Why am I getting -
'train' and 'class' have different lengths
In spite of having both of them with same lengths
y_pred=knn(train=training_set[,1:2],
test=Test_set[,-3],
cl=training_set[,3],
k=5)
Their lengths are given below-
> dim(training_set[,-3])
[1] 300 2
> dim(training_set[,3])
[1] 300 1
> head(training_set)
# A tibble: 6 x 3
Age EstimatedSalary Purchased
<dbl> <dbl> <fct>
1 -1.77 -1.47 0
2 -1.10 -0.788 0
3 -1.00 -0.360 0
4 -1.00 0.382 0
5 -0.523 2.27 1
6 -0.236 -0.160 0
> Test_set
# A tibble: 100 x 3
Age EstimatedSalary Purchased
<dbl> <dbl> <fct>
1 -0.304 -1.51 0
2 -1.06 -0.325 0
3 -1.82 0.286 0
4 -1.25 -1.10 0
5 -1.15 -0.485 0
6 0.641 -1.32 1
7 0.735 -1.26 1
8 0.924 -1.22 1
9 0.829 -0.582 1
10 -0.871 -0.774 0
It's because knn is expecting class to be a vector and you are giving it a data table with one column. The test knn is doing is whether nrow(train) == length(cl). If cl is a data table that does not give the answer you are expecting. Compare:
> length(data.frame(a=c(1,2,3)))
[1] 1
> length(c(1,2,3))
[1] 3
If you use cl=training_set$Purchased, which extracts the vector from the table, that should fix it.
This is specific gotcha if you are moving from data.frame to data.table because the default drop behaviour is different:
> dt <- data.table(a=1:3, b=4:6)
> dt[,2]
b
1: 4
2: 5
3: 6
> df <- data.frame(a=1:3, b=4:6)
> df[,2]
[1] 4 5 6
> df[,2, drop=FALSE]
b
1 4
2 5
3 6
Related
I hope to run KNN with the following two data frame. The following is the information of the data(already been scaled). age and lr_scale would be the features and euRefVoteAfter is the outcome variable.
head(training)
# A tibble: 6 x 3
age lr_scale euRefVoteAfter
<dbl> <dbl> <dbl+lbl>
1 -1.20 -0.808 0 [Rejoin the EU]
2 1.25 -1.29 1 [Stay out of the EU]
3 0.636 0.886 0 [Rejoin the EU]
4 0.0245 -0.324 1 [Stay out of the EU]
5 -1.26 0.402 0 [Rejoin the EU]
6 -0.770 0.402 0 [Rejoin the EU]
> head(testing)
# A tibble: 6 x 3
age lr_scale euRefVoteAfter
<dbl> <dbl> <dbl+lbl>
1 -1.20 -0.808 0 [Rejoin the EU]
2 1.25 -1.29 1 [Stay out of the EU]
3 0.636 0.886 0 [Rejoin the EU]
4 0.0245 -0.324 1 [Stay out of the EU]
5 -1.26 0.402 0 [Rejoin the EU]
6 -0.770 0.402 0 [Rejoin the EU]
And i run the following codes:
y_pred <- knn(train = training[, -3],
test = testing[, -3],
cl = training[,3],
k = 3,
prob = FALSE)
And i got the message'train' and 'class' have different lengths.
I've found some solution to fix this error, and try again as follow:
v1=training[,3]
y_pred <- knn(train = training[, -3],
test = testing[, -3],
cl = v1,
k = 3,
prob = FALSE)
But the same error message occured.
I'm sure the length of the variables are the same
> length(training$euRefVoteAfter)
[1] 26026
> length(training$age)
[1] 26026
> length(training$lr_scale)
[1] 26026
If someone can help me with this problem, I'd be really appreciated.
I want to perform a comparison between the slope of different regressions: CO2 changes through time (day) for 8 different nests.
> structure(as1)
# A tibble: 16 x 4
day nest N2O CO2
<dbl> <dbl> <dbl> <dbl>
1 1 1 0.00549 0.206
2 1 2 0.129 0.0343
3 1 3 0.157 0.113
4 1 4 0.0760 0.106
5 2 1 -0.0487 0.214
6 2 2 -0.0561 0.358
7 2 3 -0.0522 0.767
8 2 4 -0.0193 0.188
9 3 1 -0.0757 0.255
10 3 2 -0.237 0.753
11 3 3 -0.117 0.745
12 3 4 0.0345 0.502
13 4 1 0.135 0.325
14 4 2 0.264 0.767
15 4 3 0.0116 0.926
16 4 4 0.0342 0.358
I'm following the instructions given in https://stats.stackexchange.com/questions/33013/what-test-can-i-use-to-compare-slopes-from-two-or-more-regression-models by the answer with a rate of 16.
Instead of using the library lsmeans as it suggests I used emmeans because R encourages to switch to emmeans the rest of the way. However I've also tried it with lsmeans and I get the same problem. When I run this:
library(emmeans)
m.interaction <- lm(CO2 ~ day*nest, data = as1)
anova(m.interaction)
# Obtain slopes
m.interaction$coefficients
m.lst <- lstrends(m.interaction, "day", var="CO2", data = as1)
Everything works fine until lstrends, where I get this error:
##Error in emmfcn(...) : Variable 'CO2' is not in the dataset
Does somebody know what can be happening?
Thanks in advance!
I have a question on how to mutate the slopes of lines into a new data frame into
by category.
d1 <-read.csv(file.choose(), header = T)
d2 <- d1 %>%
group_by(ID)%>%
mutate(Slope=sapply(split(df,df$ID), function(v) lm(x~y,v)$coefficients["y"]))
ID x y
1 3.429865279 2.431363764
1 3.595066124 2.681241237
1 3.735263469 2.352182518
1 3.316473584 2.51851394
1 3.285984642 2.380211242
1 3.860793029 2.62324929
1 3.397714117 2.819543936
1 3.452997088 2.176091259
1 3.718933278 2.556302501
1 3.518566578 2.537819095
1 3.689033452 2.40654018
1 3.349160923 2.113943352
1 3.658888644 2.556302501
1 3.251151343 2.342422681
1 3.911194909 2.439332694
1 3.432584505 2.079181246
1 4.031267043 2.681241237
1 3.168733129 1.544068044
1 4.032239897 3.084576278
1 3.663361648 2.255272505
1 3.582302046 2.62324929
1 3.606585565 2.079181246
1 3.541791347 2.176091259
4 3.844012861 2.892094603
4 3.608318477 2.767155866
4 3.588990218 2.883661435
4 3.607957917 2.653212514
4 3.306753044 2.079181246
4 4.002604841 2.880813592
4 3.195299837 2.079181246
4 3.512203238 2.643452676
4 3.66878494 2.431363764
4 3.598910385 2.511883361
4 3.721810134 2.819543936
4 3.352964661 2.113943352
4 4.008109343 3.084576278
4 3.584693332 2.556302501
4 4.019461819 3.084576278
4 3.359474563 2.079181246
4 3.950256012 2.829303773
I got the error message like'replacement has 2 rows, data has 119'. I am sure that the error is derived from mutate().
Best,
Once you do group_by, any function that succeeds uses on the columns in the grouped data.frame, in your case, it will only use x,y column within.
If you only want the coefficient, it goes like this:
df %>% group_by(ID) %>% summarize(coef=lm(x~y)$coefficients["y"])
# A tibble: 2 x 2
ID coef
<int> <dbl>
1 1 0.437
2 4 0.660
If you want the coefficient, which means a vector a long as the dataframe, you use mutate:
df %>% group_by(ID) %>% mutate(coef=lm(x~y)$coefficients["y"])
# A tibble: 40 x 4
# Groups: ID [2]
ID x y coef
<int> <dbl> <dbl> <dbl>
1 1 3.43 2.43 0.437
2 1 3.60 2.68 0.437
3 1 3.74 2.35 0.437
4 1 3.32 2.52 0.437
5 1 3.29 2.38 0.437
6 1 3.86 2.62 0.437
7 1 3.40 2.82 0.437
8 1 3.45 2.18 0.437
9 1 3.72 2.56 0.437
10 1 3.52 2.54 0.437
# … with 30 more rows
I have some data on organism survival as a function of time. The data is constructed using the averages of many replicates for each time point, which can yield a forward time step with an increase in survival. Occasionally, this results in a survivorship greater than 1, which is impossible. How can I conditionally change values greater than 1 to the value preceeding it in the same column?
Here's what the data looks like:
>df
Generation Treatment time lx
1 0 1 0 1
2 0 1 2 1
3 0 1 4 0.970
4 0 1 6 0.952
5 0 1 8 0.924
6 0 1 10 0.913
7 0 1 12 0.895
8 0 1 14 0.729
9 0 2 0 1
10 0 2 2 1
I've tried mutating the column of interest as such, which still yields values above 1:
df1 <- df %>%
group_by(Generation, Treatment) %>%
mutate(lx_diag = as.numeric(lx/lag(lx, default = first(lx)))) %>% #calculate running survival
mutate(lx_diag = if_else(lx_diag > 1.000000, lag(lx_diag), lx_diag)) #substitute values >1 with previous value
>df1
Generation Treatment time lx lx_diag
1 12 1 0 1 1
2 12 1 2 1 1
3 12 1 4 1 1
4 12 1 6 0.996 0.996
5 12 1 8 0.988 0.992
6 12 1 10 0.956 0.968
7 12 1 12 0.884 0.925
8 12 1 14 0.72 0.814
9 12 1 15 0.729 1.01
10 12 1 19 0.76 1.04
I expect the results to look something like:
>df1
Generation Treatment time lx lx_diag
1 12 1 0 1 1
2 12 1 2 1 1
3 12 1 4 1 1
4 12 1 6 0.996 0.996
5 12 1 8 0.988 0.992
6 12 1 10 0.956 0.968
7 12 1 12 0.884 0.925
8 12 1 14 0.72 0.814
9 12 1 15 0.729 0.814
10 12 1 19 0.76 0.814
I know you can conditionally change the values to a specific value (i.e. ifelse with no else), but I haven't found any solutions that can conditionally change a value in a column to the value in the previous row. Any help is appreciated.
EDIT: I realized that mutate and if_else are quite efficient when it comes to converting values. Instead of replacing values in sequence from the first to last, as I would have expected, the commands replace all values at the same time. So in a series of values >1, you will have some left behind. Thus, if you just run the command:
SurvTot1$lx_diag <- if_else(SurvTot1$lx_diag > 1, lag(SurvTot1$lx_diag), SurvTot1$lx_diag)
over again, you can rid of the values >1. Not the most elegant solution, but it works.
This looks like a very ugly solution to me, but I couldn't think of anything else:
df = data.frame(
"Generation" = rep(12,10),
"Treatent" = rep(1,10),
"Time" = c(seq(0,14,by=2),15,19),
"lx_diag" = c(1,1,1,0.996,0.992,0.968,0.925,0.814,1.04,1.04)
)
update_lag = function(x){
k <<- k+1
x
}
k=1
df %>%
mutate(
lx_diag2 = ifelse(lx_diag <=1,update_lag(lx_diag),lag(lx_diag,n=k))
)
Using the data from #Fino, here is my vectorized solution using base R
vals.to.replace <- which(df$lx_diag > 1)
vals.to.substitute <- sapply(vals.to.replace, function(x) tail( df$lx_diag[which(df$lx_diag[1:x] <= 1)], 1) )
df$lx_diag[vals.to.replace] = vals.to.substitute
df
Generation Treatent Time lx_diag
1 12 1 0 1.000
2 12 1 2 1.000
3 12 1 4 1.000
4 12 1 6 0.996
5 12 1 8 0.992
6 12 1 10 0.968
7 12 1 12 0.925
8 12 1 14 0.814
9 12 1 15 0.814
10 12 1 19 0.814
I'm looking for an efficient way to create multiple 2-dimension tables from an R dataframe of chi-square statistics. The code below builds on this answer to a previous question of mine about getting chi-square stats by groups. Now I want to create tables from the output by group. Here's what I have so far using the hsbdemo data frame from the UCLA R site:
ml <- foreign::read.dta("https://stats.idre.ucla.edu/stat/data/hsbdemo.dta")
str(ml)
'data.frame': 200 obs. of 13 variables:
$ id : num 45 108 15 67 153 51 164 133 2 53 ...
$ female : Factor w/ 2 levels "male","female": 2 1 1 1 1 2 1 1 2 1 ...
$ ses : Factor w/ 3 levels "low","middle",..: 1 2 3 1 2 3 2 2 2 2 ...
$ schtyp : Factor w/ 2 levels "public","private": 1 1 1 1 1 1 1 1 1 1 ...
$ prog : Factor w/ 3 levels "general","academic",..: 3 1 3 3 3 1 3 3 3 3 ...
ml %>%
dplyr::select(prog, ses, schtyp) %>%
table() %>%
apply(3, chisq.test, simulate.p.value = TRUE) %>%
lapply(`[`, c(6,7,9)) %>%
reshape2::melt() %>%
tidyr::spread(key = L2, value = value) %>%
dplyr::rename(SchoolType = L1) %>%
dplyr::arrange(SchoolType, prog) %>%
dplyr::select(-observed, -expected) %>%
reshape2::acast(., prog ~ ses ~ SchoolType ) %>%
tbl_df()
The output after the last arrange statement produces this tibble (showing only the first five rows):
prog ses SchoolType expected observed stdres
1 general low private 0.37500 2 3.0404678
2 general middle private 3.56250 3 -0.5187244
3 general high private 2.06250 1 -1.0131777
4 academic low private 1.50000 0 -2.5298221
5 academic middle private 14.25000 14 -0.2078097
It's easy to select one column, for example, stdres, and pass it to acast and tbl_df, which gets pretty much what I'm after:
# A tibble: 3 x 6
low.private middle.private high.private low.public middle.public high.public
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 3.04 -0.519 -1.01 1.47 -0.236 -1.18
2 -2.53 -0.208 1.50 -0.940 -2.06 3.21
3 -0.377 1.21 -1.06 -0.331 2.50 -2.45
Now I can repeat these steps for observed and expected frequencies and bind them by rows, but that seems inefficient. The output would observed frequencies stacked on expected, stacked on the standardized residuals. Something like this:
low.private middle.private high.private low.public middle.public high.public
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2 3 1 14 17 8
2 0 14 10 19 30 32
3 0 2 0 12 29 7
4 0.375 3.56 2.06 10.4 17.6 10.9
5 1.5 14.2 8.25 21.7 36.6 22.7
6 0.125 1.19 0.688 12.9 21.7 13.4
7 3.04 -0.519 -1.01 1.47 -0.236 -1.18
8 -2.53 -0.208 1.50 -0.940 -2.06 3.21
9 -0.377 1.21 -1.06 -0.331 2.50 -2.45
Seems there ought to be a way to do this without repeating the code for each column, probably by creating and processing a list. Thanks in advance.
Might this be the answer?
ml1 <- ml %>%
dplyr::select(prog, ses, schtyp) %>%
table() %>%
apply(3, chisq.test, simulate.p.value = TRUE) %>%
lapply(`[`, c(6,7,9)) %>%
reshape2::melt()
ml2 <- ml1 %>%
dplyr::mutate(type=paste(ses, L1, sep=".")) %>%
dplyr::select(-ses, -L1) %>%
tidyr::spread(type, value)
This gives you
prog L2 high.private high.public low.private low.public middle.private middle.public
1 general expected 2.062500 10.910714 0.3750000 10.4464286 3.5625000 17.6428571
2 general observed 1.000000 8.000000 2.0000000 14.0000000 3.0000000 17.0000000
3 general stdres -1.013178 -1.184936 3.0404678 1.4663681 -0.5187244 -0.2360209
4 academic expected 8.250000 22.660714 1.5000000 21.6964286 14.2500000 36.6428571
5 academic observed 10.000000 32.000000 0.0000000 19.0000000 14.0000000 30.0000000
6 academic stdres 1.504203 3.212431 -2.5298221 -0.9401386 -0.2078097 -2.0607058
7 vocation expected 0.687500 13.428571 0.1250000 12.8571429 1.1875000 21.7142857
8 vocation observed 0.000000 7.000000 0.0000000 12.0000000 2.0000000 29.0000000
9 vocation stdres -1.057100 -2.445826 -0.3771236 -0.3305575 1.2081594 2.4999085
I am not sure I understand completely what you are out after... But basically, create a new variable of SES and school type, and gather based on that. And obviously, reorder it as you wish :-)