Apply one argument to multiple functions - functional-programming

Is there a way to apply one argument to multiple functions in elm?
in the example, x would be applied to each isDiv function
isDiv : Int -> Int -> Bool
isDiv x y =
modBy x y == 0
isLeapYear : Int -> Bool
isLeapYear x =
x (isDiv 4 && isDiv 100 || isDiv 400)
Ended up doing this
isLeapYear : Int -> Bool
isLeapYear x =
let
isDiv y =
modBy y x == 0
in
isDiv 4 && not (isDiv 100) || isDiv 400

You could write a helper function inside isLeapYear like this:
isLeapYear : Int -> Bool
isLeapYear x =
let isDivX n = isDiv x n
in isDivX 4 && isDivX 100 || isDivX 400

Related

prove decreases clause of mutually recursive class functions

I'm having trouble showing how to ensure recursively decreasing functions on a tree class in Dafny. I have the following definitions which verify.
class RoseTree {
var NodeType: int
var id: string
var children: array<RoseTree>
ghost var nodeSet: set<RoseTree>
constructor(nt: int, id: string, children: array<RoseTree>)
ensures forall x :: 0 <= x < children.Length ==> children[x].nodeSet <= this.nodeSet
ensures forall x :: 0 <= x < this.children.Length ==> this.children[x].nodeSet <= this.nodeSet
{
this.NodeType := nt;
this.id := id;
this.children := children;
if children.Length == 0 {
this.nodeSet := {this};
}else{
this.nodeSet := {this}+childrenNodeSet(children);
}
}
}
function setRosePick(s: set<set<RoseTree>>): set<RoseTree>
requires s != {}
{
var x :| x in s; x
}
function setUnion(setosets: set<set<RoseTree>>) : set<RoseTree>
decreases setosets
{
if setosets == {} then {} else
var x := setRosePick(setosets);
assert x <= x + setUnion(setosets-{x});
x + setUnion(setosets-{x})
}
lemma setUnionDef(s: set<set<RoseTree>>, y: set<RoseTree>)
requires y in s
ensures setUnion(s) == y + setUnion(s - {y})
{
var x := setRosePick(s);
if y == x {
}else{
calc {
setUnion(s);
==
x + setUnion(s - {x});
== {setUnionDef(s - {x}, y); }
x + y + setUnion(s - {x} - {y});
== { assert s - {x} - {y} == s - {y} - {x}; }
y + x + setUnion(s - {y} - {x});
== {setUnionDef(s - {y}, x); }
y + setUnion(s - {y});
}
}
}
lemma setUnionReturns(s: set<set<RoseTree>>)
ensures s == {} ==> setUnion(s) == {}
ensures s != {} ==> forall x :: x in s ==> x <= setUnion(s)
{
if s == {} {
assert setUnion(s) == {};
} else {
forall x | x in s
ensures x <= setUnion(s)
{
setUnionDef(s, x);
assert x <= x + setUnion(s-{x});
}
}
}
function childNodeSets(children: array<RoseTree>): set<set<RoseTree>>
reads children
reads set x | 0 <= x < children.Length :: children[x]
{
set x | 0 <= x < children.Length :: children[x].nodeSet
}
function childNodeSetsPartial(children: array<RoseTree>, index: int): set<set<RoseTree>>
requires 0 <= index < children.Length
reads children
reads set x | index <= x < children.Length :: children[x]
{
set x | index <= x < children.Length :: children[x].nodeSet
}
function childrenNodeSet(children: array<RoseTree>): set<RoseTree>
reads children
reads set x | 0 <= x < children.Length :: children[x]
ensures forall x :: x in childNodeSets(children) ==> x <= childrenNodeSet(children)
ensures forall i :: 0 <= i < children.Length ==> children[i].nodeSet <= childrenNodeSet(children)
{
var y := childNodeSets(children);
setUnionReturns(y);
setUnion(y)
}
In particular I'm trying to define the height function for the tree.
function height(node: RoseTree):nat
reads node
reads node.children
reads set x | 0 <= x < node.children.Length :: node.children[x]
decreases node.nodeSet
{
if node.children.Length == 0 then 1 else 1 + maxChildHeight(node, node.children,node.children.Length-1,0)
}
function maxChildHeight(node: RoseTree, children: array<RoseTree>, index: nat, best: nat) : nat
reads node
reads node.children
reads set x | 0 <= x < node.children.Length :: node.children[x]
requires children == node.children
requires 0 <= index < children.Length
ensures forall x :: 0 <= x <= index < children.Length ==> maxChildHeight(node, children, index, best) >= height(children[x])
decreases node.nodeSet - setUnion(childNodeSetsPartial(children, index)), 1
{
if index == 0 then best else if height(children[index]) >= best then maxChildHeight(node, children, index-1, height(children[index])) else maxChildHeight(node, children, index-1, best)
}
I though it should be possible to show that the nodeSet of the node will be a subset of its parent node or that the union of child node sets will be a subset of the parent node, and thus both functions will terminate. My decreases expressions don't prove it to dafny and I'm not quite sure how to proceed. Is there another way to prove termination or can I fix these decrease statements?
Also, do all instances of a class have the constructor ensure statements applied implicitly or only if explicitly constructed using the constructor?
Edit: updated definitions of childNodeSetsPartial and maxChildHeight
to recurse downward. It still doesn't verify.
Defining mutable linked heap-allocated data structures in Dafny is not very common except as an exercise. So you should consider whether a datatype would serve you better, as in
datatype RoseTree = Node(children: seq<RoseTree>)
function height(r: RoseTree): int
{
if r.children == [] then
1
else
var c := set i | 0 <= i < |r.children| :: height(r.children[i]);
assert height(r.children[0]) in c;
assert c != {};
SetMax(c) + 1
}
If you insist on mutable linked heap-allocated data structures, then there is a standard idiom for doing that. Please read sections 0 and 1 of these lecture notes and check out the modern version of the example code here.
Applying this idiom to your code, we get the following.
class RoseTree {
var NodeType: int
var id: string
var children: array<RoseTree>
ghost var repr: set<object>
predicate Valid()
reads this, repr
decreases repr
{
&& this in repr
&& children in repr
&& (forall i | 0 <= i < children.Length ::
children[i] in repr
&& children[i].repr <= repr
&& this !in children[i].repr
&& children[i].Valid())
}
constructor(nt: int, id: string, children: array<RoseTree>)
requires forall i | 0 <= i < children.Length :: children[i].Valid()
ensures Valid()
{
this.NodeType := nt;
this.id := id;
this.children := children;
this.repr := {this, children} +
(set i | 0 <= i < children.Length :: children[i]) +
(set x, i | 0 <= i < children.Length && x in children[i].repr :: x);
}
}
function SetMax(s: set<int>): int
requires s != {}
ensures forall x | x in s :: SetMax(s) >= x
{
var x :| x in s;
if s == {x} then
x
else
var y := SetMax(s - {x});
assert forall z | z in s :: z == x || (z in (s - {x}) && y >= z);
if x > y then x else y
}
function height(node: RoseTree): nat
requires node.Valid()
reads node.repr
{
if node.children.Length == 0 then
1
else
var c := set i | 0 <= i < node.children.Length :: height(node.children[i]);
assert height(node.children[0]) in c;
assert c != {};
SetMax(c) + 1
}
do all instances of a class have the constructor ensure statements applied implicitly or only if explicitly constructed using the constructor?
I'm not sure if I understand this question. I think the answer is "no", though. Since a class might have multiple constructors with different postconditions.

CPLEX give me this error " V23 has never been used"

A part of input is:
tuple copie_macchine {
int macchina;
int copia1;
int copia2;
int copia3;
}
{copie_macchine} copie = ...;
int macc [I1][J] = ...;
{int} s = {1,2,4,5,7,11,12,13,14,15,16,17,18,19};
macc = [[1, 10],
[1, 1],
[3, 3],
[0, 4]];
copie = {<3,3,4,0>,
<6,7,8,9>,
<8,11,12,0>,
<9,13,14,0>,
<10,15,16,0>,
<20,26,27,28>};
dvar boolean y[I][J][M];
and I write in Cplex this code: the algorithm assigns to the variable y 1 if the value macc [i] [j] is in the set s otherwise it must choose to assign the value 1 either to copy 1 or to copy 2 or to copy
forall (j in J)
forall (i in I1 : macc [i][j] in s)
forall (i1 in I : i1==i)
forall (m in M)
V22: y[i1][j][m] == 1;
forall (j in J)
forall (c in copie : c.copia3!=0)
forall (i in I1 : macc[i][j] == c.macchina)
forall (i1 in I : i1==i)
forall (m in M)
V23: y[i1][j][c.copia1] == 1 || y[i1][j][c.copia2] == 1 || y[i1][j][c.copia3] == 1;
but I have the error "V23 has never been used". How can I solve?
your line that contains V23 is never used.
Let me share a smaller example which replicates this warning:
dvar int+ x;
subject to
{
x<=10;
forall(i in 1..2:i>=5)
{
ct:(x==2) ;
}
}
gives
ct has never been used

C way to detect and 'separate' a binary expression

I have a bottleneck in my code in expressions like any(x >= b | x == y) for a large x.
I'd like to avoid the allocation x >= b | x == y. I've found that it's easy to write a function for particular cases.
SEXP eval_any_or2(SEXP x, SEXP b, SEXP y) {
R_xlen_t N = xlength(x);
if (xlength(y) != N || xlength(b) != 1) {
error("Wrong lengths.");
}
const int *xp = INTEGER(x);
const int *yp = INTEGER(y);
const int *bp = INTEGER(b);
bool o = false;
for (R_xlen_t i = 0; i < N; ++i) {
if (xp[i] >= bp[0] || xp[i] == yp[i]) {
o = true;
break;
}
}
SEXP ans = PROTECT(allocVector(LGLSXP, 1));
LOGICAL(ans)[0] = o ? TRUE : FALSE;
UNPROTECT(1);
return ans;
}
However, for clarity I'd like to keep as much of the natural syntax as possible, like any_or(x >= b, x == y). So I'd like to be able to detect whether a call is of the form <vector> <operator> <vector> when <operator> is one of the standard binary operators, and each <vector> is of equal length vectors length 1. Something like this:
any_or2 <- function(expr1, expr2) {
sexp1 <- substitute(expr1)
sexp2 <- substitute(expr2)
if (!is_binary_sexp(sexp1) || !is_binary_sexp(sexp2) {
# fall through to just basic R
return(any(expr1 | expr2))
}
# In C
eval_any_or2(...) # either the substituted expression or x,y,b
}
I've attempted the following C function which detects whether a substituted expression/call is a binary expression, but (a) I'm having trouble detecting whether the operator is a binary operator and (b) getting the vectors from the expression (x, y, b in the example) to use later (either in the same C function or as passed to a C function like the one above).
#define return_false SEXP ans = PROTECT(allocVector(LGLSXP, 1)); \
LOGICAL(ans)[0] = FALSE; \
UNPROTECT(1); \
return ans; \
SEXP is_binary_sexp(SEXP sx) {
if (TYPEOF(sx) != LANGSXP) {
return_false
}
// does it have three elements?
int len = 0;
SEXP el, nxt;
for (nxt = sx; nxt != R_NilValue || len > 4; el = CAR(nxt), nxt = CDR(nxt)) {
len++;
}
if (len != 3) {
return_false;
}
if (TYPEOF(CAR(sx)) != SYMSXP) {
return_false;
}
SEXP ans = PROTECT(allocVector(LGLSXP, 1));
LOGICAL(ans)[0] = TRUE;
UNPROTECT(1);
return ans;
}
In R I would write something like:
is_binary_sexp_R <- function(sexprA) {
# sexprA is the result of substitute()
is.call(sexprA) &&
length(sexprA) == 3L &&
match(as.character(sexprA[[1]]), c("!=", "==", "<=", ">=", "<", ">"), nomatch = 0L) &&
is.name(lhs <- sexprA[[2L]])
}
but I'd like to do as much as possible in C.

SML: Determining Type of Function

Suppose all I know about a function is that it is of type:
int list -> int * string -> int
Is there any way of knowing in advance whether this means:
(int list -> int * string) -> int or int list -> (int * string -> int)?
Thanks,
bclayman
-> is right associative in SML type annotations, so int list -> (int * string -> int) is correct.
Consider this simple experiment in the REPL:
- fun add x y = x+y;
val add = fn : int -> int -> int
add is a function which, when fed an int, returns a function, namely the function which sends y to x + y -- hence its type is int -> (int ->int). It isn't a function which, when a fed a function from ints to ints outputs an int (which is what (int -> int) -> int would be). A somewhat artificial example of the later sort of thing is:
- fun apply_to_zero_and_increment f = 1 + f(0);
val apply_to_zero_and_increment = fn : (int -> int) -> int
If I define fun g(x) = x + 5 then apply_to_zero_and_increment g returns 6.

Difficulty solving this with recursive code

I need to find the length of the longest common subsequence.
s and t are Strings, and n and m are their lengths. I would like to write a recursive code.
This is what I did so far but I cant get any progress:
def lcs_len_v1(s, t):
n = len(s)
m = len(t)
return lcs_len_rec(s,n,t,m)
def lcs_len_rec(s,size_s,t,size_t):
cnt= 0
if size_s==0 or size_t==0:
return 0
elif s[0]==t[0]:
cnt= +1
return cnt, lcs_len_rec(s[1:], len(s[1:]), t[1:], len(t[1:]))
This works:
def lcs(xstr, ystr):
if not xstr or not ystr:
return ""
x, xs, y, ys = xstr[0], xstr[1:], ystr[0], ystr[1:]
if x == y:
return x + lcs(xs, ys)
else:
return max(lcs(xstr, ys), lcs(xs, ystr), key=len)
print(lcs("AAAABCC","AAAACCB"))
# AAAACC
You should know that a recursive approach will only work with relatively trivial string; the complexity increases very rapidly with longer strings.
this is my code, how can I use on it the memoization technique?
def lcs_len_v1(s, t):
n = len(s)
m = len(t)
return lcs_len_rec(s,n,t,m)
def lcs_len_rec(s,size_s,t,size_t):
if size_s==0 or size_t==0:
return 0
elif s[0]==t[0]:
cnt=0
cnt+= 1
return cnt+ lcs_len_rec(s[1:], size_s-1, t[1:], size_t-1)
else:
return max(lcs_len_rec(s[1:], size_s-1, t, size_t), lcs_len_rec(s, size_s, t[1:], size_t-1))
Using the memoization technique, you can run the algorithm also with a very long strings. Infact it is just O(n^2):
def recursiveLCS(table, s1, s2):
if(table[len(s1)][len(s2)] != False):
return table[len(s1)][len(s2)]
elif len(s1) == 0 or len(s2) == 0:
val = ""
elif s1[0] == s2[0]:
val = s1[0] + recursiveLCS(table, s1[1:], s2[1:])
else:
res1 = recursiveLCS(table, s1[1:], s2)
res2 = recursiveLCS(table, s1, s2[1:])
val = res2
if len(res1) > len(res2):
val = res1
table[len(s1)][len(s2)] = val
return val
def computeLCS(s1, s2):
table = [[False for col in range(len(s2) + 1)] for row in range(len(s1) + 1)]
return recursiveLCS(table, s1, s2)
print computeLCS("testistest", "this_is_a_long_testtest_for_testing_the_algorithm")
Output:
teststest

Resources