Julia - find independent variable if dependent is given - julia

I have the following function in julia that calculates the put option price given certain parameters (S,K,m,y,sigma).
formula
function OptionBlackSFs(S,K,m,y,σ,δ=0,PutIt=false)
# Calculates Black-Scholes European call or put option price, continuous dividends of δ.
d1 = ( log(S/K) + (y-δ+0.5*σ^2)*m ) / (σ*sqrt(m))
d2 = d1 - σ*sqrt(m)
c = exp(-δ*m)*S*Φ(d1) - K*exp(-y*m)*Φ.(d2)
if PutIt
price = c - exp(-δ*m)*S + exp(-y*m)*K
else
price = c
end
return price
end
Is it possible to 'reverse' the function to find out sigma given a certain price?
Thank you!

No, that would require each price to only correspond to a single level of sigma, e.g. for your function to be monotonous. You can't guarantee that.
What you can do though is to have Julia optimise your function iteratively, so you find those values of sigma that leads to the lowest difference between the function output and your price. There are several packages in Julia for this kind of thing, take a look at Optim.jl. E.g. this page: https://julianlsolvers.github.io/Optim.jl/stable/#user/minimization/#minimizing-a-univariate-function-on-a-bounded-interval
Your function isn't univariate, but it's easy to make it so by assigning values to the variables you are not estimating:
f(σ) = OptionBlackSFs(2,3,4,5,σ,6) - input_price
and then pass to Optim, which will solve for the inputs that make the output of f as close to 0 as possible.
A nicer but slightly more complex syntax might be
let S = 2, K = 3, m = 4, y = 5, δ = 6, input_price = 100
global f(σ) = OptionBlackSFs(S,K,m,y,σ,δ) - input_price
end

Related

Initial state starts at y(1), how to go backwards to find y(0)? [duplicate]

I would like to solve a differential equation in R (with deSolve?) for which I do not have the initial condition, but only the final condition of the state variable. How can this be done?
The typical code is: ode(times, y, parameters, function ...) where y is the initial condition and function defines the differential equation.
Are your equations time reversible, that is, can you change your differential equations so they run backward in time? Most typically this will just mean reversing the sign of the gradient. For example, for a simple exponential growth model with rate r (gradient of x = r*x) then flipping the sign makes the gradient -r*x and generates exponential decay rather than exponential growth.
If so, all you have to do is use your final condition(s) as your initial condition(s), change the signs of the gradients, and you're done.
As suggested by #LutzLehmann, there's an even easier answer: ode can handle negative time steps, so just enter your time vector as (t_end, 0). Here's an example, using f'(x) = r*x (i.e. exponential growth). If f(1) = 3, r=1, and we want the value at t=0, analytically we would say:
x(T) = x(0) * exp(r*T)
x(0) = x(T) * exp(-r*T)
= 3 * exp(-1*1)
= 1.103638
Now let's try it in R:
library(deSolve)
g <- function(t, y, parms) { list(parms*y) }
res <- ode(3, times = c(1, 0), func = g, parms = 1)
print(res)
## time 1
## 1 1 3.000000
## 2 0 1.103639
I initially misread your question as stating that you knew both the initial and final conditions. This type of problem is called a boundary value problem and requires a separate class of numerical algorithms from standard (more elementary) initial-value problems.
library(sos)
findFn("{boundary value problem}")
tells us that there are several R packages on CRAN (bvpSolve looks the most promising) for solving these kinds of problems.
Given a differential equation
y'(t) = F(t,y(t))
over the interval [t0,tf] where y(tf)=yf is given as initial condition, one can transform this into the standard form by considering
x(s) = y(tf - s)
==> x'(s) = - y'(tf-s) = - F( tf-s, y(tf-s) )
x'(s) = - F( tf-s, x(s) )
now with
x(0) = x0 = yf.
This should be easy to code using wrapper functions and in the end some list reversal to get from x to y.
Some ODE solvers also allow negative step sizes, so that one can simply give the times for the construction of y in the descending order tf to t0 without using some intermediary x.

Optimize within for loop cannot find function

I've got a function, KozakTaper, that returns the diameter of a tree trunk at a given height (DHT). There's no algebraic way to rearrange the original taper equation to return DHT at a given diameter (4 inches, for my purposes)...enter R! (using 3.4.3 on Windows 10)
My approach was to use a for loop to iterate likely values of DHT (25-100% of total tree height, HT), and then use optimize to choose the one that returns a diameter closest to 4". Too bad I get the error message Error in f(arg, ...) : could not find function "f".
Here's a shortened definition of KozakTaper along with my best attempt so far.
KozakTaper=function(Bark,SPP,DHT,DBH,HT,Planted){
if(Bark=='ob' & SPP=='AB'){
a0_tap=1.0693567631
a1_tap=0.9975021951
a2_tap=-0.01282775
b1_tap=0.3921013594
b2_tap=-1.054622304
b3_tap=0.7758393514
b4_tap=4.1034897617
b5_tap=0.1185960455
b6_tap=-1.080697381
b7_tap=0}
else if(Bark=='ob' & SPP=='RS'){
a0_tap=0.8758
a1_tap=0.992
a2_tap=0.0633
b1_tap=0.4128
b2_tap=-0.6877
b3_tap=0.4413
b4_tap=1.1818
b5_tap=0.1131
b6_tap=-0.4356
b7_tap=0.1042}
else{
a0_tap=1.1263776728
a1_tap=0.9485083275
a2_tap=0.0371321602
b1_tap=0.7662525552
b2_tap=-0.028147685
b3_tap=0.2334044323
b4_tap=4.8569609081
b5_tap=0.0753180483
b6_tap=-0.205052535
b7_tap=0}
p = 1.3/HT
z = DHT/HT
Xi = (1 - z^(1/3))/(1 - p^(1/3))
Qi = 1 - z^(1/3)
y = (a0_tap * (DBH^a1_tap) * (HT^a2_tap)) * Xi^(b1_tap * z^4 + b2_tap * (exp(-DBH/HT)) +
b3_tap * Xi^0.1 + b4_tap * (1/DBH) + b5_tap * HT^Qi + b6_tap * Xi + b7_tap*Planted)
return(y=round(y,4))}
HT <- .3048*85 #converting from english to metric (sorry, it's forestry)
for (i in c((HT*.25):(HT+1))) {
d <- KozakTaper(Bark='ob',SPP='RS',DHT=i,DBH=2.54*19,HT=.3048*85,Planted=0)
frame <- na.omit(d)
optimize(f=abs(10.16-d), interval=frame, lower=1, upper=90,
maximum = FALSE,
tol = .Machine$double.eps^0.25)
}
Eventually I would like this code to iterate through a csv and return i for the best d, which will require some rearranging, but I figured I should make it work for one tree first.
When I print d I get multiple values, so it is iterating through i, but it gets held up at the optimize function.
Defining frame was my most recent tactic, because d returns one NaN at the end, but it may not be the best input for interval. I've tried interval=c((HT*.25):(HT+1)), defining KozakTaper within the for loop, and defining f prior to the optimize, but I get the same error. Suggestions for what part I should target (or other approaches) are appreciated!
-KB
Forestry Research Fellow, Appalachian Mountain Club.
MS, University of Maine
**Edit with a follow-up question:
I'm now trying to run this script for each row of a csv, "Input." The row contains the values for KozakTaper, and I've called them with this:
Input=read.csv...
Input$Opt=0
o <- optimize(f = function(x) abs(10.16 - KozakTaper(Bark='ob',
SPP='Input$Species',
DHT=x,
DBH=(2.54*Input$DBH),
HT=(.3048*Input$Ht),
Planted=0)),
lower=Input$Ht*.25, upper=Input$Ht+1,
maximum = FALSE, tol = .Machine$double.eps^0.25)
Input$Opt <- o$minimum
Input$Mht <- Input$Opt/.3048. # converting back to English
Input$Ht and Input$DBH are numeric; Input$Species is factor.
However, I get the error invalid function value in 'optimize'. I get it whether I define "o" or just run optimize. Oddly, when I don't call values from the row but instead use the code from the answer, it tells me object 'HT' not found. I have the awful feeling this is due to some obvious/careless error on my part, but I'm not finding posts about this error with optimize. If you notice what I've done wrong, your explanation will be appreciated!
I'm not an expert on optimize, but I see three issues: 1) your call to KozakTaper does not iterate through the range you specify in the loop. 2) KozakTaper returns a a single number not a vector. 3) You haven't given optimize a function but an expression.
So what is happening is that you are not giving optimize anything to iterate over.
All you should need is this:
optimize(f = function(x) abs(10.16 - KozakTaper(Bark='ob',
SPP='RS',
DHT=x,
DBH=2.54*19,
HT=.3048*85,
Planted=0)),
lower=HT*.25, upper=HT+1,
maximum = FALSE, tol = .Machine$double.eps^0.25)
$minimum
[1] 22.67713 ##Hopefully this is the right answer
$objective
[1] 0
Optimize will now substitute x in from lower to higher, trying to minimize the difference

how to specify final value (rather than initial value) for solving differential equations

I would like to solve a differential equation in R (with deSolve?) for which I do not have the initial condition, but only the final condition of the state variable. How can this be done?
The typical code is: ode(times, y, parameters, function ...) where y is the initial condition and function defines the differential equation.
Are your equations time reversible, that is, can you change your differential equations so they run backward in time? Most typically this will just mean reversing the sign of the gradient. For example, for a simple exponential growth model with rate r (gradient of x = r*x) then flipping the sign makes the gradient -r*x and generates exponential decay rather than exponential growth.
If so, all you have to do is use your final condition(s) as your initial condition(s), change the signs of the gradients, and you're done.
As suggested by #LutzLehmann, there's an even easier answer: ode can handle negative time steps, so just enter your time vector as (t_end, 0). Here's an example, using f'(x) = r*x (i.e. exponential growth). If f(1) = 3, r=1, and we want the value at t=0, analytically we would say:
x(T) = x(0) * exp(r*T)
x(0) = x(T) * exp(-r*T)
= 3 * exp(-1*1)
= 1.103638
Now let's try it in R:
library(deSolve)
g <- function(t, y, parms) { list(parms*y) }
res <- ode(3, times = c(1, 0), func = g, parms = 1)
print(res)
## time 1
## 1 1 3.000000
## 2 0 1.103639
I initially misread your question as stating that you knew both the initial and final conditions. This type of problem is called a boundary value problem and requires a separate class of numerical algorithms from standard (more elementary) initial-value problems.
library(sos)
findFn("{boundary value problem}")
tells us that there are several R packages on CRAN (bvpSolve looks the most promising) for solving these kinds of problems.
Given a differential equation
y'(t) = F(t,y(t))
over the interval [t0,tf] where y(tf)=yf is given as initial condition, one can transform this into the standard form by considering
x(s) = y(tf - s)
==> x'(s) = - y'(tf-s) = - F( tf-s, y(tf-s) )
x'(s) = - F( tf-s, x(s) )
now with
x(0) = x0 = yf.
This should be easy to code using wrapper functions and in the end some list reversal to get from x to y.
Some ODE solvers also allow negative step sizes, so that one can simply give the times for the construction of y in the descending order tf to t0 without using some intermediary x.

Calculate the n-th derivative in any point using Scilab

I am trying to evaluate a function in Scilab using the following steps:
x=poly(0,'x')
y=(x^18+x^11)^3 // function (the function is variable)
y1=derivat(y) // first derivate
y2=derivat(y) //second derivate
y3=derivat(y) //third derivate
I need evaluate the 3 derivatives in any point.
I know the function: evstr(expression) but it does not work with the return value of the derivative.
I try to use: string(y) but it returns something strange.
How can to do it, to cast the return of derivat to string to evaluate with evstr or how can I evaluate the n-th derivative in any point using Scilab.
To evaluate numerical derivatives of almost any kind of function (of one or sereval variables) up to machine precision (you won't get better results if you evaluate symbolic expressions obtained by hand), you can use the complex step method (google these terms you will have a bunch of references). For example:
function y = f(x)
s = poly(0,'s');
p = (s-s^2)^3;
y = horner(p,x).*exp(-x.^2);
end
x=linspace(-1,1,100);
d = imag(f(x+complex(0,1e-100)))/1e-100;
true_d = exp(-x.^2).*(-1+x).^2.*x^2.*(3-6*x-2*x.^2+2.*x^3)
disp(max(abs(d-true_d)))
--> disp(max(abs(d-true_d)))
1.776D-15
To evaluate a symbolic polynomial at a particular point or points, use the horner command. Example:
t = 0:0.1:1
v1 = horner(y1, t)
plot(t, v1)
This is the closest I got to a solution to this problem.
He proposes using:
old = 'f';
for i=1:n
new = 'd'+string(i)+'f';
deff('y='+new+'(x)','y=numderivative('+old+',x)');
old=new;
end
I know, it's horrible, but I think there is no better solution, at least in Scilab.
I found a way:
function y = deriva(f, v, n, h)
deff("y = DF0(x)", "y="+f)
if n == 0 then
y = DF0(v);
else
for i=1:(n-1)
deff("y=DF"+string(i)+"(x)", "y=numderivative(DF"+string(i-1)+",x,"+string(h)+",4)");
end
deff("y=DFN(x)", "y=numderivative(DF"+string(n-1)+",x,"+string(h)+",4)");
y = DFN(v);
end
endfunction
disp(deriva("x.*x", 3, 2, 0.0001));
This correctly calculates numerical derivatives of nth order. But it needs to have the function passed as a string. Errors can get pretty large, and time to compute tends to go up fast as a function of n.

set function output type based on whether optional keyword argument present

I need to make a histogram, and my data points each carry a statistical weight. The standard hist function isn't equipped to handle this. I could of course import the numpy.histogram function, which handles weighted data just fine, but I thought it would be a good exercise in learning julia to try and augment the hist() function to accept weights as an optional (named) argument.
I started by looking at the julia source for hist(), and was able to modify it slightly (if amateurishly -- suggestions for improvements welcome), to get it sort of working:
function sturges(n) # Sturges' formula
n==0 && return one(n)
iceil(log2(n))+1
end
function weightedhist!{HT}(h::AbstractArray{HT}, v::AbstractVector, edg::AbstractVector; init::Bool=true, weights::AbstractVector = ones(HT,length(v)))
n = length(edg) - 1
length(weights) == length(v) || error("length(weights) must equal length(v)")
length(h) == n || error("length(h) must equal length(edg) - 1.")
if init
fill!(h, zero(HT))
end
for j=1:length(v)
i = searchsortedfirst(edg, v[j])-1
if 1 <= i <= n
h[i] += weights[j]
end
end
edg, h
end
weightedhist(v::AbstractVector, edg::AbstractVector; weights::AbstractVector = ones(Int,length(v))) = weightedhist!(Array(Float64, length(edg)-1), v, edg; weights=weights)
weightedhist(v::AbstractVector, n::Integer; weights::AbstractVector = ones(Int,length(v))) = weightedhist(v, histrange(v,n); weights=weights)
weightedhist(v::AbstractVector; weights::AbstractVector = ones(Int,length(v))) = weightedhist(v, sturges(length(v)); weights=weights)
If I generate some random data with
v = randn(10^5);
w = rand(length(v));
edges = floor(minimum(v)):0.1:ceil(maximum(v));
then weightedhist(v, edges; weights=w) agrees with numpy.histogram(v, edges, weights=w). If I leave out the optional keyword argument for weights, then weightedhist(v, edges) agrees with the built in hist(v, edges), and weightedhist(v) agrees with the built in hist(v), except for the fact that my function outputs floats rather than ints when no weights are provided.
I don't understand why this is the case (is h getting created as a float array? promoted?), and I'd like for the my function to fall back on the behavior of the built in one as closely as possible when no weights are provided.
Can anyone suggest why my function is outputting floats, and how I might change that behavior to output ints when no weights are provided? I'd like to do this without first creating the h array and then converting it from one type to another, since I'd like the code to be as fast as possible.
If I understand correctly, when you call
weightedhist(v, edges)
you are using the first of your three "extra" definitions at the bottom.
This calls
weightedhist!(Array(Float64, length(edg)-1), v, edg; weights=weights)
so in your "main" weightedhist! the HT parameterization will be Float64, so h will be filled with HT == Float64, hence the Float64 output. So changing it to Array(eltype(weights), length(edg)-1) would be sufficient, I believe.

Resources