Related
I have this data: (Design contains several tissues and the ones I'll need to consider are pancreas and lung)
head(Design)
Individual sex age RNA.quality..max10. organ tissue
GTEX-Y5V6-0526-SM-4VBRV GTEX-Y5V6 1 60-69 7.1 Thyroid Thyroid
GTEX-1KXAM-1726-SM-D3LAE GTEX-1KXAM 1 60-69 8.1 Thyroid Thyroid
GTEX-18A67-0826-SM-7KFTI GTEX-18A67 1 50-59 7.2 Thyroid Thyroid
GTEX-14BMU-0226-SM-5S2QA GTEX-14BMU 2 20-29 7.2 Thyroid Thyroid
GTEX-13PVR-0626-SM-5S2RC GTEX-13PVR 2 60-69 7.3 Thyroid Thyroid
GTEX-1211K-0726-SM-5FQUW GTEX-1211K 2 60-69 7.0 Thyroid Thyroid
dput(counts[1:10,])
structure(list(`GTEX-Y5V6-0526-SM-4VBRV` = c(0L, 1L, 2L, 1L,
0L, 0L, 0L, 0L, 0L, 214L), `GTEX-1KXAM-1726-SM-D3LAE` = c(0L,
0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 205L), `GTEX-18A67-0826-SM-7KFTI` = c(0L,
0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 164L), `GTEX-14BMU-0226-SM-5S2QA` = c(0L,
0L, 0L, 12L, 0L, 0L, 0L, 0L, 0L, 108L), `GTEX-13PVR-0626-SM-5S2RC` = c(0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 100L), `GTEX-1211K-0726-SM-5FQUW` = c(0L,
0L, 0L, 2L, 0L, 0L, 1L, 0L, 0L, 174L), `GTEX-1KXAM-0926-SM-CXZKA` = c(2L,
1L, 2L, 2L, 0L, 0L, 0L, 0L, 0L, 99L), `GTEX-18A67-2626-SM-718AD` = c(7L,
3L, 7L, 2L, 0L, 1L, 5L, 0L, 0L, 116L), `GTEX-14BMU-1126-SM-5RQJ8` = c(0L,
0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 44L), `GTEX-1211K-1426-SM-5FQTF` = c(4L,
0L, 5L, 2L, 0L, 0L, 0L, 0L, 0L, 143L), `GTEX-11TT1-0726-SM-5GU5A` = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 57L), `GTEX-1HCUA-1626-SM-A9SMG` = c(0L,
0L, 0L, 22L, 0L, 0L, 0L, 0L, 0L, 53L), `GTEX-1KXAM-0226-SM-EV7AP` = c(0L,
0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 75L), `GTEX-18A67-1726-SM-7KFT9` = c(0L,
0L, 2L, 1L, 0L, 0L, 0L, 0L, 0L, 73L), `GTEX-14BMU-0726-SM-73KXS` = c(0L,
0L, 0L, 40L, 0L, 0L, 0L, 0L, 0L, 74L), `GTEX-13PVR-0726-SM-5S2PX` = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 54L), `GTEX-1211K-1126-SM-5EGGB` = c(0L,
1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 25L), `GTEX-11TT1-0326-SM-5LUAY` = c(0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 54L), `GTEX-1KXAM-2426-SM-DIPFC` = c(1L,
0L, 2L, 1L, 0L, 0L, 2L, 0L, 0L, 29L), `GTEX-18A67-0326-SM-7LG5X` = c(0L,
0L, 5L, 4L, 0L, 0L, 2L, 0L, 1L, 91L), `GTEX-14BMU-2026-SM-5S2W6` = c(0L,
0L, 2L, 5L, 0L, 0L, 0L, 0L, 0L, 30L), `GTEX-13PVR-2526-SM-5RQIT` = c(0L,
0L, 2L, 1L, 0L, 0L, 0L, 0L, 0L, 14L), `GTEX-1211K-2126-SM-59HJZ` = c(1L,
0L, 2L, 0L, 0L, 0L, 1L, 0L, 0L, 51L), `GTEX-Y3I4-2326-SM-4TT81` = c(0L,
0L, 3L, 0L, 0L, 0L, 1L, 0L, 0L, 38L), `GTEX-1KXAM-0426-SM-DHXKG` = c(0L,
0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 105L), `GTEX-18A67-1126-SM-7KFSB` = c(1L,
0L, 0L, 4L, 0L, 0L, 1L, 0L, 0L, 76L), `GTEX-14BMU-0526-SM-73KW4` = c(0L,
0L, 0L, 11L, 0L, 0L, 0L, 0L, 0L, 53L), `GTEX-1211K-0826-SM-5FQUP` = c(1L,
0L, 0L, 2L, 0L, 0L, 1L, 0L, 0L, 104L), `GTEX-11TT1-1626-SM-5EQL7` = c(0L,
0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 113L), `GTEX-ZYFG-0226-SM-5GIDT` = c(1L,
0L, 2L, 2L, 0L, 0L, 2L, 0L, 0L, 54L), `GTEX-1KXAM-0826-SM-CXZK9` = c(0L,
0L, 0L, 5L, 0L, 0L, 2L, 0L, 0L, 97L), `GTEX-18A67-2426-SM-7LT95` = c(1L,
0L, 2L, 0L, 0L, 1L, 3L, 0L, 0L, 69L), `GTEX-14BMU-0926-SM-5S2QB` = c(0L,
0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 29L), `GTEX-13PVR-1826-SM-5Q5CC` = c(1L,
0L, 0L, 3L, 0L, 1L, 2L, 0L, 0L, 32L), `GTEX-1211K-0926-SM-5FQTL` = c(0L,
0L, 0L, 3L, 0L, 0L, 1L, 0L, 0L, 99L), `GTEX-11TT1-0526-SM-5P9JO` = c(0L,
1L, 2L, 4L, 0L, 0L, 2L, 0L, 0L, 52L), `GTEX-1KXAM-0726-SM-E9U5I` = c(0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 45L), `GTEX-18A67-2526-SM-7LG5Z` = c(1L,
0L, 2L, 0L, 0L, 0L, 1L, 0L, 0L, 91L), `GTEX-14BMU-1026-SM-5RQJ5` = c(1L,
0L, 1L, 8L, 0L, 0L, 0L, 0L, 0L, 47L), `GTEX-13PVR-2026-SM-73KXT` = c(0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 27L), `GTEX-1211K-1326-SM-5FQV2` = c(0L,
0L, 3L, 0L, 0L, 0L, 1L, 1L, 0L, 57L), `GTEX-11TT1-0626-SM-5GU4X` = c(1L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 90L), `GTEX-ZYFG-1826-SM-5GZWX` = c(0L,
0L, 3L, 2L, 0L, 0L, 2L, 0L, 0L, 91L), `GTEX-1KXAM-1926-SM-D3LAG` = c(0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 103L), `GTEX-18A67-2226-SM-7LT9Z` = c(0L,
0L, 2L, 2L, 0L, 0L, 1L, 0L, 1L, 157L), `GTEX-13PVR-1726-SM-5Q5EC` = c(1L,
0L, 2L, 0L, 0L, 0L, 1L, 0L, 0L, 34L), `GTEX-1211K-1826-SM-5EGJ2` = c(0L,
0L, 1L, 3L, 0L, 0L, 0L, 0L, 0L, 49L), `GTEX-11TT1-0926-SM-5GU5M` = c(0L,
2L, 0L, 3L, 1L, 0L, 0L, 0L, 1L, 49L), `GTEX-1KXAM-1026-SM-CY8IA` = c(0L,
0L, 1L, 3L, 0L, 0L, 0L, 0L, 0L, 93L), `GTEX-14BMU-1626-SM-5TDE7` = c(0L,
1L, 3L, 13L, 0L, 0L, 1L, 0L, 0L, 84L), `GTEX-13PVR-2226-SM-7DHKP` = c(0L,
0L, 2L, 2L, 0L, 0L, 0L, 0L, 0L, 75L), `GTEX-1211K-1926-SM-5EQLB` = c(0L,
1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 114L), `GTEX-11TT1-2126-SM-5GU5Y` = c(2L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 49L), `GTEX-ZT9W-2026-SM-51MRA` = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 70L), `GTEX-1KXAM-2326-SM-CYPTD` = c(0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 20L), `GTEX-18A67-0226-SM-7LG67` = c(0L,
0L, 5L, 2L, 0L, 0L, 1L, 0L, 0L, 94L), `GTEX-14BMU-2126-SM-5S2TS` = c(0L,
0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 50L), `GTEX-13PVR-2426-SM-5RQHN` = c(0L,
0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 59L), `GTEX-1211K-2226-SM-5FQU6` = c(0L,
0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 81L), `GTEX-11TT1-2426-SM-5EQMK` = c(0L,
1L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 60L)), row.names = c("ENSG00000243485",
"ENSG00000237613", "ENSG00000186092", "ENSG00000238009", "ENSG00000222623",
"ENSG00000241599", "ENSG00000236601", "ENSG00000235146", "ENSG00000223181",
"ENSG00000237491"), class = "data.frame")
I need to create a DGEList with only some of the genes: Pancreas and lung genes (if I am right), in order to do the tasks in the image below: Tasks
I need to do a PCA to check if there's separation among male and female genes, and after I need to do a differential expression analysis with the function exactTest(), and since I need a DGEList for exactTest to compare Pancreas sex1 genes with pancreas sex 2 genes, lungsex1-lungsex2 I suppose that I can do both after creating the DGEList.
In the end my problem is that I dont know how to setup the data.
If you need anything else I'll be here, thank you in advance.
PancreasLungDesign=Design[13:30,1:6]
PancreasLungDesign=PancreasLungDesign[-c(7:12),]
Counts2=counts[,13:30]
Counts2= Counts2[,-(7:12)]
rownames(PancreasLungDesign) == colnames(Counts2)
Expressedgenes2=Counts2>=10
NumExpressedgenes2=apply(Expressedgenes2,1,sum)
FilteredCounts2=Counts2[NumExpressedgenes2>0,]
NumExpressedgenes2=apply(Expressedgenes2,1,sum)
FilteredCounts2=Counts2[NumExpressedgenes2>0,]
y2=DGEList(counts=FilteredCounts2, group = PancreasLungDesign$tissue)
y2=calcNormFactors(y2)
apply(cpm(y2,normalized.lib.sizes = T),2,sum)
plotMDS(y2,table(PancreasLungDesign$sex),labels = PancreasLungDesign$tissue,col=rep(c("green","green","blue","blue","blue","green","yellow","yellow","red","red","yellow","red")),cex=0.5,main="Principal component analysis sex specific expression")
I've tried to complete an ANOSIM with data on a study I have carried out but I get multiple errors and i'm not sure how to fix it. Most of the errors are "dissimilarities have 24 observations, but grouping has 23". I'm trying to see the similarity in community structure between multiple samples.
my code so far is
setwd()
#load invertebrate data
Invertebrates<- read.csv(file="Invertebrates.csv",head=TRUE,sep=",")
#install packages
install.packages("vegan")
library(vegan)
#make community matrix
com<-Invertebrates[,2:ncol(Invertebrates)]
m_com<-as.matrix(com)
# group by site
group=Invertebrates[,1]
#ANOSIM
invert.ano<-anosim(m_com,group)
Then I get
Error in anosim(m_com, group) : there should be replicates within groups
Thanks for any help
Invertebrates <- structure(list(Site = structure(c(10L, 14L, 6L, 3L, 24L, 12L, 7L, 18L, 1L, 8L, 15L, 5L, 16L, 23L, 4L, 11L, 21L, 19L, 9L, 13L
), .Label = c("Anax parthenope", "Anisus vortex", "Asellus aquaticus",
"Bathyomphalus contortus", "Bithynia leachii", "Bithynia tentaculata",
"Coenagrion pulchellum", "Corixa punctata", "Dytiscus marginalis",
"Gammarus pulex", "Gyraulus albus", "Haliplus fluviatilis", "Haplotaxis gordioides",
"Ilyocoris cimicoides", "Lymnaea stagnalis", "Lymnaea truncatula",
"Oxygastra curtisii", "Physa fontilnalis", "Piscicola geometra",
"Planorbis cornatus", "Planorbis planorbis", "Radix ovata", "Radix palustris",
"Sialis lutaria"), class = "factor"), Finglesham.Brook.A = c(112L,
1L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), Betteshanger.Pond.A = c(0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), Betteshanger.Pond.B = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), Great.Mongeham.A = c(7L, 0L, 0L, 2L, 2L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), Site.7.SS.A = c(6L,
0L, 0L, 0L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), Great.Mongeham.B = c(32L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), Broad.dike.A = c(0L,
0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), Broad.dike.B = c(0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), S3.Broad.dike.SS.B = c(14L,
0L, 7L, 6L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), Site.6.NS.B = c(65L, 0L, 0L, 2L, 2L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), Fowlmead.Lake.A = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), Site.7.SS.B = c(0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), Fowlmead.lake.B = c(0L,
0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), Adelaide.NS.A = c(5L, 0L, 3L, 6L, 2L, 0L, 0L, 0L,
0L, 0L, 2L, 6L, 4L, 1L, 1L, 6L, 4L, 0L, 0L, 0L), Little.Downs.Bridge.B = c(48L,
8L, 0L, 23L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 18L, 0L, 2L, 0L, 1L,
0L, 1L, 0L, 0L), Finglesham.Brook.B = c(78L, 0L, 3L, 15L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 2L),
Adelaide.SS.A = c(8L, 0L, 0L, 33L, 9L, 0L, 0L, 0L, 0L, 0L,
0L, 12L, 0L, 4L, 19L, 7L, 4L, 0L, 2L, 0L), Adelaide.SS.B = c(4L,
0L, 20L, 9L, 2L, 0L, 0L, 0L, 0L, 0L, 7L, 0L, 0L, 0L, 14L,
0L, 1L, 0L, 0L, 0L), Ham.Fen.SS = c(1L, 0L, 0L, 6L, 3L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L),
Adelaide.NS.B = c(3L, 0L, 0L, 8L, 0L, 6L, 1L, 0L, 0L, 2L,
0L, 0L, 0L, 0L, 0L, 0L, 12L, 0L, 1L, 0L), Site.6.NS.A = c(58L,
0L, 0L, 2L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L), S3.Broad.dike.SS.A = c(24L, 0L, 0L, 50L,
0L, 0L, 3L, 13L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L), Little.Downs.Bridge.A = c(10L, 16L, 23L, 46L, 0L,
0L, 2L, 0L, 0L, 4L, 0L, 0L, 0L, 0L, 4L, 0L, 5L, 0L, 0L, 0L
)), row.names = c(NA, 20L), class = "data.frame")
If you run
table(Invertebrates$Site)
you will see that there you're grouping variable is not actually grouping anything. That is, there is maximum one observation per group. But ANOSIM requires the data to be grouped.
If I just make up a random grouping variable, like this:
Invertebrates$Group <- sample(c(1,2), nrow(Invertebrates), replace = TRUE)
and rerun your analysis:
Invertebrates$Group <- sample(c(1,2), nrow(Invertebrates), replace = TRUE)
group <- Invertebrates[, "Group"]
invert.ano <- anosim(m_com, group)
It works!
I am trying to experiment with multiple correspondence analysis (MCA) on a dataset containing integer and factor classes. Naturally, looking at the FactoMineR docs I thought MCA would be appropriate. However, I am currently running in to an error that I cannot solve.
Error in which(unlist(lapply(listModa, is.numeric))) :
argument to 'which' is not logical
The truncated output of str is:
'data.frame': 1000 obs. of 115 variables:
$ X1 : int 0 0 0 0 0 0 0 0 0 0 ...
....
$ X98 : int 0 0 0 0 0 0 0 0 0 0 ...
$ X99 : Factor w/ 2 levels "N","Y": 1 1 1 1 1 1 1 1 1 1 ...
$ X100: Factor w/ 3 levels "Head","Unknown",..: 2 2 1 1 1 1 1 2 1 1 ...
$ X101: int 44 67 69 50 61 62 30 59 55 41 ...
$ X102: Factor w/ 5 levels "Female","FEMALE",..: 1 1 1 3 1 3 1 3 1 1 ...
...
$ X115: Factor w/ 93287 levels "","010010201001",..: 35903 1 33052 66760 41187 14553 85711 64424 63119 46155 ...
The dataset is too large to just put on here so I am hoping the structure and description will be sufficient.
I have made sure that the only classes in the columns are integer or factor (the same as the demo tea dataset). I used na.omit to remove any missing data and I make sure the call to MCA has the column indicies passed to the appropriate arguments.
numerics <- as.numeric(which(sapply(df, is.numeric)))
factors <- as.numeric(which(sapply(df, is.factor)))
df.mca <- MCA(df, ncp=5, quanti.sup = numerics, quali.sup = factors, graph=FALSE)
The closest thing I have found is this question but it doesn't really provide a solution for me. I can look at the function but I don't know why my dataset is causing this error in the first place.
Any insight is appreciated.
Edit
Here is a subset of the data via dput
structure(list(X1 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L),
X2 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X3 = c(0L,
0L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 2L, 0L, 0L, 1L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L), X4 = c(0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L), X5 = c(1L, 0L, 0L, 0L, 8L, 4L, 0L,
0L, 0L, 9L, 0L, 8L, 2L, 1L, 1L, 3L, 0L, 0L, 4L, 0L, 9L, 0L,
0L, 2L, 0L), X6 = c(0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
), X7 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L), X8 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X9 = c(0L, 0L, 0L, 0L,
0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L), X10 = c(0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 2L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L), X11 = c(0L, 0L, 4L, 1L, 35L, 3L, 0L, 3L,
4L, 0L, 6L, 2L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 19L, 0L,
3L, 0L, 0L), X12 = c(0L, 0L, 1L, 1L, 2L, 2L, 0L, 2L, 1L,
0L, 1L, 1L, 1L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 13L, 0L, 1L,
0L, 0L), X13 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L
), X14 = c(0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 0L), X15 = c(0L,
0L, 0L, 0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 39L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L), X16 = c(0L, 0L,
1L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X17 = c(0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 2L, 0L, 0L, 0L, 0L), X18 = c(0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L), X19 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L), X20 = c(2L, 0L, 0L, 0L, 11L, 1L, 0L, 0L, 0L, 7L,
5L, 12L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 1L, 26L, 0L, 0L, 0L,
0L), X21 = c(1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L,
0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L),
X22 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X23 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X24 = c(0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 2L, 0L, 0L, 0L, 0L, 0L), X25 = c(0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L), X26 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), X27 = c(5L, 1L, 0L, 2L, 46L, 4L, 0L, 0L, 0L,
3L, 14L, 6L, 1L, 2L, 6L, 0L, 0L, 0L, 4L, 0L, 24L, 0L, 0L,
1L, 2L), X28 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
), X29 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X30 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X31 = c(0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L), X32 = c(0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L), X33 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), X34 = c(0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L), X35 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L),
X36 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X37 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X38 = c(0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 2L, 0L, 0L, 0L, 0L), X39 = c(0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
2L, 0L, 0L, 0L, 0L), X40 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), X41 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L), X42 = c(0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 5L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L),
X43 = c(0L, 3L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L,
0L, 20L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L), X44 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X45 = c(0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L), X46 = c(0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L), X47 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L), X48 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L), X49 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L),
X50 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X51 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X52 = c(0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L), X53 = c(0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L), X54 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), X55 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L), X56 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L),
X57 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X58 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X59 = c(0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L), X60 = c(0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L), X61 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L,
0L, 0L, 0L), X62 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L), X63 = c(0L, 1L, 2L, 0L, 7L, 12L, 0L, 1L, 0L, 8L, 2L,
8L, 1L, 0L, 1L, 0L, 0L, 0L, 12L, 0L, 48L, 0L, 2L, 0L, 0L),
X64 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X65 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X66 = c(0L, 6L, 2L,
4L, 4L, 6L, 0L, 2L, 0L, 0L, 5L, 0L, 22L, 0L, 45L, 0L, 0L,
0L, 0L, 1L, 54L, 0L, 0L, 0L, 0L), X67 = c(0L, 0L, 0L, 0L,
15L, 0L, 0L, 0L, 0L, 0L, 0L, 14L, 0L, 0L, 3L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L), X68 = c(0L, 0L, 0L, 0L, 5L,
1L, 0L, 0L, 0L, 4L, 0L, 2L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L,
9L, 0L, 0L, 3L, 0L), X69 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), X70 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 14L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L), X71 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
), X72 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X73 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X74 = c(0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L), X75 = c(0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 0L), X76 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 10L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L), X77 = c(0L, 0L, 0L, 0L, 0L, 2L, 0L, 2L,
0L, 1L, 0L, 0L, 1L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 0L,
0L, 0L), X78 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
), X79 = c(0L, 1L, 0L, 0L, 24L, 6L, 0L, 3L, 0L, 0L, 7L, 2L,
2L, 1L, 12L, 0L, 0L, 0L, 2L, 3L, 10L, 0L, 0L, 0L, 0L), X80 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X81 = c(0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L,
0L, 0L, 2L, 0L, 0L, 0L, 0L), X82 = c(0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 0L), X83 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L), X84 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L), X85 = c(1L, 0L, 0L, 1L, 3L, 0L, 0L, 1L, 0L, 1L, 3L,
2L, 0L, 0L, 9L, 0L, 0L, 0L, 1L, 0L, 2L, 0L, 0L, 0L, 0L),
X86 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X87 = c(0L,
1L, 0L, 0L, 0L, 6L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 4L, 0L,
0L, 0L, 0L, 2L, 0L, 0L, 0L, 1L, 0L), X88 = c(0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L), X89 = c(0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L), X90 = c(0L, 2L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 24L,
0L, 0L, 1L, 0L), X91 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L), X92 = c(0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 2L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 5L, 0L, 0L, 1L, 0L
), X93 = c(2L, 1L, 0L, 0L, 2L, 5L, 0L, 3L, 0L, 0L, 5L, 0L,
0L, 0L, 4L, 0L, 0L, 0L, 4L, 0L, 7L, 0L, 0L, 0L, 2L), X94 = c(0L,
6L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 0L,
0L, 0L, 0L, 0L, 8L, 0L, 0L, 0L, 0L), X95 = c(0L, 0L, 0L,
0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 3L, 0L), X96 = c(0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L), X97 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L), X98 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L,
0L), X99 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L), .Label = c("N", "Y"), class = "factor"), X100 = structure(c(2L,
2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L), .Label = c("Head", "Unknown"
), class = "factor"), X101 = c(44L, 67L, 69L, 50L, 61L, 62L,
30L, 59L, 55L, 41L, 61L, 69L, 56L, 84L, 75L, 82L, 71L, 60L,
62L, 62L, 68L, 67L, 68L, 53L, 59L), X102 = structure(c(1L,
1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L), .Label = c("Female",
"Male"), class = "factor"), X103 = structure(c(3L, 6L, 6L,
5L, 6L, 9L, 10L, 6L, 6L, 2L, 5L, 6L, 6L, 7L, 5L, 1L, 6L,
4L, 3L, 7L, 4L, 1L, 8L, 7L, 6L), .Label = c("0: No data available",
"1: Under $15,000", "3: $20,000 - $29,999", "4: $30,000 - $39,999",
"5: $40,000 - $49,999", "6: $50,000 - $74,999", "7: $75,000 - $99,999",
"9: $125,000 - $149,999", "A: $150,000 - $174,999", "B: $175,000 - $199,999"
), class = "factor"), X104 = structure(c(3L, 4L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 4L, 5L, 6L, 1L, 1L, 1L,
1L, 1L, 3L, 3L, 1L, 1L), .Label = c("Married", "Single",
"Unknown", "Widowed", "Widow or Widower", "Widow/Widower"
), class = "factor"), X105 = structure(c(1L, 2L, 1L, 2L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 1L, 1L, 1L, 1L), .Label = c("U", "Y"), class = "factor"),
X106 = structure(c(2L, 3L, 3L, 3L, 3L, 3L, 4L, 3L, 2L, 1L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L
), .Label = c("Deferrer", "Involved", "Loyal", "Self Reliant"
), class = "factor"), X107 = structure(c(2L, 1L, 3L, 1L,
3L, 3L, 1L, 1L, 1L, 3L, 4L, 3L, 2L, 3L, 3L, 5L, 3L, 1L, 3L,
1L, 1L, 3L, 3L, 1L, 1L), .Label = c("Commercial", "Medicaid",
"Medicare", "Other", "Self"), class = "factor"), X108 = structure(c(2L,
3L, 5L, 1L, 5L, 2L, 3L, 2L, 4L, 1L, 2L, 5L, 3L, 3L, 1L, 3L,
1L, 6L, 5L, 2L, 5L, 1L, 6L, 5L, 3L), .Label = c("Dormant",
"Periodic", "Prospect", "Recent", "Recurring", "Sporadic"
), class = "factor"), X109 = structure(c(5L, 6L, 6L, 3L,
1L, 2L, 4L, 5L, 6L, 1L, 1L, 6L, 5L, 6L, 2L, 5L, 6L, 6L, 6L,
6L, 1L, 5L, 6L, 3L, 5L), .Label = c("African American", "Client - Non Hispanic/Latino",
"Jewish", "Scandinavian", "Uncoded ", "Western European"), class = "factor"),
X110 = structure(c(3L, 3L, 4L, 3L, 4L, 1L, 1L, 3L, 2L, 3L,
4L, 2L, 3L, 2L, 4L, 3L, 4L, 3L, 3L, 2L, 2L, 3L, 3L, 3L, 3L
), .Label = c("Completed College", "Completed High School",
"Not available", "Some college"), class = "factor"), X111 = structure(c(11L,
23L, 16L, 13L, 6L, 21L, 4L, 10L, 9L, 15L, 24L, 14L, 8L, 7L,
22L, 2L, 20L, 1L, 3L, 19L, 5L, 12L, 25L, 18L, 17L), .Label = c("07869",
"07960", "17747", "20105", "21206", "21218", "22003", "22602",
"27344", "27370", "40214", "42351", "43081", "48180", "48235",
"51542", "55124", "63376", "64151", "72023", "80422", "80918",
"85204", "85351", "97439"), class = "factor"), X112 = structure(c(5L,
2L, 4L, 12L, 6L, 3L, 15L, 10L, 10L, 7L, 2L, 7L, 15L, 15L,
3L, 11L, 1L, 11L, 14L, 9L, 6L, 5L, 13L, 9L, 8L), .Label = c("AR",
"AZ", "CO", "IA", "KY", "MD", "MI", "MN", "MO", "NC", "NJ",
"OH", "OR", "PA", "VA"), class = "factor"), X113 = structure(c(7L,
1L, 5L, 16L, 8L, 4L, 22L, 15L, 14L, 9L, 1L, 9L, 21L, 20L,
3L, 13L, 2L, 13L, 18L, 11L, 19L, 6L, 17L, 12L, 10L), .Label = c("04013",
"05085", "08041", "08047", "19155", "21091", "21111", "24510",
"26163", "27037", "29165", "29183", "34027", "37037", "37151",
"39049", "41039", "42035", "510", "51059", "51069", "51107"
), class = "factor"), X114 = structure(c(8L, 1L, 6L, 19L,
9L, 5L, 24L, 18L, 17L, 10L, 2L, 11L, 23L, 22L, 4L, 15L, 3L,
16L, 21L, 13L, 1L, 7L, 20L, 14L, 12L), .Label = c("", "04013071504",
"05085020201", "08041000202", "08047013800", "19155021400",
"21091960200", "21111012202", "24510270903", "26163539200",
"26163583700", "27037060825", "29165030102", "29183311331",
"34027043500", "34027045603", "37037020200", "37151030504",
"39049006990", "41039000707", "42035030900", "51059450800",
"51069051000", "51107611801"), class = "factor"), X115 = structure(c(8L,
1L, 6L, 19L, 9L, 5L, 24L, 18L, 17L, 10L, 2L, 11L, 23L, 22L,
4L, 15L, 3L, 16L, 21L, 13L, 1L, 7L, 20L, 14L, 12L), .Label = c("",
"040130715044", "050850202011", "080410002024", "080470138004",
"191550214002", "210919602003", "211110122024", "245102709033",
"261635392003", "261635837001", "270370608253", "291650301021",
"291833113312", "340270435001", "340270456031", "370370202002",
"371510305041", "390490069901", "410390007071", "420350309002",
"510594508002", "510690510002", "511076118012"), class = "factor")), .Names = c("X1",
"X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "X11",
"X12", "X13", "X14", "X15", "X16", "X17", "X18", "X19", "X20",
"X21", "X22", "X23", "X24", "X25", "X26", "X27", "X28", "X29",
"X30", "X31", "X32", "X33", "X34", "X35", "X36", "X37", "X38",
"X39", "X40", "X41", "X42", "X43", "X44", "X45", "X46", "X47",
"X48", "X49", "X50", "X51", "X52", "X53", "X54", "X55", "X56",
"X57", "X58", "X59", "X60", "X61", "X62", "X63", "X64", "X65",
"X66", "X67", "X68", "X69", "X70", "X71", "X72", "X73", "X74",
"X75", "X76", "X77", "X78", "X79", "X80", "X81", "X82", "X83",
"X84", "X85", "X86", "X87", "X88", "X89", "X90", "X91", "X92",
"X93", "X94", "X95", "X96", "X97", "X98", "X99", "X100", "X101",
"X102", "X103", "X104", "X105", "X106", "X107", "X108", "X109",
"X110", "X111", "X112", "X113", "X114", "X115"), row.names = c(414721L,
73797L, 281098L, 376819L, 33586L, 462430L, 452574L, 5913L, 412768L,
460097L, 431932L, 403489L, 407344L, 295527L, 157897L, 197133L,
465379L, 22316L, 358357L, 178178L, 293092L, 314823L, 186844L,
184603L, 343412L), class = "data.frame")
I stumbled upon the same problem, and even if it might not interest OP anymore I hope it could help someone else.
What I did first was transform all my numeric data to factor :
Xfac = factor(X[,1], ordered = TRUE)
for (i in 2:29){
tfac = factor(X[,i], ordered = TRUE)
Xfac = data.frame(Xfac, tfac)
}
colnames(Xfac)=labels(X[1,])
Still, it would not work. But my 2nd problem was (and I think it was yours as well) that I included EVERY factor as supplementary variable !
So these :
MCA(Xfac, quanti.sup = c(1:29), graph=TRUE)
MCA(Xfac, quali.sup = c(1:29), graph=TRUE)
Would generate the same error, but this one works :
MCA(Xfac, graph=TRUE)
Not transforming the data to factors also generated the problem.
I've got a time dependent data from animal recording.
My data has two groups (TR and UT) each group has 20 replicate. Tiempo (time) variable goes from 282 sec to 318 sec.
I have a turning point at 300 sec in which I turn on a light stimulus. I register response that I convert into an numeric integer value.
A data subset looks like this
> dput(sub)
structure(list(tiempo = c(282, 282.2, 282.4, 282.6, 282.8, 283,
283.2, 283.4, 283.6, 283.8, 284, 284.2, 284.4, 284.6, 284.8,
285, 285.2, 285.4, 285.6, 285.8, 286, 286.2, 286.4, 286.6, 286.8,
287, 287.2, 287.4, 287.6, 287.8, 288, 288.2, 288.4, 288.6, 288.8,
289, 289.2, 289.4, 289.6, 289.8, 290, 290.2, 290.4, 290.6, 290.8,
291, 291.2, 291.4, 291.6, 291.8, 292, 292.2, 292.4, 292.6, 292.8,
293, 293.2, 293.4, 293.6, 293.8, 294, 294.2, 294.4, 294.6, 294.8,
295, 295.2, 295.4, 295.6, 295.8, 296, 296.2, 296.4, 296.6, 296.8,
297, 297.2, 297.4, 297.6, 297.8, 298, 298.2, 298.4, 298.6, 298.8,
299, 299.2, 299.4, 299.6, 299.8, 300, 300.2, 300.4, 300.6, 300.8,
301, 301.2, 301.4, 301.6, 301.8, 302, 302.2, 302.4, 302.6, 302.8,
303, 303.2, 303.4, 303.6, 303.8, 304, 304.2, 304.4, 304.6, 304.8,
305, 305.2, 305.4, 305.6, 305.8, 306, 306.2, 306.4, 306.6, 306.8,
307, 307.2, 307.4, 307.6, 307.8, 308, 308.2, 308.4, 308.6, 308.8,
309, 309.2, 309.4, 309.6, 309.8, 310, 310.2, 310.4, 310.6, 310.8,
311, 311.2, 311.4, 311.6, 311.8, 312, 312.2, 312.4, 312.6, 312.8,
313, 313.2, 313.4, 313.6, 313.8, 314, 314.2, 314.4, 314.6, 314.8,
315, 315.2, 315.4, 315.6, 315.8, 316, 316.2, 316.4, 316.6, 316.8,
317, 317.2, 317.4, 317.6, 317.8, 318), TR2x45.1 = c(0L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L), TR2x45.10 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 2L, 1L, 0L), TR2x45.11 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L), TR2x45.12 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), TR2x45.8 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L), TR2x45.9 = c(0L, 4L, 4L, 4L, 3L, 0L, 4L, 3L,
5L, 3L, 4L, 5L, 4L, 4L, 3L, 3L, 3L, 5L, 4L, 4L, 3L, 4L, 5L, 4L,
2L, 5L, 3L, 5L, 4L, 5L, 3L, 4L, 4L, 4L, 3L, 5L, 3L, 5L, 4L, 4L,
3L, 3L, 6L, 4L, 4L, 2L, 3L, 4L, 2L, 4L, 5L, 4L, 3L, 5L, 3L, 3L,
4L, 4L, 4L, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 5L, 4L, 4L, 3L, 3L, 2L,
4L, 3L, 4L, 3L, 4L, 4L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 0L, 2L,
2L, 4L, 4L, 3L, 3L, 11L, 3L, 3L, 4L, 3L, 1L, 4L, 3L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 0L, 1L, 2L, 3L, 1L, 1L, 0L, 1L, 0L, 1L, 1L,
2L, 1L, 7L, 2L, 5L, 1L, 2L, 2L, 1L, 1L, 1L, 0L, 0L, 2L, 4L, 5L,
1L, 0L, 1L, 1L, 1L, 3L, 1L, 1L, 0L, 0L, 4L, 2L, 2L, 3L, 1L, 1L,
0L, 1L, 1L, 2L, 3L, 2L, 3L, 3L, 2L, 0L, 0L, 1L, 1L, 1L, 3L, 2L,
4L, 1L, 1L, 1L, 2L, 2L, 3L, 1L, 1L, 1L, 0L, 1L, 1L, 1L), UT2x45.1 = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L), UT2x45.10 = c(0L, 6L, 4L, 2L, 3L, 3L, 6L, 6L,
3L, 4L, 7L, 4L, 2L, 3L, 4L, 7L, 5L, 3L, 6L, 4L, 6L, 4L, 5L, 5L,
3L, 8L, 5L, 3L, 11L, 3L, 4L, 6L, 8L, 4L, 9L, 3L, 4L, 3L, 3L,
5L, 7L, 3L, 2L, 4L, 4L, 3L, 2L, 5L, 8L, 10L, 6L, 4L, 8L, 6L,
0L, 5L, 8L, 9L, 2L, 9L, 9L, 0L, 2L, 3L, 5L, 9L, 5L, 5L, 5L, 3L,
4L, 2L, 1L, 5L, 7L, 3L, 5L, 7L, 5L, 1L, 2L, 3L, 5L, 7L, 2L, 5L,
5L, 5L, 5L, 2L, 2L, 4L, 6L, 5L, 4L, 2L, 3L, 4L, 5L, 2L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 1L, 3L, 2L, 3L, 1L, 1L,
2L, 4L, 4L, 4L, 2L, 4L, 4L, 4L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L,
3L, 3L, 3L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 4L, 3L, 1L,
2L, 2L, 1L, 2L, 2L, 2L, 4L, 2L, 3L, 1L, 0L, 1L, 0L, 1L, 1L, 1L,
1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L),
UT2x45.11 = c(0L, 0L, 1L, 0L, 1L, 2L, 0L, 0L, 0L, 1L, 2L,
0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L), UT2x45.12 = c(0L, 1L, 0L, 0L, 1L, 0L,
0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L,
0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), .Names = c("tiempo",
"TR2x45.1", "TR2x45.10", "TR2x45.11", "TR2x45.12", "TR2x45.8",
"TR2x45.9", "UT2x45.1", "UT2x45.10", "UT2x45.11", "UT2x45.12"
), row.names = c(NA, -181L), class = "data.frame")
My goal is to analyze the frequency of response before and after the light (I could define two 18-sec or four 9-sec intervals). I was thinking in analyze how many times I have response=1, response=2 and so on, for each animal within both groups for each time interval.
I also would need to plot the data but I can try to fix that by myself once I get the frequency/correctly melted data.
Here's an easy example (first column vs t)
> grep(pattern = "1",x = TR)
[1] 7 11
> tiempo[grep(pattern= "1",x=TR)]
[1] 283.2 284.0
So I should get an "event of 1" in time 283.2 and another "event of 1" in 284.
When I ask the same for TR number 3
> tiempo[grep(pattern= "1",x=TR3)]
[1] 291
I should get an "event of 1" in time 291.
If two animals from the same group have a coincidence in time and event that should be added. 1 "event of 1" + 1 "event of 1" = 2 "event of 1". And that's the frequency that I want to get for every animal, collapsed later into group for each time point.
UPDATE
I have managed to write down some functions that get me the position of the response value I'm looking for (num) in data frame dat and give me the times (in a list that I should use someway to collapse within groups)
grep.fun<-function(num,dat){
li<-list(apply(dat,2,function(dat) grep(num,dat)))
return(li)
}
find.tempo<-function(num,dat){
j<-1
LIS<-list()
for (i in grep.fun(num,dat)[[1]]) {
LIS[j]<-list(dat$t[c(i)])
if (j>=length(dat)) break else
j<-j+1
}
return(LIS)
}
contar<-function(num,dat){
tabla<-data.frame(
variable=names(dat),freq=as.numeric(summary(find.tempo(num,dat))[,1])) # first column of summary is freq
return(tabla)
}
Besides, I need to collapse response (as a function of time) values within the groups for frequency analysis.
I have managed to write a group of functions that do what I want.
I had to split my data set into both groups to feed the dat parameter but it's good enough.
The code is this.
grep.fun<-function(num,dat){
li<-list(apply(dat,2,function(dat) grep(num,dat)))
return(li)
}
find.tempo<-function(num,dat){
j<-1
LIS<-list()
for (i in grep.fun(num,dat)[[1]]) {
LIS[j]<-list(dat$t[c(i)])
if (j>=length(dat)) break else
j<-j+1
}
return(LIS)
}
contar.tempo<-function(num,dat){
df<-data.frame(rep(NA,length(dat$tiempo)),rep(NA,length(dat$tiempo)))
i<-1
for (time in dat$tiempo){
cuenta<-sum(as.numeric(grepl(pattern=time,find.tempo(num,dat))))
df[i,]<-c(time,cuenta)
if (i>=length(dat$tiempo)) break else
i<-i+1
}
names(df)<-c("tiempo","cuenta")
return(df)
}
contar.freq<-function(num,dat){
tabla<-data.frame(
variable=names(dat),freq=as.numeric(summary(find.tempo(num,dat))[,1])) # first column of summary is freq
tabla2<-tabla[-1,] # sacar tiempo
return(tabla2)
}
The contar.tempo function is the one I will use to enter the level of response I want to evaluate (num) and both data sets for trained and control animals.
The result is a data frame with the number of times an animal had an event of certain magnitude. (e.g, df<-contar.tempo(1,your_data))
The contar.freq function can be used to count the number of events of certain response level for a each animal.
I have a dataframe that contains the number of times a user hit a website broken down in one-hour increments. R reads each of these columns in as discrete integer vectors.
month user.nm X0.1 X1.2 X2.3 X3.4 X4.5 X5.6 X6.7 X7.8 X8.9 X9.10 X10.11 X11.12 X12.13 X13.14 X14.15 X15.16 X16.17 X17.18 X18.19 X19.20
1 Apr-2013 6688393 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 Apr-2013 6694392 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0
3 Apr-2013 6695127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 Apr-2013 8466767 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
5 Apr-2013 8466929 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
6 Apr-2013 8469145 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
X20.21 X21.22 X22.23 X23.24
1 0 0 0 1
2 0 0 0 0
3 1 0 0 0
4 0 1 0 0
5 0 0 0 0
6 0 0 0 0
I would like to either modify the existing data frame or create a new one such that all 24 columns are treated as one block of time on a continuous scale, with 24 buckets for each hour range. I would like to see if there are any regular trends in user login time throughout the day, and would like to use ggplot to either facet this data out by month, or overlay a series of line graphs for each month on one graph.
I've attempted to use melt to create a new dataframe, but it doesn't quite give me what I want:
library(reshape2)
library(ggplot)
test=melt(stackdata)
.t=ggplot(data=test, aes(x=variable, y=value, color=month))
.t+geom_line()+
geom_jitter()+
facet_wrap(~month, ncol=4, nrow=3)+
theme(axis.text.x = element_text(angle = 90))
Again, this is because each variable in the dataset is not one large, subdivided block of time. Not sure how to tackle this problem from here, and would love suggestions.
sample data is below:
stackdata=structure(list(month = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L), .Label = c("Apr-2013", "Aug-2013", "Dec-2013", "Feb-2013",
"Jan-2013", "Jan-2014", "Jul-2013", "Jun-2013", "Mar-2013", "May-2013",
"Nov-2013", "Oct-2013", "Sep-2013"), class = "factor"), user.nm = c("6688393",
"6694392", "6695127", "8466767", "8466929", "8469145", "9611057",
"9612737", "9614602", "9615501", "9615784", "9615874", "9616110",
"9618319", "9619088", "9619598", "9621017", "9621742", "9622336",
"9624374", "9626854", "9627467", "9627624", "9629276", "9630734",
"9631364", "9631860", "9632476", "9635781", "9635959", "9641708",
"9643094", "9645186", "9645401", "9745784", "9754198", "9866781",
"9867611", "9868751", "9869108", "9870583", "9870726", "9938726",
"9941106", "9941399", "9941473", "9941772", "10001415", "10003807",
"10005825", "10013098", "10013225", "10015143", "10016062", "10020754",
"10022365", "10024519", "10025576", "10026220", "10035739", "10035819",
"10051839", "10054951", "10054984", "10062088", "10068499", "10074245",
"10075246", "10077086", "10079384", "10680141", "10686895", "10694897",
"10697647", "10699389", "10699429", "10704583", "10711494", "10712441",
"10715234", "10716488", "10720706", "10720791", "10720823", "10728749",
"10801017", "10807796", "10811707", "10816089", "10821019", "10825304",
"10830839", "10833479", "10833571", "10834836", "10839626", "10841820",
"10846461", "10849478", "10855264", "10858750", "11005529", "11020252",
"11020885", "11032718", "11033697", "11036794", "11040344", "11047885",
"11050965", "11052554", "11069521", "11073718", "11075499", "11079738",
"11093749", "11095438", "11095559", "11097178", "11110244", "11550287",
"11589571", "11683596", "11699090", "11705401", "11709313", "11709654",
"11717437", "11719508", "11772681", "11779464", "11781654", "11789565",
"11794224", "11809622", "11815102", "11851768", "11900155", "11931084",
"11957879", "11972086", "12001983", "12007772", "12009821", "12011698",
"12016362", "12016670", "12038636", "12056747", "12057451", "12059322",
"12096520", "12101444", "12118773", "12127176", "12159551", "12165289",
"12177700", "12178152", "12182494", "12197023", "12225175", "12235523",
"12242927", "12254486", "12266022", "12286648", "12323873", "12403763",
"12408314", "12414114", "12420854", "12457521", "12466982", "12537659",
"12544328", "12557309", "12558588", "12600078", "12669593", "12669837",
"12674687", "12677883", "12689243", "12691517", "12694967", "12695845",
"12701494", "12854160", "12869058", "12869828", "13281780", "13400065",
"13400593", "13401168", "13401493", "13402162", "13402454", "13403431",
"13403910"), X0.1 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 5L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 23L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 2L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 2L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L,
0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L),
X1.2 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 13L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 7L, 0L), X2.3 = c(0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L), X3.4 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 0L,
0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L), X4.5 = c(0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 4L, 0L), X5.6 = c(0L, 0L, 0L, 0L, 0L, 0L, 1L, 2L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 2L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 0L), X6.7 = c(0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 5L, 0L, 0L, 0L, 0L, 0L, 6L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
2L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 13L, 0L,
0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 5L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 2L, 1L), X7.8 = c(0L, 0L, 0L, 0L, 0L, 0L, 2L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 6L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 5L, 0L, 1L, 0L, 2L, 0L, 0L, 1L, 0L, 0L,
2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 10L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 3L, 0L, 0L, 2L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 13L,
1L, 1L, 0L, 0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 2L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 14L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 2L,
0L, 0L, 0L, 0L, 0L, 0L, 13L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L), X8.9 = c(0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 1L, 0L, 0L,
6L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 1L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 3L, 0L,
1L, 0L, 0L, 0L, 1L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 5L, 0L,
0L, 0L, 0L, 0L, 0L, 6L, 0L, 0L, 0L, 11L, 0L, 0L, 0L, 1L,
5L, 0L, 0L, 3L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 22L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 1L, 2L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 9L, 1L, 0L, 4L, 0L,
1L, 0L, 0L, 0L, 0L, 9L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 0L, 7L,
1L, 0L, 6L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L), X9.10 = c(0L,
0L, 0L, 0L, 0L, 2L, 1L, 0L, 1L, 0L, 2L, 5L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 4L, 0L, 0L, 0L, 1L, 3L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 2L, 1L, 0L,
4L, 2L, 0L, 0L, 1L, 0L, 2L, 0L, 0L, 0L, 0L, 2L, 0L, 2L, 1L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 2L, 0L, 0L, 0L, 0L, 0L,
1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
8L, 0L, 1L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 1L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 11L, 0L,
0L, 0L, 1L, 2L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 1L, 0L, 0L, 3L, 0L, 0L, 3L, 1L, 1L, 0L, 0L, 0L, 0L, 3L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L,
2L, 0L, 2L, 5L, 0L, 0L, 7L, 0L, 3L, 0L, 0L, 3L, 2L, 0L, 0L,
0L, 0L, 0L, 1L, 1L), X10.11 = c(0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 2L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 2L, 0L,
0L, 0L, 1L, 3L, 0L, 1L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 5L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 3L, 2L, 0L, 0L, 2L, 0L,
0L, 0L, 1L, 0L, 2L, 0L, 2L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 8L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 4L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 2L, 2L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 4L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 6L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 3L, 0L, 0L, 20L, 0L, 0L, 0L, 0L, 4L, 1L, 0L,
0L, 0L, 5L, 0L, 0L, 0L, 0L, 0L, 0L, 5L, 2L, 0L, 1L, 3L, 1L,
0L, 2L, 2L, 0L, 1L, 0L, 0L, 0L, 6L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L,
5L, 0L, 1L, 0L, 0L, 4L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L),
X11.12 = c(0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 2L, 0L,
0L, 0L, 0L, 2L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 3L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 3L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 0L, 20L, 0L,
2L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 3L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L,
0L, 0L, 17L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L,
0L, 0L, 0L, 0L, 0L, 3L, 2L, 3L, 0L, 4L, 1L, 0L, 4L, 0L, 0L,
0L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 6L, 0L, 2L, 0L,
0L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X12.13 = c(0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 2L, 0L, 0L, 0L, 0L, 5L, 0L,
0L, 1L, 0L, 1L, 0L, 0L, 2L, 3L, 0L, 0L, 0L, 2L, 3L, 1L, 1L,
4L, 2L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 3L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 2L, 2L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L,
2L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 2L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 16L, 0L, 0L,
0L, 0L, 2L, 0L, 1L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L,
1L, 1L, 1L, 5L, 2L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 5L, 2L,
0L, 0L, 0L, 3L, 0L, 0L, 0L, 1L, 2L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 3L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L), X13.14 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
4L, 3L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 2L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 1L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 2L, 0L, 0L, 0L, 4L, 0L, 0L,
1L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 3L, 0L, 0L, 16L, 0L, 0L, 0L, 0L, 4L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 2L, 2L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
2L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L,
0L, 2L, 0L, 0L, 7L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L), X14.15 = c(0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L, 1L, 0L, 0L, 0L, 1L, 2L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 2L, 1L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L, 2L, 0L, 0L, 0L, 0L,
1L, 1L, 0L, 1L, 1L, 2L, 0L, 0L, 2L, 0L, 0L, 0L, 1L, 0L, 0L,
2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 15L, 0L,
0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 2L, 1L, 0L, 4L, 3L, 0L, 3L, 2L, 0L, 2L, 0L, 0L, 0L, 9L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 2L, 2L, 2L, 2L, 0L, 1L, 3L, 0L, 0L, 0L,
0L, 0L, 0L, 2L, 0L), X15.16 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 5L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 3L, 0L, 0L, 0L, 0L, 0L, 3L, 1L, 2L, 1L, 1L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L,
2L, 1L, 8L, 0L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 4L, 0L, 0L,
0L, 0L, 2L, 0L, 0L, 0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 3L, 2L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 10L, 0L, 0L, 2L, 0L, 2L, 0L, 0L,
0L, 1L, 6L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 3L, 1L,
1L, 2L, 1L, 0L, 0L, 0L, 0L, 2L, 5L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 2L, 0L, 0L, 0L, 0L, 1L, 0L, 4L, 0L, 0L, 5L, 1L, 0L,
2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 2L),
X16.17 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 6L, 0L,
0L, 0L, 0L, 6L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L,
1L, 0L, 2L, 1L, 2L, 0L, 4L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 10L, 0L, 0L, 0L, 0L, 0L, 2L, 0L,
7L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 7L, 1L, 0L, 0L, 2L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 12L, 0L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 5L, 3L, 0L, 1L, 2L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 1L, 0L, 0L, 4L, 2L, 0L, 1L, 0L, 0L, 2L, 0L, 0L, 0L,
2L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 4L, 0L), X17.18 = c(0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 2L, 0L, 3L, 3L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 2L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 3L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 5L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 4L, 2L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L,
0L, 0L, 5L, 1L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 1L, 3L, 2L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L,
0L, 20L, 3L), X18.19 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 1L, 0L, 0L, 2L,
0L, 0L, 0L, 0L, 0L, 0L, 4L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 2L,
0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 2L, 0L, 0L, 0L,
0L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 3L, 0L, 0L, 6L, 0L, 1L, 0L, 0L, 4L, 0L, 1L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 5L, 1L, 0L, 2L,
3L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 2L, 1L,
0L, 0L, 1L, 4L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 2L), X19.20 = c(0L,
0L, 0L, 2L, 0L, 0L, 0L, 3L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 10L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 7L, 2L, 0L, 1L, 1L, 0L, 1L, 2L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 2L, 0L, 0L, 2L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 1L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 12L,
2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 3L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L,
3L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 1L, 2L, 2L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 4L), X20.21 = c(0L, 0L, 1L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 2L, 0L, 4L, 1L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 4L, 0L, 1L, 1L, 0L, 0L, 0L,
0L, 2L, 0L, 0L, 0L, 2L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 2L, 0L,
0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 2L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 7L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 4L),
X21.22 = c(0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 2L,
0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L,
0L, 1L, 1L, 0L, 2L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 2L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 10L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 2L, 0L,
0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 3L, 0L, 1L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 2L, 1L, 0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L), X22.23 = c(0L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 2L, 2L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 2L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 5L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L), X23.24 = c(1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 5L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 3L, 5L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 5L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 0L,
0L, 2L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 5L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), .Names = c("month",
"user.nm", "X0.1", "X1.2", "X2.3", "X3.4", "X4.5", "X5.6", "X6.7",
"X7.8", "X8.9", "X9.10", "X10.11", "X11.12", "X12.13", "X13.14",
"X14.15", "X15.16", "X16.17", "X17.18", "X18.19", "X19.20", "X20.21",
"X21.22", "X22.23", "X23.24"), row.names = c(NA, 200L), class = "data.frame")
Is this what you want?
library(reshape2)
library(ggplot2)
df <- melt(stackdata, id.var = c("month", "user.nm"))
df$hour <- as.numeric(gsub(pattern = "^.*\\.", "", df$variable))
ggplot(data = df, aes(x = hour, y = value)) +
stat_summary(fun.y = mean, geom = "point") +
stat_summary(fun.y = mean, geom = "line") +
scale_x_continuous(breaks = seq(from = 0, to = 24, by = 4))