Alternative to Point Density - graph

I have the coordinates of a bunch of car crashes and I reasoned that the place where they are the densest is where crashes are the most likely to occur. The solution I found when looking into this problem is to use point density, which is simply the number of points within a given radius divided by the area of a circle with that radius. I have two problems with this method:
1) Changing the size of the radius can significantly change your answer. For example, if all points are between 1 and 2 miles of point P, then P will be the most dense if r > 2 and P will be the least dense if r < 1.
2) If you want to find the point with the second highest density, then the result will always be a point immediately next to the point of the highest density.
What is a better method to find density?
P.S. I apologize if this is a duplicate of someone else's question. Whenever I searched for something related to this problem, things about point density always came up.

Related

how to find if a particular point exists between two concentric circles or not???i have 3 points given on each circle

i have two concentric circles and three points are given for each circle that are on circumference.
I need a optimized method to check if a given random point exist inbetween these circles or not.
You can compute (x²+y²), x, y, 1 for each point. The last entry is simply the constant one. Put these terms for four given points into a matrix and compute its determinant. The determinant will be zero if the points are cocircular. Otherwise the sign will tell you which point is on which side with respect to the circle defined by the other three. Use a simple example to check which sign corresponds to which direction. Be prepared for the fact that the three circle-defining points being oriented in a clockwise or counter-clockwise orientation will affect this sign, too.
Computing a 4×4 determinant can be done horribly inefficiently, too. I'd suggest you compute all the 2×2 minors from the first two rows, and all the 2×2 minors from the last two, then you can combine them to form the full determinant. See this Math SE post for details. If you need further mathematical help (as opposed to programming help), you might find more suitable answers there.
Nothe that the above works for each circle independently. Check whether the point is inside the one, then check whether it is outside the other. It does not make use of the fact that the circles are assumed to be cocircular.

Maximum number of points that lie on the same straight straight line in a 2D plane

I am trying to solve a programming interview question that requires one to find the maximum number of points that lie on the same straight straight line in a 2D plane. I have looked up the solutions on the web. All of them discuss a O(N^2) solution using hashing such as the one at this link: Here
I understand the part where common gradient is used to check for co-linear points since that is a common mathematical technique. However, the solution points out that one must beware of vertical lines and overlapping points. I am not sure how these points can cause problems? Can't I just store the gradient of vertical lines as infinity (a large number)?
Hint:
Three distinct points are collinear if
x_1*(y_2-y_3)+x_2*(y_3-y_1)+x_3*(y_1-y_2) = 0
No need to check for slopes or anything else. You need need to eliminate duplicate points from the set before the search begins though.
So pick a pair of points, and find all other points that are collinear and store them in a list of lines. For the remainder points do the same and then compare which lines have the most points.
The first time around you have n-2 tests. The second time around you have n-4 tests because there is no point on revisiting the first two points. Next time n-6 etc, for a total of n/2 tests. At worst case this results in (n/2)*(n/2-1) operations which is O(n^2) complexity.
PS. Who ever decided the canonical answer is using slopes knows very little about planar geometry. People invented homogeneous coordinates for points and lines in a plane for the exact reason of having to represent vertical lines and other degenerate situations.

How to smooth hand drawn lines?

So I am using Kinect with Unity.
With the Kinect, we detect a hand gesture and when it is active we draw a line on the screen that follows where ever the hand is going. Every update the location is stored as the newest (and last) point in a line. However the lines can often look very choppy.
Here is a general picture that shows what I want to achieve:
With the red being the original line, and the purple being the new smoothed line. If the user suddenly stops and turns direction, we think we want it to not exactly do that but instead have a rapid turn or a loop.
My current solution is using Cubic Bezier, and only using points that are X distance away from each other (with Y points being placed between the two points using Cubic Bezier). However there are two problems with this, amongst others:
1) It often doesn't preserve the curves to the distance outwards the user drew them, for example if the user suddenly stop a line and reverse the direction there is a pretty good chance the line won't extend to point where the user reversed the direction.
2) There is also a chance that the selected "good" point is actually a "bad" random jump point.
So I've thought about other solutions. One including limiting the max angle between points (with 0 degrees being a straight line). However if the point has an angle beyond the limit the math behind lowering the angle while still following the drawn line as best possible seems complicated. But maybe it's not. Either way I'm not sure what to do and looking for help.
Keep in mind this needs to be done in real time as the user is drawing the line.
You can try the Ramer-Douglas-Peucker algorithm to simplify your curve:
https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
It's a simple algorithm, and parameterization is reasonably intuitive. You may use it as a preprocessing step or maybe after one or more other algorithms. In any case it's a good algorithm to have in your toolbox.
Using angles to reject "jump" points may be tricky, as you've seen. One option is to compare the total length of N line segments to the straight-line distance between the extreme end points of that chain of N line segments. You can threshold the ratio of (totalLength/straightLineLength) to identify line segments to be rejected. This would be a quick calculation, and it's easy to understand.
If you want to take line segment lengths and segment-to-segment angles into consideration, you could treat the line segments as vectors and compute the cross product. If you imagine the two vectors as defining a parallelogram, and if knowing the area of the parallegram would be a method to accept/reject a point, then the cross product is another simple and quick calculation.
https://www.math.ucdavis.edu/~daddel/linear_algebra_appl/Applications/Determinant/Determinant/node4.html
If you only have a few dozen points, you could randomly eliminate one point at a time, generate your spline fits, and then calculate the point-to-spline distances for all the original points. Given all those point-to-spline distances you can generate a metric (e.g. mean distance) that you'd like to minimize: the best fit would result from eliminating points (Pn, Pn+k, ...) resulting in a spline fit quality S. This technique wouldn't scale well with more points, but it might be worth a try if you break each chain of line segments into groups of maybe half a dozen segments each.
Although it's overkill for this problem, I'll mention that Euler curves can be good fits to "natural" curves. What's nice about Euler curves is that you can generate an Euler curve fit by two points in space and the tangents at those two points in space. The code gets hairy, but Euler curves (a.k.a. aesthetic curves, if I remember correctly) can generate better and/or more useful fits to natural curves than Bezier nth degree splines.
https://en.wikipedia.org/wiki/Euler_spiral

quality analysis of fitted pyramid

sorry for posting this in programing site, but there might be many programming people who are professional in geometry, 3d geometry... so allow this.
I have been given best fitted planes with the original point data. I want to model a pyramid for this data as the data represent a pyramid. My approach of this modeling is
Finding the intersection lines (e.g. AB, CD,..etc) for each pair of adjacent plane
Then, finding the pyramid top (T) by intersecting the previously found lines as these lines don’t pass through a single point
Intersecting the available side planes with a desired horizontal plane to get the basement
In figure – black triangles are original best fitted triangles; red
and blue triangles are model triangles
I want to show that the points are well fitted for the pyramid model
than that it fitted for the given best fitted planes. (Assume original
planes are updated as shown)
Actually step 2 is done using weighted least square process. Each intersection line is assigned with a weight. Weight is proportional to the angle between normal vectors of corresponding planes. in this step, I tried to find the point which is closest to all the intersection lines i.e. point T. according to the weights, line positions might change with respect to the influence of high weight line. That mean, original planes could change little bit. So I want to show that these new positions of planes are well fitted for the original point data than original planes.
Any idea to show this? I am thinking to use RMSE and show before and after RMSE. But again I think I should use weighted RMSE as all the planes refereeing to the point T are influenced so that I should cope this as a global case rather than looking individual planes….. But I can’t figure out a way to show this. Or maybe I should use some other measure…
So, I am confused and no idea to show this.. Please help me…
If you are given the best-fit planes, why not intersect the three of them to get a single unambiguous T, then determine the lines AT, BT, and CT?
This is not a rhetorical question, by the way. Your actual question seems to be for reassurance that your procedure yields "well-fitted" results, but you have not explained or described what kind of fit you're looking for!
Unfortunately, without this information, your question cannot be answered as asked. If you describe your goals, we may be able to help you achieve them -- or, if you have not yet articulated them for yourself, that exercise may be enough to let you answer your own question...
That said, I will mention that the only difference between the planes you started with and the planes your procedure ends up with should be due to floating point error. This is because, geometrically speaking, all three lines should intersect at the same point as the planes that generated them.

Sphere that surely encompass given list of points [points are with x, y and z co-ordinate]

I am trying to find sphere that surly encompasses given list of points.
Points will have x, y and z co-ordinate[Points are in 3D].
Actually I am trying to find new three points based on given list of points by some calculations like find MinX,MaxX ,MinY,MaxY,and MinZ and MaxZ and do some operation and find new three points
And I will draw sphere from these three points.
And I will also taking all these three points on the diameter of sphere so I have a unique sphere.
Is there any standard way for finding encompassing sphere of given list of points?
Yes, the standard algorithm is Welzl's algorithm (assuming you want the minimal sphere around your points). Particularly the improved version of Gaertner is very useful, robust and numerically stable! It handles all the degenerate cases well too.
At its core, the algorithm permutes the points (randomly) to find the 1-4 points that lie on the boundary of the sphere. It's basically a clever trial-and-error algorithm. From these points, you can find the center by finding a point that has the same distance to all those points. Gärtner's version uses an improved numerical device to find the center. Also, it employs an extra pivoting step that presumably makes the algorithm work better for a large number of input points.
If all you want is a sphere around three points, I suggest you still use Gärtners "device" to compute the circumsphere of the triangle. Otherwise, the method will probably degenerate easily (i.e. when the triangle is very flat).
Do you need 3 points, or any number of points?
If you only need the answer for 3 points, each pair of points defines a line segment. Take the longest line segment. Take a sphere centered at the middle of that line segment, whose radius is half the length of the line segment. There are two cases.
The third point is inside of that initial sphere. If so, then you have the smallest sphere.
The third point is outside of that initial sphere. Then the solution at Find Circum Center of Three point of Triangle [Not using Compass] will give you the center of the smallest sphere containing those 3 points.
If you need an arbitrary number of points, I'd do some sort of iterative approximation algorithm. Since you don't seem like you need that, I won't work out the details.

Resources