User-friendly wrappings for tail recursive functions - recursion

I am trying to learn common lisp. I'm familiar with tail recursion, but I'm unfamiliar with the idiomatic way to wrap a tail recursive function in a way that the caller does not have to initialize the accumulator variable(s). Here is an example:
(defun add-em (n s)
(if (eql n 0)
s
(add-em (- n 1) (+ s n))
)
)
Say I wanted to wrap this function so that the user only has to manage inputting n and does not need the full function call (add-em <number> 0). In other languages, such as scala, I would define an inner function and then at the end of the outer function I would call the tail-recursive inner function to run the algorithm.
In common lisp I could define a lambda in the function and use that, but it seems kind of ugly. I figured there may be a more idiomatic way to do it but googling hasn't really given me any results.
Is there a more idiomatic way to do this other than splitting the functions entirely? Or is that the best way? An example:
(defun add-em-inner (num sum)
(if (eql num 0)
sum
(add-em-inner (- num 1) (+ num sum))
)
)
(defun add-em (n)
(add-em-inner n 0)
)

One way is to use the labels operator to define a lexical function that is recursive. So that is to say:
(defun add-em-inner (num sum)
(if (eql num 0)
sum
(add-em-inner (- num 1) (+ num sum))))
(defun add-em (n)
(add-em-inner n 0))
Becomes this:
(defun add-em (n)
(labels ((add-em-inner (num sum)
(if (eql num 0)
sum
(add-em-inner (- num 1) (+ num sum)))))
(add-em-inner n 0)))
If you don't mind the extra accumulator being part of the function's public interface, but care only about user convenience (caller not having to specify the value), you can just make it an optional parameter:
(defun add-em (n &optional (s 0))
(if (eql n 0)
s
(add-em (- n 1) (+ s n))))
There are often good reasons not to do that; for instance, you may want to retain the ability to define an optional argument for future API extension that is backwards compatible. That is still possible here, but only provided that the outside callers don't pass that parameter.

Related

Scheme: Compiling with continuations

im currently writing a compiler in OCaml for a subset of scheme and am having trouble understanding how to compile with continuations. I found some great resources, namely:
The cps slides of the cmsu compiler course:
https://www.cs.umd.edu/class/fall2017/cmsc430/
This explanation of another cs course:
https://www.cs.utah.edu/~mflatt/past-courses/cs6520/public_html/s02/cps.pdf
Matt Mights posts on a-normal form and cps:
http://matt.might.net/articles/a-normalization/ and
http://matt.might.net/articles/cps-conversion/
Using the anormal transformation introduced in the anormal-paper, I now have code where function calls are either bound to a variable or returned.
Example:
(define (fib n)
(if (<= n 1)
n
(+ (fib (- n 1))
(fib (- n 2)))))
becomes:
(define (fib n)
(let ([c (<= n 1)])
(if c
n
(let ([n-1 (- n 1)])
(let ([v0 (fib n-1)])
(let ([n-2 (- n 2)])
(let ([v1 (fib n-2)])
(+ v0 v1)))))))
In order to cps-transform, I now have to:
add cont-parameters to all non-primitive functions
call the cont-parameter on tail-positions
transform all non-primitive function calls, so that they escape the let-binding and become an extra lambda with the previous let-bound variable as sole argument and the previous let-body
as the body
The result would look like:
(define (fib n k)
(let ([c (<= n 1)])
(if c
(k n)
(let ([n-1 (- n 1)])
(fib n-1
(lambda (v0)
(let ([n-2 (- n 2)])
(fib n-2
(lambda (v1)
(k (+ v0 v1))))))))))
Is this correct?
The csmu-course also talks about how Programs in CPS require no stack and never return. Is that because we don't need to to save the adresses to return to and closures as well as other datatypes are stored on the heap and references are kept alive by using the closures?
The csmu also talks about desugaring of call/cc:
(call/cc) => ((lambda (k f) (f k k)))
when using such desugaring, how does:
(+ 2 (call/cc (lambda (k) (k 2))))
in MIT-Scheme return 4, since the current continuation would probably be something like display?
is this correct?
(define (fib n k)
(let ([c (<= n 1)])
(if c
(k n)
(let ([n-1 (- n 1)])
(fib n-1
(lambda (v0)
(let ([n-2 (- n 2)])
(fib n-2
(lambda (v1)
(k (+ v0 v1))))))))))
you get an A+ 💯
The csmu-course also talks about how Programs in CPS require no stack and never return. Is that because we don't need to to save the addresses to return to and closures as well as other datatypes are stored on the heap and references are kept alive by using the closures?
Exactly! See Chicken Complilation Process for an in-depth read about such a technique.
The csmu also talks about desugaring of call/cc:
(call/cc) => ((lambda (k f) (f k k)))
That doesn't look quite right. Here's a desugar of call/cc from Matt Might -
call/cc => (lambda (f cc) (f (lambda (x k) (cc x)) cc))
The essence of the idea of compiling with continuations is that you want to put an order on the evaluation of arguments passed to each function and after you evaluate that argument you send its value to the continuation passed.
It is required for the language in which you rewrite the code in CPS form to be tail recursive, otherwise it will stack empty frames, followed only by a return. If the implementation language does not impose tail-recursion you need to apply more sophisticated methods to get non-growing stack for cps code.
Take care, if you do it, you also need to change the signature of the primitives. The primitives will also be passed a continuation but they return immediately the answer in the passed continuation, they do not create other continuations.
The best reference about understanding how to compile with continuations remains the book of Andrew W. Appel and you need nothing more.

Recursion in Common Lisp, pushing values, and the Fibonacci Sequence

This is not a homework assignment. In the following code:
(defparameter nums '())
(defun fib (number)
(if (< number 2)
number
(push (+ (fib (- number 1)) (fib (- number 2))) nums))
return nums)
(format t "~a " (fib 100))
Since I am quite inexperienced with Common Lisp, I am at a loss as to why the function does not return an value. I am a trying to print first 'n' values, e.g., 100, of the Fibonacci Sequence.
Thank you.
An obvious approach to computing fibonacci numbers is this:
(defun fib (n)
(if (< n 2)
n
(+ (fib (- n 1)) (fib (- n 2)))))
(defun fibs (n)
(loop for i from 1 below n
collect (fib i)))
A little thought should tell you why no approach like this is going to help you compute the first 100 Fibonacci numbers: the time taken to compute (fib n) is equal to or a little more than the time taken to compute (fib (- n 1)) plus the time taken to compute (fib (- n 2)): this is exponential (see this stack overflow answer).
A good solution to this is memoization: the calculation of (fib n) repeats subcalculations a huge number of times, and if we can just remember the answer we computed last time we can avoid doing so again.
(An earlier version of this answer has an overcomplex macro here: something like that may be useful in general but is not needed here.)
Here is how you can memoize fib:
(defun fib (n)
(check-type n (integer 0) "natural number")
(let ((so-far '((2 . 1) (1 . 1) (0 . 0))))
(labels ((fibber (m)
(when (> m (car (first so-far)))
(push (cons m (+ (fibber (- m 1))
(fibber (- m 2))))
so-far))
(cdr (assoc m so-far))))
(fibber n))))
This keeps a table – an alist – of the results it has computed so far, and uses this to avoid recomputation.
With this memoized version of the function:
> (time (fib 1000))
Timing the evaluation of (fib 1000)
User time = 0.000
System time = 0.000
Elapsed time = 0.000
Allocation = 101944 bytes
0 Page faults
43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875
The above definition uses a fresh cache for each call to fib: this is fine, because the local function, fibber does reuse the cache. But you can do better than this by putting the cache outside the function altogether:
(defmacro define-function (name expression)
;; Install EXPRESSION as the function value of NAME, returning NAME
;; This is just to avoid having to say `(setf ...)`: it should
;; probably do something at compile-time too so the compiler knows
;; the function will be defined.
`(progn
(setf (fdefinition ',name) ,expression)
',name))
(define-function fib
(let ((so-far '((2 . 1) (1 . 1) (0 . 0))))
(lambda (n)
(block fib
(check-type n (integer 0) "natural number")
(labels ((fibber (m)
(when (> m (car (first so-far)))
(push (cons m (+ (fibber (- m 1))
(fibber (- m 2))))
so-far))
(cdr (assoc m so-far))))
(fibber n))))))
This version of fib will share its cache between calls, which means it is a little faster, allocates a little less memory but may be less thread-safe:
> (time (fib 1000))
[...]
Allocation = 96072 bytes
[...]
> (time (fib 1000))
[...]
Allocation = 0 bytes
[...]
Interestingly memoization was invented (or at least named) by Donald Michie, who worked on breaking Tunny (and hence with Colossus), and who I also knew slightly: the history of computing is still pretty short!
Note that memoization is one of the times where you can end up fighting a battle with the compiler. In particular for a function like this:
(defun f (...)
...
;; no function bindings or notinline declarations of F here
...
(f ...)
...)
Then the compiler is allowed (but not required) to assume that the apparently recursive call to f is a recursive call into the function it is compiling, and thus to avoid a lot of the overhead of a full function call. In particular it is not required to retrieve the current function value of the symbol f: it can just call directly into the function itself.
What this means is that an attempt to write a function, memoize which can be used to mamoize an existing recursive function, as (setf (fdefinition 'f) (memoize #'f)) may not work: the function f still call directly into the unmemoized version of itself and won't notice that the function value of f has been changed.
This is in fact true even if the recursion is indirect in many cases: the compiler is allowed to assume that calls to a function g for which there is a definition in the same file are calls to the version defined in the file, and again avoid the overhead of a full call.
The way to deal with this is to add suitable notinline declarations: if a call is covered by a notinline declaration (which must be known to the compiler) then it must be made as a full call. From the spec:
A compiler is not free to ignore this declaration; calls to the specified functions must be implemented as out-of-line subroutine calls.
What this means is that, in order to memoize functions you have to add suitable notinline declarations for recursive calls, and this means that memoizing either needs to be done by a macro, or must rely on the user adding suitable declarations to the functions to be memoized.
This is only a problem because the CL compiler is allowed to be smart: almost always that's a good thing!
Your function unconditionally returns nums (but only if a variable called return exists). To see why, we can format it like this:
(defun fib (number)
(if (< number 2)
number
(push (+ (fib (- number 1)) (fib (- number 2))) nums))
return
nums)
If the number is less than 2, then it evaluates the expression number, uselessly, and throws away the result. Otherwise, it pushes the result of the (+ ....) expression onto the nums list. Then it uselessly evaluates return, throwing away the result. If a variable called return doesn't exist, that's an error situation. Otherwise, it evaluates nums and that is the return value.
In Common Lisp, there is a return operator for terminating and returning out of anonymous named blocks (blocks whose name is the symbol nil). If you define a named function with defun, then an invisible block exists which is not anonymous: it has the same name as that function. In that case, return-from can be used:
(defun function ()
(return-from function 42) ;; function terminates, returns 42
(print 'notreached)) ;; this never executes
Certain standard control flow and looping constructs establish a hidden anonymous block, so return can be used:
(dolist (x '(1 2 3))
(return 42)) ;; loop terminates, yields 42 as its result
If we use (return ...) but there is no enclosing anonymous block, that is an error.
The expression (return ...) is different from just return, which evaluates a variable named by the symbol return, retrieving its contents.
It is not clear how to repair your fib function, because the requirements are unknown. The side effect of pushing values into a global list normally doesn't belong inside a mathematical function like this, which should be pure (side-effect-free).
So you might know that if you know the two previous numbers you can compute the next. What comes after 3, 5? If you guess 8 you have understood it. Now if you start with 0, 1 and roll 1, 1, 1, 2, etc you collect the first variable until you have the number of numbers you'd like:
(defun fibs (elements)
"makes a list of elements fibonacci numbers starting with the first"
(loop :for a := 0 :then b
:for b := 1 :then c
:for c := (+ a b)
:for n :below elements
:collect a))
(fibs 10)
; ==> (0 1 1 2 3 5 8 13 21 34)
Every form in Common Lisp "returns" a value. You can say it evaluates to. eg.
(if (< a b)
5
10)
This evaluates either to 5 or 10. Thus you can do this and expect that it evaluates to either 15 or 20:
(+ 10
(if (< a b)
5
10))
You basically want your functions to have one expression that calculates the result. eg.
(defun fib (n)
(if (zerop n)
n
(+ (fib (1- n)) (fib (- n 2)))))
This evaluates to the result og the if expression... loop with :collect returns the list. You also have (return expression) and (return-from name expression) but they are usually unnecessary.
Your global variable num is actually not that a bad idea.
It is about to have a central memory about which fibonacci numbers were already calculated. And not to calculate those already calculated numbers again.
This is the very idea of memoization.
But first, I do it in bad manner with a global variable.
Bad version with global variable *fibonacci*
(defparameter *fibonacci* '(1 1))
(defun fib (number)
(let ((len (length *fibonacci*)))
(if (> len number)
(elt *fibonacci* (- len number 1)) ;; already in *fibonacci*
(labels ((add-fibs (n-times)
(push (+ (car *fibonacci*)
(cadr *fibonacci*))
*fibonacci*)
(cond ((zerop n-times) (car *fibonacci*))
(t (add-fibs (1- n-times))))))
(add-fibs (- number len))))))
;;> (fib 10)
;; 89
;;> *fibonacci*
;; (89 55 34 21 13 8 5 3 2 1 1)
Good functional version (memoization)
In memoization, you hide the global *fibonacci* variable
into the environment of a lexical function (the memoized version of a function).
(defun memoize (fn)
(let ((cache (make-hash-table :test #'equal)))
#'(lambda (&rest args)
(multiple-value-bind (val win) (gethash args cache)
(if win
val
(setf (gethash args cache)
(apply fn args)))))))
(defun fib (num)
(cond ((zerop num) 1)
((= 1 num) 1)
(t (+ (fib (- num 1))
(fib (- num 2))))))
The previously global variable *fibonacci* is here actually the local variable cache of the memoize function - encapsulated/hidden from the global environment,
accessible/look-up-able only through the function fibm.
Applying memoization on fib (bad version!)
(defparameter fibm (memoize #'fib))
Since common lisp is a Lisp 2 (separated namespace between function and variable names) but we have here to assign the memoized function to a variable,
we have to use (funcall <variable-name-bearing-function> <args for memoized function>).
(funcall fibm 10) ;; 89
Or we define an additional
(defun fibm (num)
(funcall fibm num))
and can do
(fibm 10)
However, this saves/memoizes only the out calls e.g. here only the
Fibonacci value for 10. Although for that, Fibonacci numbers
for 9, 8, ..., 1 are calculated, too.
To make them saved, look the next section!
Applying memoization on fib (better version by #Sylwester - thank you!)
(setf (symbol-function 'fib) (memoize #'fib))
Now the original fib function is the memoized function,
so all fib-calls will be memoized.
In addition, you don't need funcall to call the memoized version,
but just do
(fib 10)

How to do recursion in anonymous fn, without tail recursion

How do I do recursion in an anonymous function, without using tail recursion?
For example (from Vanderhart 2010, p 38):
(defn power
[number exponent]
(if (zero? exponent)
1
(* number (power number (- exponent 1)))))
Let's say I wanted to do this as an anonymous function. And for some reason I didn't want to use tail recursion. How would I do it? For example:
( (fn [number exponent] ......))))) 5 3)
125
Can I use loop for this, or can loop only be used with recur?
The fn special form gives you the option to provide a name that can be used internally for recursion.
(doc fn)
;=> (fn name? [params*] exprs*)
So, add "power" as the name to complete your example.
(fn power [n e]
(if (zero? e)
1
(* n (power n (dec e)))))
Even if the recursion happened in the tail position, it will not be optimized to replace the current stack frame. Clojure enforces you to be explicit about it with loop/recur and trampoline.
I know that in Clojure there's syntactic support for "naming" an anonymous function, as other answers have pointed out. However, I want to show a first-principles approach to solve the question, one that does not depend on the existence of special syntax on the programming language and that would work on any language with first-order procedures (lambdas).
In principle, if you want to do a recursive function call, you need to refer to the name of the function so "anonymous" (i.e. nameless functions) can not be used for performing a recursion ... unless you use the Y-Combinator. Here's an explanation of how it works in Clojure.
Let me show you how it's used with an example. First, a Y-Combinator that works for functions with a variable number of arguments:
(defn Y [f]
((fn [x] (x x))
(fn [x]
(f (fn [& args]
(apply (x x) args))))))
Now, the anonymous function that implements the power procedure as defined in the question. Clearly, it doesn't have a name, power is only a parameter to the outermost function:
(fn [power]
(fn [number exponent]
(if (zero? exponent)
1
(* number (power number (- exponent 1))))))
Finally, here's how to apply the Y-Combinator to the anonymous power procedure, passing as parameters number=5 and exponent=3 (it's not tail-recursive BTW):
((Y
(fn [power]
(fn [number exponent]
(if (zero? exponent)
1
(* number (power number (- exponent 1)))))))
5 3)
> 125
fn takes an optional name argument that can be used to call the function recursively.
E.g.:
user> ((fn fact [x]
(if (= x 0)
1
(* x (fact (dec x)))))
5)
;; ==> 120
Yes you can use loop for this. recur works in both loops and fns
user> (loop [result 5 x 1] (if (= x 3) result (recur (* result 5) (inc x))))
125
an idomatic clojure solution looks like this:
user> (reduce * (take 3 (repeat 5)))
125
or uses Math.pow() ;-)
user> (java.lang.Math/pow 5 3)
125.0
loop can be a recur target, so you could do it with that too.

Tail Recursive counting function in Scheme

The function is supposed to be tail-recursive and count from 1 to the specified number. I think I'm fairly close. Here's what I have:
(define (countup l)
(if (= 1 l)
(list l)
(list
(countup (- l 1))
l
)
)
)
However, this obviously returns a list with nested lists. I've attempted to use the append function instead of the second list to no avail. Any guidance?
Here's an incorrect solution:
(define (countup n)
(define (help i)
(if (<= i n)
(cons i (help (+ i 1)))
'()))
(help 1))
This solution:
uses a helper function
recurses over the numbers from 1 to n, cons-ing them onto an ever-growing list
Why is this wrong? It's not really tail-recursive, because it creates a big long line of cons calls which can't be evaluated immediately. This would cause a stack overflow for large enough values of n.
Here's a better way to approach this problem:
(define (countup n)
(define (help i nums)
(if (> i 0)
(help (- i 1)
(cons i nums))
nums)))
(help n '()))
Things to note:
this solution is better because the calls to cons can be evaluated immediately, so this function is a candidate for tail-recursion optimization (TCO), in which case stack space won't be a problem.
help recurses over the numbers backwards, thus avoiding the need to use append, which can be quite expensive
You should use an auxiliar function for implementing a tail-recursive solution for this problem (a "loop" function), and use an extra parameter for accumulating the answer. Something like this:
(define (countup n)
(loop n '()))
(define (loop i acc)
(if (zero? i)
acc
(loop (sub1 i) (cons i acc))))
Alternatively, you could use a named let. Either way, the solution is tail-recursive and a parameter is used for accumulating values, notice that the recursion advances backwards, starting at n and counting back to 0, consing each value in turn at the beginning of the list:
(define (countup n)
(let loop ((i n)
(acc '()))
(if (zero? i)
acc
(loop (sub1 i) (cons i acc)))))
Here a working version of your code that returns a list in the proper order (I replaced l by n):
(define (countup n)
(if (= 1 n)
(list n)
(append (countup (- n 1)) (list n))))
Sadly, there is a problem with this piece of code: it is not tail-recursive. The reason is that the recursive call to countup is not in a tail position. It is not in tail position because I'm doing an append of the result of (countup (- l 1)), so the tail call is append (or list when n = 1) and not countup. This means this piece of code is a normal recusrive function but to a tail-recursive function.
Check this link from Wikipedia for a better example on why it is not tail-recusrive.
To make it tail-recursive, you would need to have an accumulator responsible of accumulating the counted values. This way, you would be able to put the recursive function call in a tail position. See the difference in the link I gave you.
Don't hesitate to reply if you need further details.
Assuming this is for a learning exercise and you want this kind of behaviour:
(countup 5) => (list 1 2 3 4 5)
Here's a hint - in a tail-recursive function, the call in tail position should be to itself (unless it is the edge case).
Since countup doesn't take a list of numbers, you will need an accumulator function that takes a number and a list, and returns a list.
Here is a template:
;; countup : number -> (listof number)
(define (countup l)
;; countup-acc : number, (listof number) -> (listof number)
(define (countup-acc c ls)
(if ...
...
(countup-acc ... ...)))
(countup-acc l null))
In the inner call to countup-acc, you will need to alter the argument that is checked for in the edge case to get it closer to that edge case, and you will need to alter the other argument to get it closer to what you want to return in the end.

In Scheme, how do you use lambda to create a recursive function?

I'm in a Scheme class and I was curious about writing a recursive function without using define. The main problem, of course, is that you cannot call a function within itself if it doesn't have a name.
I did find this example: It's a factorial generator using only lambda.
((lambda (x) (x x))
(lambda (fact-gen)
(lambda (n)
(if (zero? n)
1
(* n ((fact-gen fact-gen) (sub1 n)))))))
But I can't even make sense of the first call, (lambda (x) (x x)): What exactly does that do? And where do you input the value you want to get the factorial of?
This is not for the class, this is just out of curiosity.
(lambda (x) (x x)) is a function that calls an argument, x, on itself.
The whole block of code you posted results in a function of one argument. You could call it like this:
(((lambda (x) (x x))
(lambda (fact-gen)
(lambda (n)
(if (zero? n)
1
(* n ((fact-gen fact-gen) (sub1 n)))))))
5)
That calls it with 5, and returns 120.
The easiest way to think about this at a high level is that the first function, (lambda (x) (x x)), is giving x a reference to itself so now x can refer to itself, and hence recurse.
The expression (lambda (x) (x x)) creates a function that, when evaluated with one argument (which must be a function), applies that function with itself as an argument.
Your given expression evaluates to a function that takes one numeric argument and returns the factorial of that argument. To try it:
(let ((factorial ((lambda (x) (x x))
(lambda (fact-gen)
(lambda (n)
(if (zero? n)
1
(* n ((fact-gen fact-gen) (sub1 n)))))))))
(display (factorial 5)))
There are several layers in your example, it's worthwhile to work through step by step and carefully examine what each does.
Basically what you have is a form similar to the Y combinator. If you refactored out the factorial specific code so that any recursive function could be implemented, then the remaining code would be the Y combinator.
I have gone through these steps myself for better understanding.
https://gist.github.com/z5h/238891
If you don't like what I've written, just do some googleing for Y Combinator (the function).
(lambda (x) (x x)) takes a function object, then invokes that object using one argument, the function object itself.
This is then called with another function, which takes that function object under the parameter name fact-gen. It returns a lambda that takes the actual argument, n. This is how the ((fact-gen fact-gen) (sub1 n)) works.
You should read the sample chapter (Chapter 9) from The Little Schemer if you can follow it. It discusses how to build functions of this type, and ultimately extracting this pattern out into the Y combinator (which can be used to provide recursion in general).
You define it like this:
(let ((fact #f))
(set! fact
(lambda (n) (if (< n 2) 1
(* n (fact (- n 1))))))
(fact 5))
which is how letrec really works. See LiSP by Christian Queinnec.
In the example you're asking about, the self-application combinator is called "U combinator",
(let ((U (lambda (x) (x x)))
(h (lambda (g)
(lambda (n)
(if (zero? n)
1
(* n ((g g) (sub1 n))))))))
((U h) 5))
The subtlety here is that, because of let's scoping rules, the lambda expressions can not refer to the names being defined.
When ((U h) 5) is called, it is reduced to ((h h) 5) application, inside the environment frame created by the let form.
Now the application of h to h creates new environment frame in which g points to h in the environment above it:
(let ((U (lambda (x) (x x)))
(h (lambda (g)
(lambda (n)
(if (zero? n)
1
(* n ((g g) (sub1 n))))))))
( (let ((g h))
(lambda (n)
(if (zero? n)
1
(* n ((g g) (sub1 n))))))
5))
The (lambda (n) ...) expression here is returned from inside that environment frame in which g points to h above it - as a closure object. I.e. a function of one argument, n, which also remembers the bindings for g, h, and U.
So when this closure is called, n gets assigned 5, and the if form is entered:
(let ((U (lambda (x) (x x)))
(h (lambda (g)
(lambda (n)
(if (zero? n)
1
(* n ((g g) (sub1 n))))))))
(let ((g h))
(let ((n 5))
(if (zero? n)
1
(* n ((g g) (sub1 n)))))))
The (g g) application gets reduced into (h h) application because g points to h defined in the environment frame above the environment in which the closure object was created. Which is to say, up there, in the top let form. But we've already seen the reduction of (h h) call, which created the closure i.e. the function of one argument n, serving as our factorial function, which on the next iteration will be called with 4, then 3 etc.
Whether it will be a new closure object or same closure object will be reused, depends on a compiler. This can have an impact on performance, but not on semantics of the recursion.
I like this question. 'The scheme programming language' is a good book. My idea is from Chapter 2 of that book.
First, we know this:
(letrec ((fact (lambda (n) (if (= n 1) 1 (* (fact (- n 1)) n))))) (fact 5))
With letrec we can make functions recursively. And we see when we call (fact 5), fact is already bound to a function. If we have another function, we can call it this way (another fact 5), and now another is called binary function (my English is not good, sorry). We can define another as this:
(let ((another (lambda (f x) .... (f x) ...))) (another fact 5))
Why not we define fact this way?
(let ((fact (lambda (f n) (if (= n 1) 1 (* n (f f (- n 1))))))) (fact fact 5))
If fact is a binary function, then it can be called with a function f and integer n, in which case function f happens to be fact itself.
If you got all the above, you could write Y combinator now, making a substitution of let with lambda.
With a single lambda it's not possible. But using two or more lambda's it is possible. As, all other solutions are using three lambdas or let/letrec, I'm going to explain the method using two lambdas:
((lambda (f x)
(f f x))
(lambda (self n)
(if (= n 0)
1
(* n (self self (- n 1)))))
5)
And the output is 120.
Here,
(lambda (f x) (f f x)) produces a lambda that takes two arguments, the first one is a lambda(lets call it f) and the second is the parameter(let's call it x). Notice, in its body it calls the provided lambda f with f and x.
Now, lambda f(from point 1) i.e. self is what we want to recurse. See, when calling self recursively, we also pass self as the first argument and (- n 1) as the second argument.
I was curious about writing a recursive function without using define.
The main problem, of course, is that you cannot call a function within
itself if it doesn't have a name.
A little off-topic here, but seeing the above statements I just wanted to let you know that "without using define" does not mean "doesn't have a name". It is possible to give something a name and use it recursively in Scheme without define.
(letrec
((fact
(lambda (n)
(if (zero? n)
1
(* n (fact (sub1 n)))))))
(fact 5))
It would be more clear if your question specifically says "anonymous recursion".
I found this question because I needed a recursive helper function inside a macro, where one can't use define.
One wants to understand (lambda (x) (x x)) and the Y-combinator, but named let gets the job done without scaring off tourists:
((lambda (n)
(let sub ((i n) (z 1))
(if (zero? i)
z
(sub (- i 1) (* z i)) )))
5 )
One can also put off understanding (lambda (x) (x x)) and the Y-combinator, if code like this suffices. Scheme, like Haskell and the Milky Way, harbors a massive black hole at its center. Many a formerly productive programmer gets entranced by the mathematical beauty of these black holes, and is never seen again.

Resources