.36
10 5 2 -0.558 -1.57
11 1 1 -0.383 1.22
12 1 2 0.704 0.000539
13 2 1 0.595 -0.668
14 2 2 -0.461 1.46
15 3 1 2.00 -0.365
16 3 2 -1.14 0.150
17 4 1 -2.13 -0.827
18 4 2 0.642 -0.798
19 5 1 0.397 -0.0143
20 5 2 0.981 1.79

Why am I getting 'train' and 'class' have different lengths"

Why am I getting -
'train' and 'class' have different lengths
In spite of having both of them with same lengths
y_pred=knn(train=training_set[,1:2],
test=Test_set[,-3],
cl=training_set[,3],
k=5)
Their lengths are given below-
> dim(training_set[,-3])
[1] 300 2
> dim(training_set[,3])
[1] 300 1
> head(training_set)
# A tibble: 6 x 3
Age EstimatedSalary Purchased
<dbl> <dbl> <fct>
1 -1.77 -1.47 0
2 -1.10 -0.788 0
3 -1.00 -0.360 0
4 -1.00 0.382 0
5 -0.523 2.27 1
6 -0.236 -0.160 0
> Test_set
# A tibble: 100 x 3
Age EstimatedSalary Purchased
<dbl> <dbl> <fct>
1 -0.304 -1.51 0
2 -1.06 -0.325 0
3 -1.82 0.286 0
4 -1.25 -1.10 0
5 -1.15 -0.485 0
6 0.641 -1.32 1
7 0.735 -1.26 1
8 0.924 -1.22 1
9 0.829 -0.582 1
10 -0.871 -0.774 0
It's because knn is expecting class to be a vector and you are giving it a data table with one column. The test knn is doing is whether nrow(train) == length(cl). If cl is a data table that does not give the answer you are expecting. Compare:
> length(data.frame(a=c(1,2,3)))
[1] 1
> length(c(1,2,3))
[1] 3
If you use cl=training_set$Purchased, which extracts the vector from the table, that should fix it.
This is specific gotcha if you are moving from data.frame to data.table because the default drop behaviour is different:
> dt <- data.table(a=1:3, b=4:6)
> dt[,2]
b
1: 4
2: 5
3: 6
> df <- data.frame(a=1:3, b=4:6)
> df[,2]
[1] 4 5 6
> df[,2, drop=FALSE]
b
1 4
2 5
3 6

How to rearrange summary statistic easily viewable in dplyr?

I have a summary statistic from my dataframe:
war_3 a1_1_area_mean a1_2_area_mean a1_3_area_mean a1_4_area_mean a1_5_area_mean a1_6_area_mean
1 1 0.23827851 0.07843460 0.02531607 0.1193928 0.7635068 0.02333938
2 2 0.23162416 0.05949285 0.01422585 0.3565457 0.8593997 0.06895526
3 3 0.09187454 0.07274503 0.10357251 0.2821142 0.5929178 0.02455053
a1_7_area_mean a1_8_area_mean a1_t_area_mean a2_1_area_mean a2_2_area_mean a2_3_area_mean
1 0.005387169 0.2725867 1.526242 0.107725394 0.19406917 0.02213419
2 0.016701786 0.2222106 1.829156 0.073991405 0.03504120 0.00815826
3 0.028382414 0.1997225 1.395880 0.003634443 0.03508602 0.00000000
a2_4_area_mean a2_5_area_mean a2_t_area_mean a1_1_area_var a1_2_area_var a1_3_area_var a1_4_area_var
1 0.02024704 0.0040841950 0.34826000 1.2730028 0.13048871 0.05165589 0.1851353
2 0.07621595 0.0005078053 0.19391462 0.6114136 0.09287735 0.05697542 0.7284144
3 0.00000000 0.0000000000 0.03872046 0.1171754 0.07581946 0.35349703 0.3883895
a1_5_area_var a1_6_area_var a1_7_area_var a1_8_area_var a1_t_area_var a2_1_area_var a2_2_area_var
1 2.7640424 0.01688505 0.001459156 0.8844626 7.940393 0.57992528 1.41104857
2 2.6797714 0.05490461 0.003428341 0.5725653 8.190389 0.18087732 0.11406984
3 0.9938991 0.01801805 0.006360622 0.3405592 3.460435 0.00306776 0.06579978
a2_3_area_var a2_4_area_var a2_5_area_var a2_t_area_var a1_1_area_sd a1_2_area_sd a1_3_area_sd
1 0.067049470 0.06260921 0.0045015472 2.10734089 1.1282743 0.3612322 0.2272793
2 0.009580693 0.29505206 0.0005616327 0.85060972 0.7819294 0.3047579 0.2386952
3 0.000000000 0.00000000 0.0000000000 0.06861217 0.3423089 0.2753533 0.5945562
a1_4_area_sd a1_5_area_sd a1_6_area_sd a1_7_area_sd a1_8_area_sd a1_t_area_sd a2_1_area_sd
1 0.4302735 1.6625410 0.1299425 0.03819890 0.9404587 2.817870 0.76152825
2 0.8534719 1.6370007 0.2343173 0.05855204 0.7566805 2.861886 0.42529674
3 0.6232090 0.9969449 0.1342313 0.07975351 0.5835745 1.860224 0.05538736
a2_2_area_sd a2_3_area_sd a2_4_area_sd a2_5_area_sd a2_t_area_sd
1 1.1878757 0.25893912 0.2502183 0.06709357 1.4516683
2 0.3377423 0.09788102 0.5431869 0.02369879 0.9222851
3 0.2565147 0.00000000 0.0000000 0.00000000 0.2619392
Above summary table is from following scripts and original data frame as below:
uid war_3 a1_1_area a1_2_area a1_3_area a1_4_area a1_5_area a1_6_area a1_7_area a1_8_area a1_t_area
1 1001 1 0 0.00000 0 0.67048 0.0000 0.02088 0 0.00000 0.69136
2 1002 2 0 0.00000 0 0.00000 0.9019 0.14493 0 0.00000 1.04683
3 1003 2 0 0.00000 0 0.00000 0.9019 0.00000 0 0.00000 0.90190
4 1004 2 0 1.09322 0 0.00000 0.0000 0.00000 0 0.00000 1.09322
5 1005 3 0 1.75000 0 0.00000 0.0000 0.00000 0 0.00000 1.75000
6 1006 2 0 2.43442 0 0.32223 0.0000 0.00000 0 0.76801 3.52466
a2_1_area a2_2_area a2_3_area a2_4_area a2_5_area a2_t_area
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
summary <- df.anov %>% select(-uid) %>% group_by(war_3,) %>%
summarize_each(funs(min,max,mean,median,var,sd)))
However, as it is difficult to compare each value in pairs of war_3 (group) by mean, var and sd, I would like to transform it into the following format:
variable war_3 mean variance s.d.
a1_1_area, 1 , x , x , x
a1_1_area, 2 , x , x , x
a1_1_area, 3 , x , x , x
a1_2_area, 1 , x , x , x
a1_2_area, 2 , x , x , x
a1_2_area, 3 , x , x , x
a1_3_area, 1 , x , x , x
a1_3_area, 2 , x , x , x
a1_3_area, 3 , x , x , x
a1_4_area, 1 , x , x , x
a1_4_area, 2 , x , x , x
a1_4_area, 3 , x , x , x
(it continues until `a2_5_area` in `variable`)
I used to use gather in dplyr to rearrange wide-format into long-format for simple dataframe, however this dataframe requires more complecated operation which may require repetitive select(matches()) or so.
variables are:
war_3 variable to group each record (it is already grouped by group_by(war_3) %>% summarize_each(funs(mean,var,sd)) in the previous operation)
aX_Y_area_Z: where X has two values as 1 and 2, Y spreads 1-8 for X=1 and 1-5 for X=2. Z has three statistics as mean, variance and s.d..
Could you help me to make it possible?
I prefer to use dplyr piping rather than data.table() solution.
Following scripts are very manual way but makes duplicated records in each gather()and I do not want to specify neither each column number nor name manually.
summary %>%
gather(key1,mean,
a1_1_area_mean,a1_2_area_mean,a1_3_area_mean,a1_4_area_mean,
a1_5_area_mean,a1_6_area_mean,a1_7_area_mean,a1_8_area_mean,
a1_t_area_mean,a2_1_area_mean,a2_2_area_mean,a2_3_area_mean,
a2_4_area_mean,a2_5_area_mean,a2_t_area_mean) %>%
gather(key2,var,
a1_1_area_var,a1_2_area_var,a1_3_area_var,a1_4_area_var,
a1_5_area_var,a1_6_area_var,a1_7_area_var,a1_8_area_var,
a1_t_area_var,a2_1_area_var,a2_2_area_var,a2_3_area_var,
a2_4_area_var,a2_5_area_var,a2_t_area_var) %>%
gather(key3,sd,
a1_1_area_sd,a1_2_area_sd,a1_3_area_sd,a1_4_area_sd,
a1_5_area_sd,a1_6_area_sd,a1_7_area_sd,a1_8_area_sd,
a1_t_area_sd,a2_1_area_sd,a2_2_area_sd,a2_3_area_sd,
a2_4_area_sd,a2_5_area_sd,a2_t_area_sd) %>%
mutate_at(vars(key1),funs(str_sub(.,1,9))) %>% select(-key2,-key3) %>%
rename(key=key1) -> summary2
Since you provided no easy to copy & paste sample data, I produced some by my own
library(tidyverse)
data <- mtcars %>%
group_by(cyl) %>%
mutate(disp_1 = disp, disp_2=disp, mpg_1 = mpg, mpg_2 = mpg, drat_1=drat, drat_2=drat) %>%
select(-disp, -mpg, -drat) %>%
summarise_at(vars(contains("mpg"),contains("disp"), contains("drat")), list(mean =mean, sd = sd))
data
# A tibble: 3 x 13
cyl mpg_1_mean mpg_2_mean disp_1_mean disp_2_mean drat_1_mean drat_2_mean mpg_1_sd
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 4 26.7 26.7 105. 105. 4.07 4.07 4.51
2 6 19.7 19.7 183. 183. 3.59 3.59 1.45
3 8 15.1 15.1 353. 353. 3.23 3.23 2.56
# ... with 5 more variables: mpg_2_sd <dbl>, disp_1_sd <dbl>, disp_2_sd <dbl>,
# drat_1_sd <dbl>, drat_2_sd <dbl>
then, simply gather, separate and spread
data %>%
gather(key, value, -cyl) %>%
separate(key, into = letters[1:3]) %>%
spread(c, value)
# A tibble: 18 x 5
cyl a b mean sd
<dbl> <chr> <chr> <dbl> <dbl>
1 4 disp 1 105. 26.9
2 4 disp 2 105. 26.9
3 4 drat 1 4.07 0.365
4 4 drat 2 4.07 0.365
5 4 mpg 1 26.7 4.51
6 4 mpg 2 26.7 4.51
7 6 disp 1 183. 41.6
8 6 disp 2 183. 41.6
9 6 drat 1 3.59 0.476
10 6 drat 2 3.59 0.476
11 6 mpg 1 19.7 1.45
12 6 mpg 2 19.7 1.45
13 8 disp 1 353. 67.8
14 8 disp 2 353. 67.8
15 8 drat 1 3.23 0.372
16 8 drat 2 3.23 0.372
17 8 mpg 1 15.1 2.56
18 8 mpg 2 15.1 2.56

Create Multiple 2-dimensional Tables from Multiple Columns in R Using dplyr

I'm looking for an efficient way to create multiple 2-dimension tables from an R dataframe of chi-square statistics. The code below builds on this answer to a previous question of mine about getting chi-square stats by groups. Now I want to create tables from the output by group. Here's what I have so far using the hsbdemo data frame from the UCLA R site:
ml <- foreign::read.dta("https://stats.idre.ucla.edu/stat/data/hsbdemo.dta")
str(ml)
'data.frame': 200 obs. of 13 variables:
$ id : num 45 108 15 67 153 51 164 133 2 53 ...
$ female : Factor w/ 2 levels "male","female": 2 1 1 1 1 2 1 1 2 1 ...
$ ses : Factor w/ 3 levels "low","middle",..: 1 2 3 1 2 3 2 2 2 2 ...
$ schtyp : Factor w/ 2 levels "public","private": 1 1 1 1 1 1 1 1 1 1 ...
$ prog : Factor w/ 3 levels "general","academic",..: 3 1 3 3 3 1 3 3 3 3 ...
ml %>%
dplyr::select(prog, ses, schtyp) %>%
table() %>%
apply(3, chisq.test, simulate.p.value = TRUE) %>%
lapply(`[`, c(6,7,9)) %>%
reshape2::melt() %>%
tidyr::spread(key = L2, value = value) %>%
dplyr::rename(SchoolType = L1) %>%
dplyr::arrange(SchoolType, prog) %>%
dplyr::select(-observed, -expected) %>%
reshape2::acast(., prog ~ ses ~ SchoolType ) %>%
tbl_df()
The output after the last arrange statement produces this tibble (showing only the first five rows):
prog ses SchoolType expected observed stdres
1 general low private 0.37500 2 3.0404678
2 general middle private 3.56250 3 -0.5187244
3 general high private 2.06250 1 -1.0131777
4 academic low private 1.50000 0 -2.5298221
5 academic middle private 14.25000 14 -0.2078097
It's easy to select one column, for example, stdres, and pass it to acast and tbl_df, which gets pretty much what I'm after:
# A tibble: 3 x 6
low.private middle.private high.private low.public middle.public high.public
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 3.04 -0.519 -1.01 1.47 -0.236 -1.18
2 -2.53 -0.208 1.50 -0.940 -2.06 3.21
3 -0.377 1.21 -1.06 -0.331 2.50 -2.45
Now I can repeat these steps for observed and expected frequencies and bind them by rows, but that seems inefficient. The output would observed frequencies stacked on expected, stacked on the standardized residuals. Something like this:
low.private middle.private high.private low.public middle.public high.public
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2 3 1 14 17 8
2 0 14 10 19 30 32
3 0 2 0 12 29 7
4 0.375 3.56 2.06 10.4 17.6 10.9
5 1.5 14.2 8.25 21.7 36.6 22.7
6 0.125 1.19 0.688 12.9 21.7 13.4
7 3.04 -0.519 -1.01 1.47 -0.236 -1.18
8 -2.53 -0.208 1.50 -0.940 -2.06 3.21
9 -0.377 1.21 -1.06 -0.331 2.50 -2.45
Seems there ought to be a way to do this without repeating the code for each column, probably by creating and processing a list. Thanks in advance.
Might this be the answer?
ml1 <- ml %>%
dplyr::select(prog, ses, schtyp) %>%
table() %>%
apply(3, chisq.test, simulate.p.value = TRUE) %>%
lapply(`[`, c(6,7,9)) %>%
reshape2::melt()
ml2 <- ml1 %>%
dplyr::mutate(type=paste(ses, L1, sep=".")) %>%
dplyr::select(-ses, -L1) %>%
tidyr::spread(type, value)
This gives you
prog L2 high.private high.public low.private low.public middle.private middle.public
1 general expected 2.062500 10.910714 0.3750000 10.4464286 3.5625000 17.6428571
2 general observed 1.000000 8.000000 2.0000000 14.0000000 3.0000000 17.0000000
3 general stdres -1.013178 -1.184936 3.0404678 1.4663681 -0.5187244 -0.2360209
4 academic expected 8.250000 22.660714 1.5000000 21.6964286 14.2500000 36.6428571
5 academic observed 10.000000 32.000000 0.0000000 19.0000000 14.0000000 30.0000000
6 academic stdres 1.504203 3.212431 -2.5298221 -0.9401386 -0.2078097 -2.0607058
7 vocation expected 0.687500 13.428571 0.1250000 12.8571429 1.1875000 21.7142857
8 vocation observed 0.000000 7.000000 0.0000000 12.0000000 2.0000000 29.0000000
9 vocation stdres -1.057100 -2.445826 -0.3771236 -0.3305575 1.2081594 2.4999085
I am not sure I understand completely what you are out after... But basically, create a new variable of SES and school type, and gather based on that. And obviously, reorder it as you wish :-)

Resources