I'm in a Scheme class and I was curious about writing a recursive function without using define. The main problem, of course, is that you cannot call a function within itself if it doesn't have a name.
I did find this example: It's a factorial generator using only lambda.
((lambda (x) (x x))
(lambda (fact-gen)
(lambda (n)
(if (zero? n)
1
(* n ((fact-gen fact-gen) (sub1 n)))))))
But I can't even make sense of the first call, (lambda (x) (x x)): What exactly does that do? And where do you input the value you want to get the factorial of?
This is not for the class, this is just out of curiosity.
(lambda (x) (x x)) is a function that calls an argument, x, on itself.
The whole block of code you posted results in a function of one argument. You could call it like this:
(((lambda (x) (x x))
(lambda (fact-gen)
(lambda (n)
(if (zero? n)
1
(* n ((fact-gen fact-gen) (sub1 n)))))))
5)
That calls it with 5, and returns 120.
The easiest way to think about this at a high level is that the first function, (lambda (x) (x x)), is giving x a reference to itself so now x can refer to itself, and hence recurse.
The expression (lambda (x) (x x)) creates a function that, when evaluated with one argument (which must be a function), applies that function with itself as an argument.
Your given expression evaluates to a function that takes one numeric argument and returns the factorial of that argument. To try it:
(let ((factorial ((lambda (x) (x x))
(lambda (fact-gen)
(lambda (n)
(if (zero? n)
1
(* n ((fact-gen fact-gen) (sub1 n)))))))))
(display (factorial 5)))
There are several layers in your example, it's worthwhile to work through step by step and carefully examine what each does.
Basically what you have is a form similar to the Y combinator. If you refactored out the factorial specific code so that any recursive function could be implemented, then the remaining code would be the Y combinator.
I have gone through these steps myself for better understanding.
https://gist.github.com/z5h/238891
If you don't like what I've written, just do some googleing for Y Combinator (the function).
(lambda (x) (x x)) takes a function object, then invokes that object using one argument, the function object itself.
This is then called with another function, which takes that function object under the parameter name fact-gen. It returns a lambda that takes the actual argument, n. This is how the ((fact-gen fact-gen) (sub1 n)) works.
You should read the sample chapter (Chapter 9) from The Little Schemer if you can follow it. It discusses how to build functions of this type, and ultimately extracting this pattern out into the Y combinator (which can be used to provide recursion in general).
You define it like this:
(let ((fact #f))
(set! fact
(lambda (n) (if (< n 2) 1
(* n (fact (- n 1))))))
(fact 5))
which is how letrec really works. See LiSP by Christian Queinnec.
In the example you're asking about, the self-application combinator is called "U combinator",
(let ((U (lambda (x) (x x)))
(h (lambda (g)
(lambda (n)
(if (zero? n)
1
(* n ((g g) (sub1 n))))))))
((U h) 5))
The subtlety here is that, because of let's scoping rules, the lambda expressions can not refer to the names being defined.
When ((U h) 5) is called, it is reduced to ((h h) 5) application, inside the environment frame created by the let form.
Now the application of h to h creates new environment frame in which g points to h in the environment above it:
(let ((U (lambda (x) (x x)))
(h (lambda (g)
(lambda (n)
(if (zero? n)
1
(* n ((g g) (sub1 n))))))))
( (let ((g h))
(lambda (n)
(if (zero? n)
1
(* n ((g g) (sub1 n))))))
5))
The (lambda (n) ...) expression here is returned from inside that environment frame in which g points to h above it - as a closure object. I.e. a function of one argument, n, which also remembers the bindings for g, h, and U.
So when this closure is called, n gets assigned 5, and the if form is entered:
(let ((U (lambda (x) (x x)))
(h (lambda (g)
(lambda (n)
(if (zero? n)
1
(* n ((g g) (sub1 n))))))))
(let ((g h))
(let ((n 5))
(if (zero? n)
1
(* n ((g g) (sub1 n)))))))
The (g g) application gets reduced into (h h) application because g points to h defined in the environment frame above the environment in which the closure object was created. Which is to say, up there, in the top let form. But we've already seen the reduction of (h h) call, which created the closure i.e. the function of one argument n, serving as our factorial function, which on the next iteration will be called with 4, then 3 etc.
Whether it will be a new closure object or same closure object will be reused, depends on a compiler. This can have an impact on performance, but not on semantics of the recursion.
I like this question. 'The scheme programming language' is a good book. My idea is from Chapter 2 of that book.
First, we know this:
(letrec ((fact (lambda (n) (if (= n 1) 1 (* (fact (- n 1)) n))))) (fact 5))
With letrec we can make functions recursively. And we see when we call (fact 5), fact is already bound to a function. If we have another function, we can call it this way (another fact 5), and now another is called binary function (my English is not good, sorry). We can define another as this:
(let ((another (lambda (f x) .... (f x) ...))) (another fact 5))
Why not we define fact this way?
(let ((fact (lambda (f n) (if (= n 1) 1 (* n (f f (- n 1))))))) (fact fact 5))
If fact is a binary function, then it can be called with a function f and integer n, in which case function f happens to be fact itself.
If you got all the above, you could write Y combinator now, making a substitution of let with lambda.
With a single lambda it's not possible. But using two or more lambda's it is possible. As, all other solutions are using three lambdas or let/letrec, I'm going to explain the method using two lambdas:
((lambda (f x)
(f f x))
(lambda (self n)
(if (= n 0)
1
(* n (self self (- n 1)))))
5)
And the output is 120.
Here,
(lambda (f x) (f f x)) produces a lambda that takes two arguments, the first one is a lambda(lets call it f) and the second is the parameter(let's call it x). Notice, in its body it calls the provided lambda f with f and x.
Now, lambda f(from point 1) i.e. self is what we want to recurse. See, when calling self recursively, we also pass self as the first argument and (- n 1) as the second argument.
I was curious about writing a recursive function without using define.
The main problem, of course, is that you cannot call a function within
itself if it doesn't have a name.
A little off-topic here, but seeing the above statements I just wanted to let you know that "without using define" does not mean "doesn't have a name". It is possible to give something a name and use it recursively in Scheme without define.
(letrec
((fact
(lambda (n)
(if (zero? n)
1
(* n (fact (sub1 n)))))))
(fact 5))
It would be more clear if your question specifically says "anonymous recursion".
I found this question because I needed a recursive helper function inside a macro, where one can't use define.
One wants to understand (lambda (x) (x x)) and the Y-combinator, but named let gets the job done without scaring off tourists:
((lambda (n)
(let sub ((i n) (z 1))
(if (zero? i)
z
(sub (- i 1) (* z i)) )))
5 )
One can also put off understanding (lambda (x) (x x)) and the Y-combinator, if code like this suffices. Scheme, like Haskell and the Milky Way, harbors a massive black hole at its center. Many a formerly productive programmer gets entranced by the mathematical beauty of these black holes, and is never seen again.
Related
im currently writing a compiler in OCaml for a subset of scheme and am having trouble understanding how to compile with continuations. I found some great resources, namely:
The cps slides of the cmsu compiler course:
https://www.cs.umd.edu/class/fall2017/cmsc430/
This explanation of another cs course:
https://www.cs.utah.edu/~mflatt/past-courses/cs6520/public_html/s02/cps.pdf
Matt Mights posts on a-normal form and cps:
http://matt.might.net/articles/a-normalization/ and
http://matt.might.net/articles/cps-conversion/
Using the anormal transformation introduced in the anormal-paper, I now have code where function calls are either bound to a variable or returned.
Example:
(define (fib n)
(if (<= n 1)
n
(+ (fib (- n 1))
(fib (- n 2)))))
becomes:
(define (fib n)
(let ([c (<= n 1)])
(if c
n
(let ([n-1 (- n 1)])
(let ([v0 (fib n-1)])
(let ([n-2 (- n 2)])
(let ([v1 (fib n-2)])
(+ v0 v1)))))))
In order to cps-transform, I now have to:
add cont-parameters to all non-primitive functions
call the cont-parameter on tail-positions
transform all non-primitive function calls, so that they escape the let-binding and become an extra lambda with the previous let-bound variable as sole argument and the previous let-body
as the body
The result would look like:
(define (fib n k)
(let ([c (<= n 1)])
(if c
(k n)
(let ([n-1 (- n 1)])
(fib n-1
(lambda (v0)
(let ([n-2 (- n 2)])
(fib n-2
(lambda (v1)
(k (+ v0 v1))))))))))
Is this correct?
The csmu-course also talks about how Programs in CPS require no stack and never return. Is that because we don't need to to save the adresses to return to and closures as well as other datatypes are stored on the heap and references are kept alive by using the closures?
The csmu also talks about desugaring of call/cc:
(call/cc) => ((lambda (k f) (f k k)))
when using such desugaring, how does:
(+ 2 (call/cc (lambda (k) (k 2))))
in MIT-Scheme return 4, since the current continuation would probably be something like display?
is this correct?
(define (fib n k)
(let ([c (<= n 1)])
(if c
(k n)
(let ([n-1 (- n 1)])
(fib n-1
(lambda (v0)
(let ([n-2 (- n 2)])
(fib n-2
(lambda (v1)
(k (+ v0 v1))))))))))
you get an A+ 💯
The csmu-course also talks about how Programs in CPS require no stack and never return. Is that because we don't need to to save the addresses to return to and closures as well as other datatypes are stored on the heap and references are kept alive by using the closures?
Exactly! See Chicken Complilation Process for an in-depth read about such a technique.
The csmu also talks about desugaring of call/cc:
(call/cc) => ((lambda (k f) (f k k)))
That doesn't look quite right. Here's a desugar of call/cc from Matt Might -
call/cc => (lambda (f cc) (f (lambda (x k) (cc x)) cc))
The essence of the idea of compiling with continuations is that you want to put an order on the evaluation of arguments passed to each function and after you evaluate that argument you send its value to the continuation passed.
It is required for the language in which you rewrite the code in CPS form to be tail recursive, otherwise it will stack empty frames, followed only by a return. If the implementation language does not impose tail-recursion you need to apply more sophisticated methods to get non-growing stack for cps code.
Take care, if you do it, you also need to change the signature of the primitives. The primitives will also be passed a continuation but they return immediately the answer in the passed continuation, they do not create other continuations.
The best reference about understanding how to compile with continuations remains the book of Andrew W. Appel and you need nothing more.
I'm studying for a Christmas test and doing some sample exam questions, I've come across this one that has me a bit stumped
I can do regular recursion fine, but I can't wrap my head around how to write the same thing using tail recursion.
Regular version:
(define (factorial X)
(cond
((eqv? X 1) 1)
((number? X)(* X (factorial (- X 1))))))
For a function to be tail recursive, there must be nothing to do after the function returns except return its value. That is, the last thing that happens in the recursive step is the call to the function itself. This is generally achieved by using an accumulator parameter for keeping track of the answer:
(define (factorial x acc)
(if (zero? x)
acc
(factorial (sub1 x) (* x acc))))
The above procedure will be initially called with 1 as accumulator, like this:
(factorial 10 1)
=> 3628800
Notice that the accumulated value gets returned when the base case is reached, and that the acc parameter gets updated at each point in the recursive call. I had to add one extra parameter to the procedure, but this can be avoided by defining an inner procedure or a named let, for example:
(define (factorial x)
(let loop ((x x)
(acc 1))
(if (zero? x)
acc
(loop (sub1 x) (* x acc)))))
I've built a recursive function in scheme, which will repeat a given function f, n times on some input.
(define (recursive-repeated f n)
(cond ((zero? n) identity)
((= n 1) f)
(else (compose f (recursive-repeated f (- n 1))))))
I need to build an iterative version of this function with tail recursion, which I think I've done right if I understand tail recursion correctly.
(define (iter-repeated f n)
(define (iter count total)
(if (= count 0)
total
(iter (- count 1) (compose f total))))
(iter n identity))
My question is, is this actually iterative? I believe I have it built correctly using tail recursion, but it's still technically deferring a bunch of operations until count = 0, where it executes however many compositions it's stacked up.
You pose a good question. You went from a recursive process (recursive-repeated) which builds a recursive process ((f (f (f ...)))) to an iterative process (iter-repeated) that builds the same recursive process.
You're right in thinking that you've basically done the same thing because the end result is the same. You just constructed the same chain in two different ways. This is the "consequence" of using compose in your implementation.
Consider this approach
(define (repeat n f)
(λ (x)
(define (iter n x)
(if (zero? n)
x
(iter (- n 1) (f x))))
(iter n x)))
Here, instead of building up an entire chain of function calls ahead of time, we'll return a single lambda that waits for the input argument. When the input argument is specified, we will loop inside the lambda in an iterative way for n times.
Let's see it work
(define (add1 x) (+ x 1))
;; apply add1 5 times to 3
(print ((repeat 5 add1) 3)) ;; → 8
I'm studying for a Christmas test and doing some sample exam questions, I've come across this one that has me a bit stumped
I can do regular recursion fine, but I can't wrap my head around how to write the same thing using tail recursion.
Regular version:
(define (factorial X)
(cond
((eqv? X 1) 1)
((number? X)(* X (factorial (- X 1))))))
For a function to be tail recursive, there must be nothing to do after the function returns except return its value. That is, the last thing that happens in the recursive step is the call to the function itself. This is generally achieved by using an accumulator parameter for keeping track of the answer:
(define (factorial x acc)
(if (zero? x)
acc
(factorial (sub1 x) (* x acc))))
The above procedure will be initially called with 1 as accumulator, like this:
(factorial 10 1)
=> 3628800
Notice that the accumulated value gets returned when the base case is reached, and that the acc parameter gets updated at each point in the recursive call. I had to add one extra parameter to the procedure, but this can be avoided by defining an inner procedure or a named let, for example:
(define (factorial x)
(let loop ((x x)
(acc 1))
(if (zero? x)
acc
(loop (sub1 x) (* x acc)))))
I was going through Structure and interpretation of computer programming by Brain harvey. I came across this question which i could not figure out how to do it.
How do we write recursive procedure with lambda in Scheme?
TL;DR: Use named let (if you are executing a recursive function immediately) or rec (if you are saving the recursive function for later execution).
The usual way is with letrec, or something that uses a letrec behind the scenes, like named let or rec. Here's a version of (factorial 10) using letrec:
(letrec ((factorial (lambda (x)
(if (< x 1) 1
(* (factorial (- x 1)) x)))))
(factorial 10))
And the same thing using named let:
(let factorial ((x 10))
(if (< x 1) 1
(* (factorial (- x 1)) x)))
The key understanding here is that both versions are exactly the same. A named let is just a macro that expands to the letrec form. So because the named let version is shorter, that is usually the preferred way to write a recursive function.
Now, you might ask, what if you want to return the recursive function object directly, rather than execute it? There, too, you can use letrec:
(letrec ((factorial (lambda (x)
(if (< x 1) 1
(* (factorial (- x 1)) x)))))
factorial)
There, too, is a shorthand for this, although not using named let, but instead using rec:
(rec (factorial x)
(if (< x 1) 1
(* (factorial (- x 1)) x)))
The nice thing about using rec here is that you can assign the function object to a variable and execute it later.
(define my-fact (rec (factorial x)
(if (< x 1) 1
(* (factorial (- x 1)) x))))
(my-fact 10) ; => 3628800
The more theoretical and "pure" way to create recursive functions is to use a Y combinator. :-) But most practical Scheme programs do not use this approach, so I won't discuss it further.
No need to write factorial body twice ;)
(((lambda (f)
(lambda (x)
(f f x)))
(lambda (fact x)
(if (= x 0) 1 (* x (fact fact (- x 1)))))) 5)
Here is a recursive function that calculates the factorial of 5 using lambda
((lambda (f x)
(if (= x 0)
1
(* x (f f (- x 1)))))
(lambda (f x)
(if (= x 0)
1
(* x (f f (- x 1)))))
5)
When you run this program in Drracket you get 120 :)