How to impute missing values not at random? - r

My data consists of 202 cases, each stand for a single interview. The variables reflect the interviewers' and interviewees' behaviours during different parts of the interview: p1, g1, pA, gA. in some interviews, certain parts were not carried out. part p1 wasn't carried out in one interview. part g1 wasn't conducted in 46 cases. part pA wasn't conducted with 14 subjects and gA with 27.
Different variables are different facets of the same underlying concept or latent variable. for example, all four variables belonging to part pA - pAx1, pAx2, pAx3, pAx4 - are different measures of the interviewee's cooperativeness during part pA.
I would like to impute the missing values while accounting for the fact that there is a pattern for values to be missing, such that if a value is missing for a variable of part pA, e.g., pAx1, then, necessarily that the other values pertaining to part pA - pAx2, pAx3, pAx4 - are also missing.
Help would be much appreciated!
this is my data -
df <- structure(list(p1x1 = c(0.54, 0.77, 0.84, 0.84, 0.75, 0.35, 0.67,
0.23, 0.9, 0.81, 0.76, 0.85, 0.61, 0.8, 0.1, 0.81, 0.96, 0.68,
0.83, 0.8, 0.89, 0.85, 1, 0.83, 0.52, 0.74, 0.47, 0.51, 1, 0.83,
0.93, 0, 0.31, 0.95, 0, 0.39, 0.84, 0.62, 0.81, 0.58, 0.7, 0.54,
0.94, 0.76, 0.76, 0.14, 0.67, 0.65, 1, 0.69, 0.31, 0.43, 0.83,
0.79, 0.94, 0.84, 0.28, 0.76, 0.78, 0.91, 0.89, 0.63, 0.76, 0.34,
0.91, 1, 0.72, 0.89, 0.43, 0.85, 0.8, 0.45, 0.12, 0.19, 0.91,
0.74, 0.88, 0.62, 0.92, 0.72, 0.54, 0.59, 0.74, 0.8, 1, 0.66,
0.48, 0.7, 0.96, 0.87, 0.65, 0.61, 0.79, 0.8, 0.93, 0.83, 0.88,
0.76, 0.58, 0.79, 0.65, 0.88, 0.37, 0.74, 0.63, 0.64, 0.58, 0.86,
0.62, 0.57, 0.09, 0.61, 0.29, 0.9, 0.91, 0.73, 0.92, 0.9, 0.56,
0.89, 0.89, 0.62, 0.24, 0.65, 0.76, 0.69, 0.42, 0.8, 0.39, 0.58,
0.72, 0.73, 0.48, NA, 0.5, 0.72, 0.91, 0.58, 0.8, 0, 0.47, 0.5,
0.85, 0.93, 0.81, 0.89, 0.93, 0.55, 0.78, 0.72, 0.77, 0.44, 0.57,
0.78, 0.84, 0.83, 0.62, 0.3, 0.67, 0.96, 0.62, 0.73, 0.29, 0.76,
0.86, 0.7, 0.54, 0.28, 0.74, 0.67, 0.17, 0.05, 0.62, 0.76, 0.73,
1, 0.7, 0.92, 0.31, 1, 0.33, 0.59, 0.62, 0.78, 0.26, 0.76, 0.7,
0.81, 0.82, 0.81, 0.83, 0.3, 0.79, 0, 0.72, 0.67, 0.78, 0.11,
0.32, 0.39, 0.6, 0.7), p1x2 = c(0, 0.08, 0.32, 0.11, 0.12, 0,
0.17, 0.08, 0.38, 0.12, 0, 0.15, 0.25, 0.05, 0, 0.15, 0.13, 0.08,
0.08, 0.13, 0.06, 0.46, 0.21, 0.14, 0.19, 0.11, 0.24, 0.08, 0.36,
0.08, 0.29, 0, 0, 0.14, 0, 0.07, 0.16, 0.04, 0.33, 0.32, 0.22,
0.08, 0.29, 0.06, 0.43, 0.07, 0.06, 0.16, 0.18, 0.19, 0.08, 0.1,
0.17, 0.21, 0.06, 0.11, 0.06, 0.24, 0.22, 0.13, 0.21, 0.26, 0.1,
0, 0.23, 0.44, 0.21, 0.16, 0, 0.15, 0.4, 0.07, 0, 0, 0.31, 0.1,
0.38, 0.43, 0.16, 0.12, 0.12, 0.18, 0.3, 0.45, 0.33, 0.02, 0.19,
0.15, 0.15, 0.2, 0.02, 0.04, 0.21, 0.27, 0.07, 0.14, 0.06, 0.05,
0.37, 0.05, 0.35, 0.25, 0.21, 0.09, 0.08, 0.08, 0.06, 0.71, 0.04,
0.05, 0, 0.04, 0.32, 0.4, 0.55, 0.12, 0.08, 0, 0.19, 0.33, 0.11,
0.06, 0.02, 0.29, 0.12, 0.03, 0.04, 0.33, 0.27, 0.25, 0, 0, 0.19,
NA, 0.08, 0.32, 0.48, 0.08, 0.07, 0, 0.11, 0.17, 0.2, 0.33, 0.19,
0.22, 0.33, 0.09, 0.28, 0.28, 0, 0.44, 0.27, 0.17, 0.32, 0.06,
0.29, 0, 0.1, 0.25, 0.22, 0.45, 0, 0.09, 0.14, 0.33, 0, 0.24,
0.21, 0.06, 0, 0, 0.5, 0.52, 0.36, 0.4, 0.2, 0.33, 0.14, 0.12,
0.08, 0.17, 0.31, 0, 0, 0.16, 0.02, 0, 0.45, 0.19, 0, 0, 0.02,
0, 0.25, 0.43, 0.39, 0, 0.21, 0, 0.02, 0.25), p1x3 = c(0.46,
0.12, 0.21, 0.47, 0.29, 0.4, 0.33, 0.38, 0.21, 0.12, 0.41, 0.1,
0.29, 0.45, 0.9, 0.3, 0.22, 0.18, 0, 0.27, 0.17, 0.23, 0, 0.28,
0.19, 0.16, 0.59, 0.38, 0.07, 0.25, 0.36, 1, 0.75, 0.14, 1, 0.43,
0.21, 0.42, 0.1, 0.42, 0.39, 0.53, 0.06, 0.35, 0.33, 0.64, 0.28,
0.29, 0.24, 0.19, 0.69, 0.61, 0.08, 0.37, 0.06, 0.26, 0.56, 0.34,
0.48, 0.17, 0.25, 0.11, 0.14, 0.24, 0.14, 0.07, 0.28, 0.37, 0.46,
0.35, 0.6, 0.52, 0.81, 0.39, 0.07, 0.23, 0.08, 0.19, 0.08, 0.44,
0.73, 0.3, 0.11, 0.15, 0.25, 0.32, 0.24, 0.44, 0.07, 0.13, 0.22,
0.26, 0.29, 0.2, 0.29, 0.28, 0.06, 0.29, 0.42, 0.05, 0.6, 0.25,
0.68, 0.26, 0.42, 0.31, 0.36, 0.14, 0.29, 0.03, 0.5, 0.14, 0.54,
0.3, 0.05, 0.35, 0.38, 0.3, 0.06, 0.11, 0.3, 0.41, 0.44, 0.47,
0.18, 0.28, 0.67, 0, 0.45, 0.25, 0.28, 0.27, 0.24, NA, 0.42,
0.24, 0.48, 0.21, 0.2, 1, 0.79, 0.33, 0.1, 0.07, 0.19, 0.28,
0.13, 0.45, 0.17, 0.17, 0.08, 0.62, 0.2, 0.26, 0.12, 0.17, 0.29,
0.7, 0.33, 0.04, 0.38, 0.18, 0.71, 0.24, 0.21, 0.41, 0.31, 0.56,
0, 0.39, 0.83, 0.65, 0.62, 0, 0.32, 0, 0.4, 0.08, 0.43, 0.65,
0.25, 0.28, 0.31, 0.09, 0.71, 0.08, 0.09, 0.17, 0.09, 0.24, 0.33,
0.52, 0.21, 1, 0.28, 0, 0.22, 0.89, 0.32, 0.48, 0.53, 0.45),
p1x4 = c(0, 0.71, 0.78, 0.73, 0.73, 0.75, NA, 0, 0.78, 1,
0.8, 0.71, 0.88, 0.9, NA, 0.73, 1, 0.57, 0.83, 0.67, 0.67,
1, 1, 0.47, 0, 0.86, NA, 0.4, 0.88, 0.86, 1, NA, 0.33, 0.73,
0, 0.28, 0.89, 0.62, 0.45, 0.4, 0.75, 0.42, 0.8, 0.5, 0.67,
0.33, 0.54, 0.25, 0.9, 0.54, NA, 0.33, 0, 0.67, 0.82, 0.62,
NA, 0.62, 0.5, NA, 0.81, 0, 0.6, 0, 0.88, 0, 0.45, 0.8, 0,
0.89, NA, 0.47, NA, 0.3, 0.25, NA, 0, 0, 0.82, 0, 0.5, 0.53,
0.61, 0.58, 1, 0, 0.23, 0.53, 0.78, 0, 0.33, 0.57, 0.57,
0.89, 1, 0.6, 0.88, 0.9, 0.5, 0.56, 0.42, 0.75, NA, 0.71,
0, 0.59, NA, NA, 0.33, 0.4, 0.22, 0.33, 0.3, 0.86, 0.7, 0.78,
1, 0.92, 0, 0.89, 0.61, 0.6, 0.16, 0.4, 0.55, 0, 0.36, 0.6,
0, 0.43, 0.5, 0.42, 0.36, NA, 0.33, 0.8, 0.81, 0, 0.62, 0,
0.56, 0.6, 0, 0.88, 0.67, 0.83, 1, 0.36, 0, 0.4, 0, 0.29,
0.45, 0.82, 0.67, 0.8, 0.59, 0.17, 0.24, 0, 0, 0.69, 0.25,
0.56, 0.38, 0.64, NA, 0, 0.64, 0.75, NA, NA, 0.44, 0.65,
0.67, 1, 0.78, NA, 0.17, 0.9, 0, 0.53, 0.22, 1, 0, 0, 0.53,
0.56, 1, 0.77, 0, 0, 0, NA, 0.73, 0.33, 0.71, NA, 0, 0, 0.46,
0.78), p1y1 = c(0.42, 0.27, 0.63, 0.32, 0.46, 0.8, 0.5, 0.31,
0.59, 0.38, 0.24, 0.55, 0.71, 0.7, 0.8, 0.59, 0.35, 0.08,
0.33, 0.6, 0.22, 0.46, 0.43, 0.38, 0.33, 0.32, 0.41, 0.24,
0.43, 0.33, 0.64, 1, 0.44, 0.33, 0.5, 0.25, 0.53, 0.29, 0.33,
0.89, 0.26, 0.34, 0.59, 0.35, 0.48, 0.43, 0.44, 0.45, 0.53,
0.46, 0.69, 0.18, 0.54, 0.32, 0.41, 0.58, 0.17, 0.28, 0.26,
0.35, 0.43, 0.58, 0.33, 0.07, 0.27, 0.59, 0.59, 0.58, 0.14,
0.54, 1, 0.24, 0.35, 0.24, 0.29, 0.13, 0.88, 0.38, 0.48,
0.16, 0.35, 0.36, 0.41, 0.45, 1, 0.22, 0.33, 0.22, 0.15,
0.27, 0.02, 0.35, 0.57, 0.6, 0.5, 0.52, 0.41, 0.57, 0.42,
0.53, 0.35, 0.31, 0.58, 0.34, 0.37, 0.5, 0.44, 0.71, 0.46,
0.16, 0.32, 0.39, 0.43, 0.6, 0.86, 0.38, 0.33, 0.55, 0.5,
0.56, 0.19, 0.38, 0.13, 0.53, 0.65, 0.22, 0.46, 0.4, 0.42,
0.5, 0.32, 0.42, 0.33, 0, 0.5, 0.56, 0.26, 0.12, 0.47, 0.5,
0.53, 0, 0.55, 0.4, 0.29, 0.17, 0.33, 0.45, 0.72, 0.33, 0.77,
0.75, 0.6, 0.25, 0.48, 1, 0.33, 0.5, 0.59, 0.38, 0.22, 0.45,
0.35, 0.24, 0.57, 0.48, 0.31, 0.36, 0.32, 0.56, 0.46, 0.25,
0.25, 0.64, 0.91, 0.67, 0.5, 0.92, 0.17, 0.47, 0.83, 0.24,
0.23, 0.43, 0.32, 0.55, 0.14, 0.09, 0.73, 0.29, 0.39, 0.39,
0.32, 1.2, 0.39, 0.48, 0.39, 0.33, 0.74, 0.55, 0.29, 0.6),
g1y2 = c(0.46, 0.79, 0.83, 0.44, NA, 0.84, NA, NA, 1.44,
0.55, 0.86, 0.35, 0.63, 1.05, NA, 1.45, 0.67, 0.85, 0.45,
1.13, 0.42, 0.45, 0.6, 1.12, 1, 0.63, NA, NA, 0.68, 1.09,
1.28, NA, 1.17, 0.93, NA, 0.45, 0.5, 1.06, 0.51, 0.86, 1.09,
1.28, 0.83, 0.94, 1.1, NA, 0.95, NA, 1.1, 0.94, NA, 0.31,
1.33, 0.97, 0.57, 0.94, NA, NA, 0.79, NA, 1.02, 0.62, 1.11,
0.52, 0.97, 0.89, NA, 1, 0.46, 0.85, NA, 0.5, NA, 1.25, 0.75,
NA, 0.71, 1, 0.6, 0.51, 0.8, 0.86, 1.03, 0.8, 0.79, 0.6,
NA, 0.87, 0.57, 0.36, 0.64, 0.43, 0.88, 1.14, 0.76, NA, 0.71,
0.77, 0.7, 0, 0.94, 0.93, NA, 0.47, NA, 0.98, NA, NA, NA,
0.44, 1, 0.62, 0.7, 0.96, 0.94, 0.74, 0.65, 0.86, 1.5, 0.92,
NA, 1.11, 0.75, 1.09, 0.79, 0.6, 0.75, 0.71, NA, 0.62, 1.08,
0.58, 0.62, NA, 0.67, 1.11, 1.11, 0.32, 0.77, NA, 1.5, 0.47,
NA, 0.93, NA, 0.4, NA, 0.94, 1, 0.72, 0.85, 0.73, 0.79, 0.32,
0.81, 0.92, 0.93, NA, 1, 0.7, 0.88, 1, NA, 0.85, 1, 0.92,
0.67, NA, 0.68, 0.64, NA, NA, 0.67, 1, NA, 1.08, 1.21, NA,
NA, 1, NA, 0.72, 0.5, 0.95, 1, 0.79, 0.65, 0.72, 1.03, 0.86,
0.84, NA, 1.11, NA, 0.97, NA, 0.85, NA, NA, 1.22, 0.31, 0.81
), g1y3 = c(0.21, 0.05, 0.13, 0, NA, 0.18, NA, NA, 0.12,
0.1, 0.27, 0.08, 0.11, 0.35, NA, 0.36, 0.33, 0.03, 0.27,
0.13, 0.17, 0.05, 0.4, 0.06, 0.5, 0.07, NA, NA, 0.08, 0.18,
0.11, NA, 0.5, 0.13, NA, 0.27, 0.17, 0.06, 0.14, 0.29, 0.18,
0.05, 0.12, 0.19, 0.05, NA, 0.2, NA, 0.3, 0.28, NA, 0.38,
0.33, 0.12, 0.05, 0.29, NA, NA, 0.15, NA, 0.07, 0.12, 0.06,
0, 0.05, 0.09, NA, 0.09, 0, 0.15, NA, 0.12, NA, 0.12, 0.12,
NA, 0.06, 0.25, 0.08, 0, 0.06, 0.14, 0.09, 0.16, 0.07, 0.07,
NA, 0.1, 0.11, 0.36, 0.06, 0.29, 0.19, 0.14, 0.05, NA, 0.09,
0.04, 0.04, 0, 0.1, 0.21, NA, 0.07, NA, 0.14, NA, NA, NA,
0.08, 0, 0.23, 0.03, 0.15, 0.18, 0.04, 0.15, 0.1, 0.5, 0.08,
NA, 0.05, 0.5, 0.27, 0.03, 0.1, 0.09, 0.18, NA, 0.1, 0.15,
0.18, 0.23, NA, 0.1, 0.05, 0.33, 0.05, 0.31, NA, 0.08, 0,
NA, 0.31, NA, 0.2, NA, 0.18, 0.17, 0.11, 0.15, 0.04, 0.14,
0.09, 0.06, 0.08, 0.21, NA, 0.12, 0.04, 0.27, 0.14, NA, 0.07,
0.11, 0.12, 0, NA, 0.04, 0.18, NA, NA, 0.09, 0.17, NA, 0.08,
0.12, NA, NA, 0.15, NA, 0.13, 0.3, 0.09, 0.12, 0.09, 0.18,
0.1, 0.16, 0.29, 0.05, NA, 0.17, NA, 0.06, NA, 0.08, NA,
NA, 0.11, 0.2, 0.19), g1y4 = c(0, 0, 0, 0, NA, 0, NA, NA,
0, 0, 0, 0, 0, 0, NA, 0, 0, 0.17, 0, 0, 0, 0, 0, 0, 0, 0,
NA, NA, 0, 0, 0, NA, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, NA, 0, NA, 0, 0, NA, 0, 0, 0, 0, 0, NA, NA, 0, NA, 0,
0, 0, 0.1, 0, 0, NA, 0, 0, 0, NA, 0, NA, 0, 0, NA, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, NA, 0,
0, 0, 0, 0, 0, NA, 0, NA, 0, NA, NA, NA, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, NA,
0, 0.08, 0, 0, 0, NA, 0, 0, NA, 0, NA, 0, NA, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, NA, 0, 0, 0, 0, NA, 0,
0, NA, NA, 0, 0, NA, 0, 0, NA, NA, 0, NA, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, NA, 0, NA, 0, NA, 0, NA, NA, 0, 0, 0), g1y5 = c(0.21,
0.11, 0.13, 0.25, NA, 0, NA, NA, 0.12, 0.25, 0, 0.23, 0.37,
0.05, NA, 0, 0, 0.1, 0.18, 0.13, 0.33, 0.36, 0.1, 0.06, 0,
0.2, NA, NA, 0.16, 0, 0, NA, 0.17, 0, NA, 0.09, 0.2, 0.06,
0.3, 0.14, 0, 0, 0.12, 0.25, 0, NA, 0, NA, 0, 0.06, NA, 0.23,
0, 0, 0.3, 0, NA, NA, 0.06, NA, 0, 0.5, 0.03, 0.07, 0.28,
0.08, NA, 0.15, 0.15, 0, NA, 0.31, NA, 0, 0, NA, 0.37, 0,
0.2, 0.34, 0.1, 0, 0, 0, 0.21, 0.37, NA, 0.03, 0.18, 0.18,
0.24, 0.21, 0, 0, 0.05, NA, 0.13, 0.12, 0.32, 0, 0, 0, NA,
0.25, NA, 0, NA, NA, NA, 0.28, 0, 0.15, 0.22, 0, 0.12, 0.13,
0.15, 0, 0, 0, NA, 0, 0, 0, 0.24, 0.4, 0.06, 0.18, NA, 0.38,
0, 0.21, 0, NA, 0.29, 0.02, 0, 0.26, 0, NA, 0, 0.35, NA,
0, NA, 0.2, NA, 0, 0, 0, 0, 0.12, 0, 0.5, 0.1, 0.2, 0, NA,
0.08, 0.36, 0, 0, NA, 0.07, 0, 0.08, 0, NA, 0.28, 0.11, NA,
NA, 0.03, 0, NA, 0, 0, NA, NA, 0, NA, 0.06, 0.1, 0, 0, 0.27,
0.11, 0.17, 0.08, 0, 0.11, NA, 0, NA, 0, NA, 0.15, NA, NA,
0, 0.4, 0), g1y6 = c(0.68, 0.47, 0.43, 0.44, NA, 0.47, NA,
NA, 0.44, 0.65, 0.32, 0.77, 0.63, 0.7, NA, 0.45, 0.67, 0.24,
0.91, 0.47, 0.92, 0.77, 0.8, 0.21, 0.5, 0.6, NA, NA, 0.43,
0.18, 0.22, NA, 1, 0.13, NA, 0.73, 0.67, 0.31, 0.6, 0.43,
0.27, 0.26, 0.5, 0.75, 0.08, NA, 0.2, NA, 0.5, 0.44, NA,
0.85, 0.33, 0.34, 0.54, 0.29, NA, NA, 0.3, NA, 0.13, 0.75,
0.17, 0.57, 0.44, 0.28, NA, 0.5, 0.46, 0.38, NA, 0.69, NA,
0.25, 0.62, NA, 0.57, 0.25, 0.52, 0.54, 0.29, 0.14, 0.11,
0.32, 0.55, 0.53, NA, 0.27, 0.5, 0.91, 0.52, 0.86, 0.44,
0.14, 0.3, NA, 0.38, 0.31, 0.56, 1, 0.16, 0.29, NA, 0.6,
NA, 0.14, NA, NA, NA, 0.68, 0.29, 0.77, 0.46, 0.19, 0.47,
0.35, 0.8, 0.28, 0.5, 0.15, NA, 0.05, 0.5, 0.36, 0.47, 0.7,
0.31, 0.53, NA, 0.71, 0.31, 0.61, 0.69, NA, 0.62, 0.11, 0.33,
0.84, 0.43, NA, 0.17, 0.59, NA, 0.52, NA, 1, NA, 0.29, 0.25,
0.5, 0.31, 0.45, 0.36, 0.82, 0.52, 0.6, 0.25, NA, 0.48, 0.47,
0.39, 0.23, NA, 0.26, 0.11, 0.33, 0.67, NA, 0.44, 0.46, NA,
NA, 0.42, 0.17, NA, 0.17, 0.25, NA, NA, 0.23, NA, 0.32, 0.7,
0.32, 0.12, 0.45, 0.49, 0.45, 0.32, 0.43, 0.37, NA, 0.39,
NA, 0.11, NA, 0.35, NA, NA, 0.11, 0.8, 0.31), g1y7 = c(0.46,
0.42, 0.3, 0.44, NA, 0.29, NA, NA, 0.31, 0.55, 0.05, 0.69,
0.53, 0.35, NA, 0.09, 0.33, 0.21, 0.64, 0.33, 0.75, 0.73,
0.4, 0.15, 0, 0.53, NA, NA, 0.35, 0, 0.11, NA, 0.5, 0, NA,
0.45, 0.5, 0.25, 0.47, 0.14, 0.09, 0.21, 0.38, 0.56, 0.02,
NA, 0, NA, 0.2, 0.17, NA, 0.46, 0, 0.22, 0.49, 0, NA, NA,
0.15, NA, 0.07, 0.62, 0.11, 0.57, 0.38, 0.19, NA, 0.41, 0.46,
0.23, NA, 0.56, NA, 0.12, 0.5, NA, 0.51, 0, 0.44, 0.54, 0.22,
0, 0.03, 0.16, 0.48, 0.47, NA, 0.17, 0.39, 0.55, 0.45, 0.57,
0.25, 0, 0.24, NA, 0.29, 0.27, 0.52, 1, 0.06, 0.07, NA, 0.53,
NA, 0, NA, NA, NA, 0.6, 0.29, 0.54, 0.43, 0.04, 0.29, 0.3,
0.65, 0.17, 0, 0.08, NA, 0, 0, 0.09, 0.44, 0.6, 0.22, 0.35,
NA, 0.62, 0.15, 0.42, 0.46, NA, 0.52, 0.06, 0, 0.79, 0.11,
NA, 0.08, 0.59, NA, 0.21, NA, 0.8, NA, 0.12, 0.08, 0.39,
0.15, 0.41, 0.21, 0.73, 0.45, 0.52, 0.04, NA, 0.36, 0.43,
0.12, 0.09, NA, 0.2, 0, 0.21, 0.67, NA, 0.4, 0.29, NA, NA,
0.33, 0, NA, 0.08, 0.12, NA, NA, 0.08, NA, 0.19, 0.4, 0.23,
0, 0.36, 0.32, 0.34, 0.16, 0.14, 0.32, NA, 0.22, NA, 0.06,
NA, 0.27, NA, NA, 0, 0.6, 0.12), pAx1 = c(0.2, 0.56, 0.67,
NA, 0.7, 0.5, 1, NA, 1, NA, 1, 0.67, 0.67, 0.57, 0.85, 0.91,
0.82, 0.65, 1, 0.8, 0.67, 1, 0.67, 0.5, 0.64, 0.45, 0.8,
0.74, 0.67, 0, 1, 0.42, NA, 0.4, 0.77, 0.62, 1, 0.44, 0.59,
0.4, 0.5, 0.14, 0.93, 0.82, 0.85, 0.8, 0.71, 0.62, 0.6, 1,
0.95, 0.4, 0.6, 0.75, 0.36, 1, 0.53, 0.63, 0.67, 0.65, 0.82,
0.43, 0.5, NA, 0.76, 0.78, 1, 0.88, 0.6, 0.57, 0.77, 0, 0.71,
0.46, 0.9, 0.89, 0.95, 0.14, 1, 0.4, 0.31, NA, 1, 1, 0.92,
1, NA, 0.91, 0.94, 1, 0.83, 0.67, 1, 1, 0.62, 0.5, 0.9, 0.76,
0.61, 0.29, 0.58, 0.67, 0.88, 0.45, 0.86, 0.53, 0.88, 1,
0.65, NA, 0.12, 0.79, 0.92, 1, 0.83, 0.8, 0.79, 1, 0, NA,
0.5, 0.47, 0.52, 0.86, 1, 1, 0.5, 1, 0.14, 0.58, 0.7, 0.5,
0.56, 0.42, 0.3, 0.18, 1, 0.61, 0.25, 0.83, 0.75, 0.78, 0.6,
1, 0.38, 0, NA, 0.67, 0, 0.53, NA, 0.89, 0, 0.75, 0.67, 0.75,
1, 0.75, 0.59, 0.67, NA, 0, 0.33, 0.25, 0.8, 0.58, NA, 0.19,
0.89, 0.67, 0.11, 0.43, 0, 0.09, 1, NA, 0.71, 0.15, 0, 0.81,
0.4, 0.58, 0.17, 0, 0, 0.5, 0.38, 0.5, 0, 0.72, 1, 0.33,
0, 0.91, 0, 0.12, 0.04, 0.4, 0.43, 0.34, 0, 1), pAx2 = c(0,
0, 0.17, NA, 0.05, 0.07, 0, NA, 0.5, NA, 0, 0.08, 0.17, 0,
0.1, 0, 0.05, 0.06, 1, 0.4, 0, 0, 0, 0.05, 0.27, 0, 0.13,
0.29, 0, 0, 0, 0, NA, 0, 0.23, 0.12, 0, 0, 0.12, 0, 0.1,
0.29, 0.43, 0.18, 0.4, 0, 0.14, 0, 0, 0.33, 0.5, 0.2, 0,
0.75, 0.07, 0, 0, 0.11, 0, 0.35, 0.41, 0.29, 0.08, NA, 0.06,
0.24, 0, 0.24, 0, 0.05, 0.27, 0, 0.07, 0, 0, 0.11, 0.29,
0.14, 0.25, 0.2, 0.12, NA, 0.33, 0.83, 0.23, 0, NA, 0.05,
0.1, 0, 0.1, 0.33, 0.2, 0, 0, 0, 0, 0.18, 0.11, 0.14, 0.5,
0.33, 0.12, 0.03, 0.18, 0.05, 0.08, 0.18, 0.08, NA, 0, 0,
0.08, 0.67, 0.5, 0.13, 0.04, 0, 1, NA, 0, 0.05, 0, 0.14,
0.25, 0, 0.12, 0, 0, 0.16, 0, 0, 0, 0.12, 0, 0.14, 0.75,
0.44, 0.25, 0.06, 0, 0.17, 0.2, 0.08, 0.38, 0.33, NA, 0.17,
0, 0.24, NA, 0.11, 0, 0, 0, 0.25, 0.38, 0.08, 0.05, 0.12,
NA, 0.5, 0, 0, 0.4, 0.12, NA, 0.62, 0.17, 0, 0, 0.04, 1,
0.45, 1, NA, 0.07, 0.11, 0, 0.06, 0, 0.15, 0.17, 0, 0, 0,
0.12, 0.04, 0, 0.17, 0, 0, 0.03, 0.14, 0.21, 0.25, 0.04,
0.02, 0.07, 0.02, 0, 0), pAx3 = c(0.5, 0.38, 0.33, NA, 0.5,
0.21, 0, NA, 0.25, NA, 0, 0.08, 0.22, 0.29, 0.25, 0.36, 0.45,
0.19, 0, 0.2, 0, 0, 0, 0.35, 0.45, 0.1, 0.27, 0.09, 0.67,
0, 0, 0.58, NA, 0.6, 0.31, 0.38, 1, 0.56, 0.24, 0.4, 0.5,
0.29, 0.07, 0.36, 0.6, 0, 0.21, 0.38, 0.4, 0, 0.1, 0.2, 0,
0, 0.21, 1, 0.42, 0.21, 0.28, 0.29, 0.12, 0.43, 0.58, NA,
0.06, 0.19, 0, 0.18, 0.4, 0.43, 0.35, 0.5, 0.36, 0.08, 0,
0.03, 0.11, 0.09, 0, 0.4, 0.59, NA, 0.33, 0.33, 0, 1, NA,
0.14, 0.1, 0, 0.24, 0.33, 0.2, 0, 0.12, 0.5, 0, 0.29, 0.17,
0, 0.17, 0, 0, 0.52, 0.23, 0.5, 0.38, 0.18, 0.38, NA, 0.38,
0.11, 0.31, 0.33, 0.33, 0.07, 0.39, 0, 0, NA, 0.5, 0.68,
0.43, 0.43, 0.5, 0, 0.25, 1, 0.64, 0, 0.3, 0.25, 0.44, 0.42,
0.2, 0.39, 0.25, 0.33, 0, 0.17, 0.75, 0.56, 0.4, 0.08, 0.12,
0.67, NA, 0.5, 1, 0.41, NA, 0.78, 0.5, 0.12, 0.33, 0.5, 0,
0.33, 0.64, 0.29, NA, 0.62, 0.71, 0.12, 0, 0.46, NA, 0.31,
0.11, 0, 0.56, 0.57, 1, 0.27, 0, NA, 0.21, 0.22, 1, 0.19,
0.6, 0.15, 0.28, 1, 1, 0, 0.25, 0.18, 0.62, 0.5, 0.5, 0.5,
0.4, 0.18, 0.14, 0.25, 0.28, 0.32, 0.43, 0.5, 0.5, 0.33),
pAx4 = c(NA, 0.12, NA, NA, 0.69, 0.29, 0.92, NA, NA, NA,
NA, 0.71, 0.82, 0.4, 0.46, 1, 0.2, 0.5, NA, NA, NA, NA, NA,
0, 0.38, 0, 0.73, 0.46, NA, NA, NA, 0.2, NA, NA, 0.43, 0.43,
NA, NA, 0.38, 0.5, NA, NA, 0.71, 0.83, 0.7, NA, 0.75, 0.5,
NA, 1, 0.86, NA, 0, NA, 0.69, 1, 0.29, 0.6, 0.71, 1, 0.8,
NA, NA, NA, 0.73, 0.59, NA, 0, NA, 0.6, 0.38, NA, NA, 0.75,
0.54, 0, 0, 0, NA, NA, 0.19, NA, NA, NA, 1, 0, NA, 0.91,
NA, NA, NA, NA, NA, NA, NA, NA, 0.88, 0, 0.53, 0.29, NA,
NA, 0, 0.43, 0, 0.28, 0.6, 0.67, 0.42, NA, NA, NA, 0.91,
NA, NA, NA, 0, NA, NA, NA, 0, 0.67, NA, NA, NA, 0, NA, NA,
0.07, 0.3, NA, NA, 0, 0.28, 0, 0, NA, 0.67, NA, 0.78, NA,
0.75, NA, NA, NA, NA, NA, NA, 0, 0, NA, 1, NA, 0.62, NA,
NA, NA, 0.67, 0.69, 0, NA, 0, 0.25, 0, NA, 0.5, NA, 0.08,
0.92, NA, NA, 0.56, NA, NA, NA, NA, 0.6, 0, NA, 0.67, 0.33,
0.32, NA, NA, NA, NA, 0.67, 0, NA, 0.57, 1, 0, NA, 0.73,
NA, 0.12, 0, 0.21, 0, 0, NA, NA), pAy1 = c(0.1, 0.19, 0.5,
0, 0.2, 0.07, 0.15, 0, 0.75, 0, 1, 0.5, 0.17, 0.71, 0.2,
0.27, 0.27, 0.1, 2, 0.6, 1, 1, 0, 0.4, 0.18, 0.2, 0.13, 0.4,
0.33, 1, 0, 0.5, 0, 0.8, 0.35, 0.25, 1, 0.33, 0.35, 0.4,
0.4, 0.29, 0.57, 0.64, 0.35, 0.8, 0.21, 0.25, 0.8, 0, 0.8,
0.2, 0.6, 0.75, 0.14, 0, 0.05, 0.37, 0.11, 0.41, 0.35, 0.14,
0.25, 0, 0.24, 0.37, 0, 0.41, 0, 0.38, 0.65, 0, 0.64, 0.46,
0.13, 0.23, 0.42, 0.32, 0.5, 0.2, 0.31, 0, 1, 0.5, 0.77,
1, 0, 0.32, 0.32, 0.5, 0.1, 0.67, 0.4, 0, 0, 0.17, 0.5, 0.59,
0.17, 0.86, 0.75, 0.67, 0.42, 0.42, 0.41, 0.34, 0.23, 0.09,
0.27, 0, 0.25, 0.21, 0.23, 0.67, 0.17, 0.4, 0.11, 0, 0, 0,
0, 0.37, 0.24, 1.29, 1.25, 1.5, 0.62, 0, 0.36, 0.16, 0.2,
0.25, 0.22, 0.46, 0.6, 0.37, 0.75, 0.56, 0.75, 0.33, 0.5,
0.5, 0.6, 0.23, 0.38, 0, 0, 0.67, 1, 0.41, 0, 0.33, 0.5,
0, 0.67, 0, 0.75, 0.08, 0.5, 0.33, 0, 0.25, 0.24, 0.25, 1.2,
0.58, 0, 0.5, 0.28, 0, 0.56, 0.26, 0, 0.27, 1, 0, 0.39, 0.15,
0.67, 0.31, 1, 0.11, 0.17, 1, 0.2, 1, 0.12, 0.11, 0.38, 0.28,
0.5, 0.33, 0.07, 0.36, 0.38, 0.38, 0.04, 0.15, 0.21, 0.57,
0.62, 1), gAy2 = c(NA, 0.4, 1.27, 0.25, 1.03, 1, NA, 0.6,
1.23, 0.69, 0.78, 0.81, 0, 1.07, NA, 1.11, 0.38, 0.59, 0.29,
NA, 0.33, 0.38, 0.2, NA, 0.5, 0.5, 0.67, 0.67, 1, NA, NA,
0.64, NA, 0.8, 0.44, 0.31, NA, 0.73, 0.52, 0.84, 1.08, 1.25,
0.36, 0.36, 1, 0.25, 0.4, 0.82, 1.14, 0.77, 0.76, 0, 0.9,
1, 0, 0.68, 0.67, 1.08, 1, 1.13, NA, 0.5, 0.73, 0.33, 0.92,
0.88, NA, 1.26, 1, 0.8, 1.18, 0.29, 0.78, 1.14, 0.62, 0,
0.62, 0.61, 0.43, 0.27, 0, 1.07, NA, 0.5, 1.25, 0.18, 0.71,
1, 0.85, 0.1, NA, 0.5, 0.71, 1.18, 0.71, 0.42, 1.4, 1, 0.89,
0.33, 0.91, 0.32, 0.52, 0.5, 1.04, 0.9, 0.64, 0.2, 1.33,
NA, 0.67, 0.78, NA, NA, 0.57, 0.88, NA, NA, 0.22, 0.67, 0.55,
1, 0, 0.81, 1, 0.62, 0.75, 0.67, 0.55, 0.2, NA, NA, 0.5,
0.6, 0.6, 1.05, 0.89, 0, 1, 0.73, 0.57, 1.33, 0.16, NA, 0.69,
0, 0.56, 0.14, 1, 0.8, 1.25, 3, 0.81, 0.5, 1.67, NA, 0, 0.8,
1.25, 0.6, 0.79, NA, 0.52, 1.2, 0.84, 1, 0.46, 0.18, 0.62,
0.71, 0.4, 0.12, 0.2, 1.25, 1, NA, 0.92, 0.38, 0.58, 1.38,
1, 0.7, NA, 0.4, 0.69, 0.89, 0.36, 0.67, 0.87, 0.38, 1.08,
0.94, NA, 0.73, 0.29, 0.83, NA, 1, 0.47, 0.98, 0.11, 2),
gAy3 = c(NA, 0.2, 0, 0, 0.08, 1, NA, 0.2, 0, 0.15, 0.07,
0, 1, 0.1, NA, 0.22, 0, 0.18, 0.43, NA, 0.11, 0.15, 0.4,
NA, 0.75, 0.5, 0.5, 0.22, 1, NA, NA, 0.14, NA, 0.4, 0.33,
0.62, NA, 0.13, 0, 0.16, 0.17, 0.38, 0.36, 0.27, 0.56, 0.38,
0.3, 0.06, 0.14, 0, 0.12, 0.11, 0.03, 0.25, 0.5, 0.11, 1,
0.08, 0, 0.33, NA, 0.04, 0.09, 0.67, 0, 0.38, NA, 0, 0, 0,
0.09, 0.07, 0.33, 0.14, 0.23, 0, 0, 0.13, 0, 0, 0, 0, NA,
0, 0.12, 0, 0.14, 1, 0, 0.4, NA, 0.38, 0, 0, 0, 0.25, 0,
1, 0.11, 0.08, 0.05, 0.21, 0.14, 0.09, 0.08, 0.1, 0.18, 0.3,
0.67, NA, 0, 0.11, NA, NA, 0.07, 0.38, NA, NA, 0.11, 0.33,
0.27, 0.5, 0, 0.05, 0, 0.12, 0.15, 1, 0.06, 0, NA, NA, 0,
0.6, 0, 0.05, 0.21, 0.2, 0.5, 0.18, 0.29, 1, 0, NA, 0.08,
0, 0.22, 0.14, 0, 0.1, 0, 1, 0.05, 0.3, 0, NA, 1, 0.3, 0.12,
0.1, 0.02, NA, 0.09, 0.2, 0.05, 0.5, 0.06, 0.36, 0.12, 0.06,
0.13, 0, 0.1, 0.5, 0.17, NA, 0.15, 0.15, 0.25, 0, 0.2, 0.04,
NA, 0, 0, 0, 0, 0, 0.33, 0.12, 0, 0.08, NA, 0.13, 0.14, 0.5,
NA, 1, 0.47, 0.1, 0, 1), gAy4 = c(NA, 0, 0, 0, 0, 0, NA,
0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, NA, 0, 0, 0, NA, 0,
0, 0, 0, 0, NA, NA, 0, NA, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, 0,
0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, NA, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, NA, NA, 0, 0, NA, NA,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, NA, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA,
0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
NA, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0.57, 0, 0, 0, 0, 0, 0, NA,
0, 0, 0, NA, 0, 0, 0, 0, 0), gAy5 = c(NA, 0.4, 0.18, 0.33,
0.08, 0, NA, 0, 0, 0.08, 0.15, 0, 0, 0.13, NA, 0, 0.19, 0,
0.14, NA, 0.44, 0.31, 0, NA, 0, 0, 0, 0.11, 0, NA, NA, 0.18,
NA, 0, 0, 0, NA, 0.2, 0.1, 0.32, 0.25, 0, 0.21, 0.27, 0,
0.12, 0, 0.06, 0.14, 0.31, 0.08, 0.22, 0.1, 0, 0, 0.21, 0,
0.13, 0.09, 0, NA, 0.25, 0.18, 0, 0.08, 0, NA, 0.05, 0, 0.08,
0, 0.36, 0, 0, 0.31, 0, 0.2, 0.13, 0.57, 0.45, 1, 0, NA,
0, 0, 0.45, 0.14, 0, 0, 0.1, NA, 0.5, 0.29, 0, 0, 0.25, 0,
0, 0, 0.33, 0.07, 0.21, 0.24, 0.25, 0.15, 0.1, 0, 0.3, 0,
NA, 0.14, 0.11, NA, NA, 0.21, 0, NA, NA, 0.17, 0, 0.27, 0,
0.75, 0.05, 0, 0.38, 0.1, 0, 0.36, 0.4, NA, NA, 0.5, 0, 0.6,
0.05, 0, 0.33, 0, 0.18, 0, 0, 0.72, NA, 0, 0, 0.22, 0.29,
0.5, 0.1, 0, 0, 0.05, 0, 0, NA, 0, 0, 0, 0, 0.05, NA, 0.35,
0, 0.05, 0, 0.17, 0.18, 0.56, 0.24, 0.33, 0.5, 0.2, 0, 0,
NA, 0.08, 0.08, 0.17, 0.12, 0.3, 0.15, NA, 0.4, 0.23, 0.09,
0.09, 0.29, 0.2, 0.25, 0.08, 0.18, NA, 0.27, 0.29, 0, NA,
0, 0, 0, 0, 0), gAy6 = c(NA, 0.8, 0.27, 0.67, 0.37, 1, NA,
0.6, 0, 0.31, 0.46, 0.25, 1, 0.53, NA, 0.33, 0.57, 0.45,
1, NA, 1, 0.85, 1, NA, 0.75, 0.5, 0.83, 0.78, 1, NA, NA,
0.68, NA, 0.6, 0.78, 0.75, NA, 0.6, 0.52, 0.79, 0.75, 0.38,
0.93, 0.91, 0.56, 1, 0.8, 0.29, 0.57, 0.62, 0.4, 1, 0.33,
0.5, 1, 0.54, 1, 0.36, 0.13, 0.4, NA, 0.46, 0.36, 0.67, 0.33,
0.5, NA, 0.16, 0, 0.4, 0.36, 0.86, 0.78, 0.14, 0.85, 1, 0.4,
0.52, 0.79, 0.45, 1, 0, NA, 1, 0.12, 0.82, 0.5, 1, 0.23,
1, NA, 0.88, 0.53, 0, 0.14, 0.75, 0, 1, 0.11, 0.88, 0.25,
0.74, 0.67, 0.62, 0.38, 0.32, 0.55, 1, 0.67, NA, 0.38, 0.44,
NA, NA, 0.57, 0.38, NA, NA, 0.94, 0.33, 1, 0.5, 1, 0.52,
0, 0.62, 0.35, 1, 0.61, 0.8, NA, NA, 1, 0.9, 0.8, 0.21, 0.37,
1, 0.5, 0.82, 0.57, 1, 0.88, NA, 0.31, 1, 0.78, 0.86, 1,
0.4, 1, 1, 0.33, 0.5, 0.5, NA, 1, 0.5, 0.12, 0.6, 0.36, NA,
0.87, 0.2, 0.16, 1, 0.63, 1, 0.88, 0.29, 0.73, 0.88, 0.8,
0.5, 0.17, NA, 0.38, 0.69, 0.75, 0.5, 0.8, 0.37, NA, 0.8,
0.69, 0.14, 0.36, 0.57, 0.73, 0.75, 0.08, 0.35, NA, 0.6,
0.86, 0.83, NA, 1, 0.73, 0.24, 0.95, 1), gAy7 = c(NA, 0.6,
0.27, 0.67, 0.29, 0, NA, 0.4, 0, 0.15, 0.39, 0.25, 0, 0.43,
NA, 0.11, 0.57, 0.27, 0.57, NA, 0.89, 0.69, 0.6, NA, 0, 0,
0.33, 0.56, 0, NA, NA, 0.55, NA, 0.2, 0.44, 0.12, NA, 0.47,
0.52, 0.63, 0.58, 0, 0.57, 0.64, 0, 0.62, 0.5, 0.24, 0.43,
0.62, 0.28, 0.89, 0.3, 0.25, 0.5, 0.43, 0, 0.28, 0.13, 0.07,
NA, 0.43, 0.27, 0, 0.33, 0.12, NA, 0.16, 0, 0.4, 0.27, 0.79,
0.44, 0, 0.62, 1, 0.4, 0.39, 0.79, 0.45, 1, 0, NA, 1, 0,
0.82, 0.36, 0, 0.23, 0.6, NA, 0.5, 0.53, 0, 0.14, 0.5, 0,
0, 0, 0.79, 0.2, 0.53, 0.52, 0.53, 0.31, 0.22, 0.36, 0.7,
0, NA, 0.38, 0.33, NA, NA, 0.5, 0, NA, NA, 0.83, 0, 0.73,
0, 1, 0.48, 0, 0.5, 0.2, 0, 0.55, 0.8, NA, NA, 1, 0.3, 0.8,
0.16, 0.16, 0.8, 0, 0.64, 0.29, 0, 0.88, NA, 0.23, 1, 0.56,
0.71, 1, 0.3, 1, 0, 0.29, 0.2, 0.5, NA, 0, 0.2, 0, 0.5, 0.33,
NA, 0.78, 0, 0.11, 0.5, 0.57, 0.64, 0.75, 0.24, 0.6, 0.88,
0.7, 0, 0, NA, 0.23, 0.54, 0.5, 0.5, 0.6, 0.33, NA, 0.8,
0.69, 0.14, 0.36, 0.57, 0.4, 0.62, 0.08, 0.27, NA, 0.47,
0.71, 0.33, NA, 0, 0.27, 0.15, 0.95, 0)), row.names = c(NA,
-202L), class = "data.frame")

If it makes sense to impute the values, then even if you do not have the 4 questions of a part, you can predict them using the relationship between variables and the similarities between observations.
To take into account the colinearities, you can use methods based on low rank,
see the package missMDA for instance with imputePCA or imputeMFA function, in addition you can have a look at the website
https://rmisstastic.netlify.com/
for information,
Best,
JJ

Related

What is Error: Aesthetics must be valid data columns Problematic aesthetic(s) in geom_rect and how to fix it?

I would like to make shade on certain date each year in time-series plot that is similar to this: Using geom_rect for time series shading in R
However, I got error:
Error: Aesthetics must be valid data columns. Problematic aesthetic(s): x = Date.
Did you mistype the name of a data column or forget to add after_stat()?
What is the meaning of that error? I'm sure the error come from geom_rect function, but I don't know how to fix it.
Here is the example of my data:
structure(list(Date = structure(c(4018, 4019, 4020, 4021, 4022,
4023, 4024, 4025, 4026, 4027, 4028, 4029, 4030, 4031, 4032, 4033,
4034, 4035, 4036, 4037, 4038, 4039, 4040, 4041, 4042, 4043, 4044,
4045, 4046, 4047, 4048, 4049, 4050, 4051, 4052, 4053, 4054, 4055,
4056, 4057, 4058, 4059, 4060, 4061, 4062, 4063, 4064, 4065, 4066,
4067, 4068, 4069, 4070, 4071, 4072, 4073, 4074, 4075, 4076, 4077,
4078, 4079, 4080, 4081, 4082, 4083, 4084, 4085, 4086, 4087, 4088,
4089, 4090, 4091, 4092, 4093, 4094, 4095, 4096, 4097, 4098, 4099,
4100, 4101, 4102, 4103, 4104, 4105, 4106, 4107, 4108, 4109, 4110,
4111, 4112, 4113, 4114, 4115, 4116, 4117, 4118, 4119, 4120, 4121,
4122, 4123, 4124, 4125, 4126, 4127, 4128, 4129, 4130, 4131, 4132,
4133, 4134, 4135, 4136, 4137, 4138, 4139, 4140, 4141, 4142, 4143,
4144, 4145, 4146, 4147, 4148, 4149, 4150, 4151, 4152, 4153, 4154,
4155, 4156, 4157, 4158, 4159, 4160, 4161, 4162, 4163, 4164, 4165,
4166, 4167, 4168, 4169, 4170, 4171, 4172, 4173, 4174, 4175, 4176,
4177, 4178, 4179, 4180, 4181, 4182, 4183, 4184, 4185, 4186, 4187,
4188, 4189, 4190, 4191, 4192, 4193, 4194, 4195, 4196, 4197, 4198,
4199, 4200, 4201, 4202, 4203, 4204, 4205, 4206, 4207, 4208, 4209,
4210, 4211, 4212, 4213, 4214, 4215, 4216, 4217, 4218, 4219, 4220,
4221, 4222, 4223, 4224, 4225, 4226, 4227, 4228, 4229, 4230, 4231,
4232, 4233, 4234, 4235, 4236, 4237, 4238, 4239, 4240, 4241, 4242,
4243, 4244, 4245, 4246, 4247, 4248, 4249, 4250, 4251, 4252, 4253,
4254, 4255, 4256, 4257, 4258, 4259, 4260, 4261, 4262, 4263, 4264,
4265, 4266, 4267, 4268, 4269, 4270, 4271, 4272, 4273, 4274, 4275,
4276, 4277, 4278, 4279, 4280, 4281, 4282, 4283, 4284, 4285, 4286,
4287, 4288, 4289, 4290, 4291, 4292, 4293, 4294, 4295, 4296, 4297,
4298, 4299, 4300, 4301, 4302, 4303, 4304, 4305, 4306, 4307, 4308,
4309, 4310, 4311, 4312, 4313, 4314, 4315, 4316, 4317, 4318, 4319,
4320, 4321, 4322, 4323, 4324, 4325, 4326, 4327, 4328, 4329, 4330,
4331, 4332, 4333, 4334, 4335, 4336, 4337, 4338, 4339, 4340, 4341,
4342, 4343, 4344, 4345, 4346, 4347, 4348, 4349, 4350, 4351, 4352,
4353, 4354, 4355, 4356, 4357, 4358, 4359, 4360, 4361, 4362, 4363,
4364, 4365, 4366, 4367, 4368, 4369, 4370, 4371, 4372, 4373, 4374,
4375, 4376, 4377, 4378, 4379, 4380, 4381, 4382, 4383, 4384, 4385,
4386, 4387, 4388, 4389, 4390, 4391, 4392, 4393, 4394, 4395, 4396,
4397, 4398, 4399, 4400, 4401, 4402, 4403, 4404, 4405, 4406, 4407,
4408, 4409, 4410, 4411, 4412, 4413, 4414, 4415, 4416, 4417, 4418,
4419, 4420, 4421, 4422, 4423, 4424, 4425, 4426, 4427, 4428, 4429,
4430, 4431, 4432, 4433, 4434, 4435, 4436, 4437, 4438, 4439, 4440,
4441, 4442, 4443, 4444, 4445, 4446, 4447, 4448, 4449, 4450, 4451,
4452, 4453, 4454, 4455, 4456, 4457, 4458, 4459, 4460, 4461, 4462,
4463, 4464, 4465, 4466, 4467, 4468, 4469, 4470, 4471, 4472, 4473,
4474, 4475, 4476, 4477, 4478, 4479, 4480, 4481, 4482, 4483, 4484,
4485, 4486, 4487, 4488, 4489, 4490, 4491, 4492, 4493, 4494, 4495,
4496, 4497, 4498, 4499, 4500, 4501, 4502, 4503, 4504, 4505, 4506,
4507, 4508, 4509, 4510, 4511, 4512, 4513, 4514, 4515, 4516, 4517,
4518, 4519, 4520, 4521, 4522, 4523, 4524, 4525, 4526, 4527, 4528,
4529, 4530, 4531, 4532, 4533, 4534, 4535, 4536, 4537, 4538, 4539,
4540, 4541, 4542, 4543, 4544, 4545, 4546, 4547, 4548, 4549, 4550,
4551, 4552, 4553, 4554, 4555, 4556, 4557, 4558, 4559, 4560, 4561,
4562, 4563, 4564, 4565, 4566, 4567, 4568, 4569, 4570, 4571, 4572,
4573, 4574, 4575, 4576, 4577, 4578, 4579, 4580, 4581, 4582, 4583,
4584, 4585, 4586, 4587, 4588, 4589, 4590, 4591, 4592, 4593, 4594,
4595, 4596, 4597, 4598, 4599, 4600, 4601, 4602, 4603, 4604, 4605,
4606, 4607, 4608, 4609, 4610, 4611, 4612, 4613, 4614, 4615, 4616,
4617, 4618, 4619, 4620, 4621, 4622, 4623, 4624, 4625, 4626, 4627,
4628, 4629, 4630, 4631, 4632, 4633, 4634, 4635, 4636, 4637, 4638,
4639, 4640, 4641, 4642, 4643, 4644, 4645, 4646, 4647, 4648, 4649,
4650, 4651, 4652, 4653, 4654, 4655, 4656, 4657, 4658, 4659, 4660,
4661, 4662, 4663, 4664, 4665, 4666, 4667, 4668, 4669, 4670, 4671,
4672, 4673, 4674, 4675, 4676, 4677, 4678, 4679, 4680, 4681, 4682,
4683, 4684, 4685, 4686, 4687, 4688, 4689, 4690, 4691, 4692, 4693,
4694, 4695, 4696, 4697, 4698, 4699, 4700, 4701, 4702, 4703, 4704,
4705, 4706, 4707, 4708, 4709, 4710, 4711, 4712, 4713, 4714, 4715,
4716, 4717, 4718, 4719, 4720, 4721, 4722, 4723, 4724, 4725, 4726,
4727, 4728, 4729, 4730, 4731, 4732, 4733, 4734, 4735, 4736, 4737,
4738, 4739, 4740, 4741, 4742, 4743, 4744, 4745, 4746, 4747), class = "Date"),
Cu = c(1.25, 1.25, 1.25, 1.25, 1.15, 1.15, 1.15, 1.15, 1.15,
1.15, 1.15, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75,
2.66, 2.66, 2.66, 2.66, 2.66, 2.66, 1.24, 1.24, 1.24, 1.24,
1.24, 1.24, 1.24, 3.71, 3.71, 3.71, 3.71, 3.71, 3.71, 3.71,
1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 1.85, 2.13, 2.13, 2.13,
2.13, 2.13, 2.13, 2.13, 0.73, 0.73, 0.73, 0.73, 0.73, 0.73,
0.73, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.4, 0.4,
0.4, 0.4, 0.4, 0.4, 0.4, 0.4, NA, NA, NA, NA, NA, NA, 1.12,
1.12, 1.12, 1.12, 1.12, 1.12, 1.12, 1.71, 1.71, 1.71, 1.71,
1.71, 1.71, 1.71, 1.71, NA, NA, NA, NA, NA, NA, 1.28, 1.28,
1.28, 1.28, 1.28, 1.28, 1.28, 1.28, 0.9, 0.9, 0.9, 0.9, 0.9,
0.9, 1.59, 1.59, 1.59, 1.59, 1.59, 1.59, 1.59, 1.59, 1.59,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8,
0.8, NA, NA, NA, NA, NA, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76,
0.76, 0.76, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 0.69, 0.69, 0.69, 0.69, 0.69, 0.69, 0.69, 0.65, 0.65,
0.65, 0.65, 0.65, 0.65, 0.65, 0.76, 0.76, 0.76, 0.76, 0.76,
0.76, 0.76, 0.84, 0.84, 0.84, 0.84, 0.84, 0.84, 0.84, 0.84,
NA, NA, NA, NA, NA, NA, 0.68, 0.68, 0.68, 0.68, 0.68, 0.68,
0.68, 0.68, NA, NA, NA, NA, NA, NA, 1.16, 1.16, 1.16, 1.16,
1.16, 1.16, 1.16, 0.67, 0.67, 0.67, 0.67, 0.67, 0.67, 0.67,
0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.6, 0.6, 0.6,
0.6, 0.6, 0.6, 0.6, 1.72, 1.72, 1.72, 1.72, 1.72, 1.72, 1.72,
1.43, 1.43, 1.43, 1.43, 1.43, 1.43, 1.43, 1.43, 1.43, NA,
NA, NA, NA, NA, 1.31, 1.31, 1.31, 1.31, 1.31, 1.31, 1.31,
1.89, 1.89, 1.89, 1.89, 1.89, 1.89, 1.89, 0.7, 0.7, 0.7,
0.7, 0.7, 0.7, 0.7, 4.35, 4.35, 4.35, 4.35, 4.35, 4.35, 4.35,
1.48, 1.48, 1.48, 1.48, 1.48, 1.48, 1.48, 4.5, 4.5, 4.5,
4.5, 4.5, 4.5, 4.5, 1.95, 1.95, 1.95, 1.95, 1.95, 1.95, 1.95,
1.95, NA, NA, NA, NA, NA, NA, 1.41, 1.41, 1.41, 1.41, 1.41,
1.41, 1.41, 1.01, 1.01, 1.01, 1.01, 1.01, 1.01, 1.01, 3.44,
3.44, 3.44, 3.44, 3.44, 3.44, 3.44, 3.01, 3.01, 3.01, 3.01,
3.01, 3.01, 3.01, 3.28, 3.28, 3.28, 3.28, 3.28, 3.28, 3.28,
0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 3.08, 3.08, 3.08,
3.08, 3.08, 3.08, 3.08, 3.08, 3.38, 3.38, 3.38, 3.38, 3.38,
3.38, 1.86, 1.86, 1.86, 1.86, 1.86, 1.86, 1.86, 1.85, 1.85,
1.85, 1.85, 1.85, 1.85, 1.85, 2.25, 2.25, 2.25, 2.25, 2.25,
2.25, 2.25, 2.25, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 2.93, 2.93,
2.93, 2.93, 2.93, 2.93, 2.93, 1.09, 1.09, 1.09, 1.09, 1.09,
1.09, 1.09, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.57,
0.57, 0.57, 0.57, 0.57, 0.57, 0.57, 0.57, 0.57, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.49, 0.49, 0.49, 0.49,
0.49, 0.49, 0.49, 0.49, 0.49, 0.49, NA, NA, NA, NA, 0.8,
0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.51, 0.51, 0.51, 0.51, 0.51,
0.51, 0.51, 0.51, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 2.48, 2.48, 2.48, 2.48, 2.48, 2.48,
0.66, 0.66, 0.66, 0.66, 0.66, 0.66, 0.66, 0.72, 0.72, 0.72,
0.72, 0.72, 0.72, 0.72, 1.35, 1.35, 1.35, 1.35, 1.35, 1.35,
1.35, 0.65, 0.65, 0.65, 0.65, 0.65, 0.65, 0.65, 1.84, 1.84,
1.84, 1.84, 1.84, 1.84, 1.84, 2.56, 2.56, 2.56, 2.56, 2.56,
2.56, 2.56, 1.21, 1.21, 1.21, 1.21, 1.21, 1.21, 1.21, 1.73,
1.73, 1.73, 1.73, 1.73, 1.73, 1.73, 1.33, 1.33, 1.33, 1.33,
1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33,
1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33,
1.33, 1.33, 1.33, 1.33, 2.23, 2.23, 2.23, 2.23, 2.23, 2.23,
2.23, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 3.7, 3.7,
3.7, 3.7, 3.7), Pb = c(3.58, 3.58, 3.58, 3.58, 3, 3, 3, 3,
3, 3, 3, 3.89, 3.89, 3.89, 3.89, 3.89, 3.89, 3.89, 3.89,
5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 4.24, 4.24, 4.24, 4.24, 4.24,
4.24, 4.24, 4.08, 4.08, 4.08, 4.08, 4.08, 4.08, 4.08, 3.42,
3.42, 3.42, 3.42, 3.42, 3.42, 3.42, 3.11, 3.11, 3.11, 3.11,
3.11, 3.11, 3.11, 1.68, 1.68, 1.68, 1.68, 1.68, 1.68, 1.68,
0.67, 0.67, 0.67, 0.67, 0.67, 0.67, 0.67, 1.19, 1.19, 1.19,
1.19, 1.19, 1.19, 1.19, 1.63, 1.63, 1.63, 1.63, 1.63, 1.63,
1.63, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22, 2.25, 2.25,
2.25, 2.25, 2.25, 2.25, 2.25, 1.93, 1.93, 1.93, 1.93, 1.93,
1.93, 1.93, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98,
1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.44, 1.44, 1.44, 1.44, 1.44,
1.44, 1.44, 1.44, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 1.02,
1.02, 1.02, 1.02, 1.02, 1.02, 1.02, 1.02, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.31, 0.31, 0.31, 0.31,
0.31, 0.31, 0.31, 0.31, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, 0.34, 0.34, 0.34, 0.34, 0.34, 0.34, 0.34, 0.34, 0.3,
0.3, 0.3, 0.3, 0.3, 0.3, 0.3, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76,
1.88, 1.88, 1.88, 1.88, 1.88, 1.88, 1.88, 1.88, NA, NA, NA,
NA, NA, NA, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 4.57,
4.57, 4.57, 4.57, 4.57, 4.57, 4.57, 3.93, 3.93, 3.93, 3.93,
3.93, 3.93, 3.93, 7.19, 7.19, 7.19, 7.19, 7.19, 7.19, 7.19,
7.55, 7.55, 7.55, 7.55, 7.55, 7.55, 7.55, 5.37, 5.37, 5.37,
5.37, 5.37, 5.37, 5.37, 4.64, 4.64, 4.64, 4.64, 4.64, 4.64,
4.64, 9.34, 9.34, 9.34, 9.34, 9.34, 9.34, 9.34, 9.34, 4.98,
4.98, 4.98, 4.98, 4.98, 4.98, 4.11, 4.11, 4.11, 4.11, 4.11,
4.11, 4.11, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 2.1, 2.1,
2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 3.31, 3.31, 3.31, 3.31, 3.31,
3.31, 3.11, 3.11, 3.11, 3.11, 3.11, 3.11, 3.11, 3.05, 3.05,
3.05, 3.05, 3.05, 3.05, 3.05, 2.24, 2.24, 2.24, 2.24, 2.24,
2.24, 2.24, 2.24, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
2.47, 2.47, 2.47, 2.47, 2.47, 2.47, 2.47, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1.27,
1.27, 1.27, 1.27, 1.27, 1.27, 1.27, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 2.72, 2.72, 2.72, 2.72, 2.72,
2.72, 2.72, 2.72, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 0.61, 0.61, 0.61, 0.61, 0.61, 0.61, 0.61, 0.61,
NA, NA, NA, NA, NA, NA, 2.26, 2.26, 2.26, 2.26, 2.26, 2.26,
2.26, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11,
1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11,
1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.63,
1.63, 1.63, 1.63, 1.63, 1.63, 1.63, 1.27, 1.27, 1.27, 1.27,
1.27, 1.27, 1.27, 1.48, 1.48, 1.48, 1.48, 1.48), V = c(0.847,
0.847, 0.847, 0.847, 0.83, 0.83, 0.83, 0.83, 0.83, 0.83,
0.83, 1.178, 1.178, 1.178, 1.178, 1.178, 1.178, 1.178, 1.178,
1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.351, 1.351, 1.351, 1.351,
1.351, 1.351, 1.351, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92,
0.92, 0.633, 0.633, 0.633, 0.633, 0.633, 0.633, 0.633, 0.755,
0.755, 0.755, 0.755, 0.755, 0.755, 0.755, 0.268, 0.268, 0.268,
0.268, 0.268, 0.268, 0.268, 0.116, 0.116, 0.116, 0.116, 0.116,
0.116, 0.116, 0.145, 0.145, 0.145, 0.145, 0.145, 0.145, 0.145,
0.138, 0.138, 0.138, 0.138, 0.138, 0.138, 0.138, 0.392, 0.392,
0.392, 0.392, 0.392, 0.392, 0.392, 0.438, 0.438, 0.438, 0.438,
0.438, 0.438, 0.438, 0.34, 0.34, 0.34, 0.34, 0.34, 0.34,
0.34, 0.517, 0.517, 0.517, 0.517, 0.517, 0.517, 0.517, 0.517,
0.269, 0.269, 0.269, 0.269, 0.269, 0.269, 0.673, 0.673, 0.673,
0.673, 0.673, 0.673, 0.673, 0.673, 0.161, 0.161, 0.161, 0.161,
0.161, 0.161, 0.535, 0.535, 0.535, 0.535, 0.535, 0.535, 0.535,
0.448, 0.448, 0.448, 0.448, 0.448, 0.448, 0.448, 0.091, 0.091,
0.091, 0.091, 0.091, 0.091, 0.091, 0.091, 0.121, 0.121, 0.121,
0.121, 0.121, 0.121, 0.035, 0.035, 0.035, 0.035, 0.035, 0.035,
0.035, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.108,
0.108, 0.108, 0.108, 0.108, 0.108, 0.108, 0.278, 0.278, 0.278,
0.278, 0.278, 0.278, 0.278, 0.162, 0.162, 0.162, 0.162, 0.162,
0.162, 0.162, 0.162, 0.162, NA, NA, NA, NA, NA, 0.064, 0.064,
0.064, 0.064, 0.064, 0.064, 0.064, 0.064, NA, NA, NA, NA,
NA, NA, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062,
0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.031, 0.031,
0.031, 0.031, 0.031, 0.031, 0.031, 0.343, 0.343, 0.343, 0.343,
0.343, 0.343, 0.343, 0.767, 0.767, 0.767, 0.767, 0.767, 0.767,
0.767, 0.442, 0.442, 0.442, 0.442, 0.442, 0.442, 0.442, 1.085,
1.085, 1.085, 1.085, 1.085, 1.085, 1.085, 0.711, 0.711, 0.711,
0.711, 0.711, 0.711, 0.711, 1.036, 1.036, 1.036, 1.036, 1.036,
1.036, 1.036, 0.624, 0.624, 0.624, 0.624, 0.624, 0.624, 0.624,
0.624, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
0.132, 0.132, 0.132, 0.132, 0.132, 0.132, 0.132, 0.032, 0.032,
0.032, 0.032, 0.032, 0.032, 0.032, 0.032, 0.134, 0.134, 0.134,
0.134, 0.134, 0.134, 0.065, 0.065, 0.065, 0.065, 0.065, 0.065,
0.065, 0.201, 0.201, 0.201, 0.201, 0.201, 0.201, 0.201, 0.109,
0.109, 0.109, 0.109, 0.109, 0.109, 0.109, 1.189, 1.189, 1.189,
1.189, 1.189, 1.189, 1.189, 0.479, 0.479, 0.479, 0.479, 0.479,
0.479, 0.479, 0.565, 0.565, 0.565, 0.565, 0.565, 0.565, 0.565,
0.243, 0.243, 0.243, 0.243, 0.243, 0.243, 0.243, 0.142, 0.142,
0.142, 0.142, 0.142, 0.142, 0.142, 2.73, 2.73, 2.73, 2.73,
2.73, 2.73, 2.73, 1.848, 1.848, 1.848, 1.848, 1.848, 1.848,
1.848, 2.126, 2.126, 2.126, 2.126, 2.126, 2.126, 2.126, 2.59,
2.59, 2.59, 2.59, 2.59, 2.59, 2.59, 2.077, 2.077, 2.077,
2.077, 2.077, 2.077, 2.077, 0.912, 0.912, 0.912, 0.912, 0.912,
0.912, 0.912, 1.944, 1.944, 1.944, 1.944, 1.944, 1.944, 1.944,
1.944, 1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 1.384, 1.384,
1.384, 1.384, 1.384, 1.384, 1.384, 0.807, 0.807, 0.807, 0.807,
0.807, 0.807, 0.807, 0.573, 0.573, 0.573, 0.573, 0.573, 0.573,
0.573, 0.573, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.598,
0.598, 0.598, 0.598, 0.598, 0.598, 0.598, 0.535, 0.535, 0.535,
0.535, 0.535, 0.535, 0.535, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4,
0.4, 0.063, 0.063, 0.063, 0.063, 0.063, 0.063, 0.063, 0.063,
0.063, NA, NA, NA, NA, NA, NA, NA, 0.139, 0.139, 0.139, 0.139,
0.139, 0.139, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015,
0.024, 0.024, 0.024, 0.024, 0.024, 0.024, 0.024, 0.081, 0.081,
0.081, 0.081, 0.081, 0.081, 0.081, 0.08, 0.08, 0.08, 0.08,
0.08, 0.08, 0.08, 0.051, 0.051, 0.051, 0.051, 0.051, 0.051,
0.051, 0.051, 0.428, 0.428, 0.428, 0.428, 0.428, 0.428, 0.125,
0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.044, 0.044, 0.044,
0.044, 0.044, 0.044, 0.044, 0.057, 0.057, 0.057, 0.057, 0.057,
0.057, 0.057, 0.057, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 0.548, 0.548, 0.548, 0.548, 0.548, 0.548, 0.048,
0.048, 0.048, 0.048, 0.048, 0.048, 0.048, 0.019, 0.019, 0.019,
0.019, 0.019, 0.019, 0.019, 0.04, 0.04, 0.04, 0.04, 0.04,
0.04, 0.04, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.051,
0.051, 0.051, 0.051, 0.051, 0.051, 0.051, 0.105, 0.105, 0.105,
0.105, 0.105, 0.105, 0.105, 0.105, NA, NA, NA, NA, NA, NA,
0.261, 0.261, 0.261, 0.261, 0.261, 0.261, 0.261, 0.176, 0.176,
0.176, 0.176, 0.176, 0.176, 0.176, 0.176, 0.176, 0.176, 0.176,
0.176, 0.176, 0.176, 0.176, 0.176, 0.176, 0.176, 0.176, 0.176,
0.176, 0.176, 0.176, 0.176, 0.176, 0.176, 0.176, 0.176, 0.327,
0.327, 0.327, 0.327, 0.327, 0.327, 0.327, 0.254, 0.254, 0.254,
0.254, 0.254, 0.254, 0.254, 0.258, 0.258, 0.258, 0.258, 0.258
), Zn = c(6.19, 6.19, 6.19, 6.19, 8.7, 8.7, 8.7, 8.7, 8.7,
8.7, 8.7, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 9.91, 9.91,
9.91, 9.91, 9.91, 9.91, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8,
11.89, 11.89, 11.89, 11.89, 11.89, 11.89, 11.89, 6.86, 6.86,
6.86, 6.86, 6.86, 6.86, 6.86, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6,
7.6, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.18, 2.18, 2.18,
2.18, 2.18, 2.18, 2.18, 2.18, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 3.09, 3.09, 3.09, 3.09, 3.09, 3.09,
3.09, 4.43, 4.43, 4.43, 4.43, 4.43, 4.43, 4.43, 2.28, 2.28,
2.28, 2.28, 2.28, 2.28, 2.28, 3.25, 3.25, 3.25, 3.25, 3.25,
3.25, 3.25, 3.25, 3.25, NA, NA, NA, NA, NA, 3.71, 3.71, 3.71,
3.71, 3.71, 3.71, 3.71, 3.71, 0.89, 0.89, 0.89, 0.89, 0.89,
0.89, 1.49, 1.49, 1.49, 1.49, 1.49, 1.49, 1.49, 1.11, 1.11,
1.11, 1.11, 1.11, 1.11, 1.11, 1.11, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 0.87, 0.87, 0.87, 0.87, 0.87,
0.87, 0.87, 0.79, 0.79, 0.79, 0.79, 0.79, 0.79, 0.79, 0.79,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1.53,
1.53, 1.53, 1.53, 1.53, 1.53, 1.53, 1.53, 0.8, 0.8, 0.8,
0.8, 0.8, 0.8, 1.65, 1.65, 1.65, 1.65, 1.65, 1.65, 1.65,
1.65, NA, NA, NA, NA, NA, NA, 0.88, 0.88, 0.88, 0.88, 0.88,
0.88, 0.88, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.49,
1.49, 1.49, 1.49, 1.49, 1.49, 1.49, 1.8, 1.8, 1.8, 1.8, 1.8,
1.8, 1.8, 2.86, 2.86, 2.86, 2.86, 2.86, 2.86, 2.86, 0.97,
0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 2.2, 2.2, 2.2, 2.2, 2.2,
2.2, 2.2, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 3.06,
3.06, 3.06, 3.06, 3.06, 3.06, 3.06, 1.86, 1.86, 1.86, 1.86,
1.86, 1.86, 1.86, 2.41, 2.41, 2.41, 2.41, 2.41, 2.41, 2.41,
1.47, 1.47, 1.47, 1.47, 1.47, 1.47, 1.47, 2.88, 2.88, 2.88,
2.88, 2.88, 2.88, 2.88, 2.35, 2.35, 2.35, 2.35, 2.35, 2.35,
2.35, 2.35, 1.41, 1.41, 1.41, 1.41, 1.41, 1.41, 2.02, 2.02,
2.02, 2.02, 2.02, 2.02, 2.02, 3.31, 3.31, 3.31, 3.31, 3.31,
3.31, 3.31, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 7, 7, 7, 7,
7, 7, 7, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 9.07, 9.07, 9.07,
9.07, 9.07, 9.07, 9.07, 3.28, 3.28, 3.28, 3.28, 3.28, 3.28,
3.28, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 9.58, 9.58,
9.58, 9.58, 9.58, 9.58, 9.58, 7.54, 7.54, 7.54, 7.54, 7.54,
7.54, 7.54, 13.86, 13.86, 13.86, 13.86, 13.86, 13.86, 13.86,
14.27, 14.27, 14.27, 14.27, 14.27, 14.27, 14.27, 9.59, 9.59,
9.59, 9.59, 9.59, 9.59, 9.59, 7.08, 7.08, 7.08, 7.08, 7.08,
7.08, 7.08, 18.08, 18.08, 18.08, 18.08, 18.08, 18.08, 18.08,
18.08, 10.95, 10.95, 10.95, 10.95, 10.95, 10.95, 7.36, 7.36,
7.36, 7.36, 7.36, 7.36, 7.36, 6.18, 6.18, 6.18, 6.18, 6.18,
6.18, 6.18, 5.25, 5.25, 5.25, 5.25, 5.25, 5.25, 5.25, 5.25,
5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 6.39, 6.39, 6.39, 6.39, 6.39,
6.39, 6.39, 4.33, 4.33, 4.33, 4.33, 4.33, 4.33, 4.33, 2.92,
2.92, 2.92, 2.92, 2.92, 2.92, 2.92, 0.89, 0.89, 0.89, 0.89,
0.89, 0.89, 0.89, 0.89, 0.89, NA, NA, NA, NA, NA, NA, NA,
1.06, 1.06, 1.06, 1.06, 1.06, 1.06, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 5.21, 5.21, 5.21, 5.21, 5.21,
5.21, 5.21, NA, NA, NA, NA, NA, NA, 2.09, 2.09, 2.09, 2.09,
2.09, 2.09, 2.09, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03,
2.03, NA, NA, NA, NA, NA, NA, 2.63, 2.63, 2.63, 2.63, 2.63,
2.63, 2.63, 4.31, 4.31, 4.31, 4.31, 4.31, 4.31, 4.31, 1.77,
1.77, 1.77, 1.77, 1.77, 1.77, 1.77, 4.15, 4.15, 4.15, 4.15,
4.15, 4.15, 4.15, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22,
2.22, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22,
2.22, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22, 2.22,
2.22, 5.24, 5.24, 5.24, 5.24, 5.24, 5.24, 5.24, 2.7, 2.7,
2.7, 2.7, 2.7, 2.7, 2.7, 7.47, 7.47, 7.47, 7.47, 7.47)), row.names = 167:896, class = "data.frame")
Here is my code:
library (ggplot2)
library (dplyr)
library (tidyr)
shade <-
df1 %>%
transmute(year = year(Date)) %>%
unique() %>%
mutate(
from = as.Date(paste0(year, "-02-21")),
to = as.Date(paste0(year, "-04-30"))
)
ggplot(df1, aes(x=Date)) +
geom_rect(data = shade, aes(xmin = from, xmax = to, ymin = -Inf, ymax = Inf), color='grey', alpha=0.2) +
geom_line( aes(y=V, color='V')) + geom_line( aes(y= Cu / coeff, color = 'Cu')) +
geom_line( aes(y= Pb / coeff, color = 'Pb')) + geom_line( aes(y= / coeff, color = 'Zn')) +
scale_y_continuous(name = "V", sec.axis = sec_axis(~.*coeff, name = "Cu, Pb, Zn"))+
theme_bw()+ theme(legend.position = c(0.2, 0.9),legend.direction="horizontal")+labs(color = NULL, fill = NULL)
If you have any idea what happened and how to fix it, please let me know. Thank you.
Best regards.
Try to use only ggplot(df1) and not putting aes() inside ggplot(), each geom_line read df1 and geom_rect read shade.
ggplot(df1) +
geom_line( aes(x=Date, y=V, color='V')) +
geom_line( aes(x=Date, y= Cu, color = 'Cu')) +
geom_line( aes(x=Date, y= Pb, color = 'Pb')) +
geom_line( aes(x=Date, y= Zn, color = 'Zn')) +
geom_rect(data = shade, aes(xmin = from, xmax = to, ymin = -Inf, ymax = Inf), color='grey', alpha=0.2) +
scale_y_continuous(name = "V", sec.axis = sec_axis(~., name = "Cu, Pb, Zn"))+
theme_bw()+ theme(legend.position = c(0.2, 0.9),legend.direction="horizontal")+labs(color = NULL, fill = NULL)
# or u can use
ggplot() +
geom_line(data = df1, aes(x=Date, y=V, color='V')) +
geom_line(data = df1, aes(x=Date, y= Cu, color = 'Cu')) +
geom_line(data = df1, aes(x=Date, y= Pb, color = 'Pb')) +
geom_line(data = df1, aes(x=Date, y= Zn, color = 'Zn')) +
geom_rect(data = shade, aes(xmin = from, xmax = to, ymin = -Inf, ymax = Inf), color='grey', alpha=0.2) +
scale_y_continuous(name = "V", sec.axis = sec_axis(~., name = "Cu, Pb, Zn"))+
theme_bw()+ theme(legend.position = c(0.2, 0.9),legend.direction="horizontal")+labs(color = NULL, fill = NULL)
In my opinion the error you are getting is beacuse geom_rect() is trying to find columns (Date in this case) in previously declared aes().
I couldn't test my theory since there are some problems with your code (e.g. no coeff in df1 object).

Grouping by column in ggplot2

I am an old ggplot2 user, but I am getting a beating from this one. It must be something I am not noticing:
I want a simple line plot across time (x-axis) vs covariances in the y-axis. My grouping is not being picked up by ggplot2. So please consider the MWE code:
umxSim3 %>%
mutate(group = case_when(x2y == 0.4 & aur == 0.8 & aury == 0.8 ~ "x2y0.4_aur0.8_aury0.8",
x2y == 0.2 & aur == 0.6 & aury == 0.6 ~ "x2y0.2_aur0.6_aury0.6")) %>%
drop_na() %>%
ggplot(aes(temp, cova),color = as.factor(group)) +
geom_line(stat = "summary") +
geom_point(stat = "summary") +
theme_bw(12) +
theme(legend.position = c(0.8, 0.8),
panel.border = element_rect(colour = "black"),
legend.background = element_rect(linetype = 1, size = 0.2, colour = 1))+
scale_color_manual(values = cb_palette)
for the data:
structure(list(temp = c(15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 16L, 15L, 15L, 16L, 15L, 16L, 16L, 16L, 16L, 16L, 17L, 16L,
16L, 17L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 18L,
17L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 19L, 16L, 18L, 19L, 19L,
19L, 18L, 18L, 19L, 19L, 19L, 17L, 19L, 20L, 20L, 19L, 19L, 18L,
20L, 19L, 19L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 22L, 21L, 22L, 21L, 21L, 21L, 22L,
22L, 22L, 21L, 22L, 22L, 23L, 23L, 22L, 22L, 23L, 22L, 23L, 23L,
23L, 23L, 23L), immedx = c(0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02), immedy = c(0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01), x2y = c(0, 0, 0.2, 0, 0.2, 0.4, 0, 0.2, 0.2, 0,
0.4, 0.4, 0, 0.4, 0.2, 0.4, 0, 0.2, 0, 0.2, 0.2, 0.2, 0, 0.4,
0.4, 0, 0, 0, 0.4, 0.2, 0.4, 0.2, 0.2, 0, 0.4, 0, 0, 0.2, 0.2,
0.4, 0.4, 0, 0, 0.4, 0.2, 0.2, 0.2, 0, 0.2, 0.4, 0, 0.4, 0, 0.4,
0.2, 0, 0, 0.4, 0.2, 0.4, 0.2, 0.4, 0.4, 0, 0.2, 0.4, 0, 0.2,
0.2, 0.4, 0.4, 0.4, 0, 0.2, 0, 0.2, 0.4, 0, 0, 0, 0.2, 0, 0.4,
0.4, 0.2, 0, 0.4, 0, 0.4, 0.2, 0.2, 0, 0.2, 0.2, 0.4, 0, 0.4,
0, 0.4, 0, 0.2, 0.4), aur = c(0.6, 0.6, 0.6, 0.8, 0.6, 0.6, 0.8,
0.8, 0.8, 0.6, 0.8, 0.6, 0.8, 0.8, 0.6, 0.6, 0.6, 0.8, 0.8, 0.6,
0.8, 0.6, 0.6, 0.8, 0.6, 0.8, 0.6, 0.8, 0.6, 0.8, 0.6, 0.6, 0.8,
0.6, 0.8, 0.6, 0.8, 0.8, 0.6, 0.6, 0.6, 0.8, 0.6, 0.8, 0.6, 0.6,
0.6, 0.8, 0.8, 0.8, 0.6, 0.6, 0.8, 0.8, 0.8, 0.6, 0.6, 0.6, 0.8,
0.8, 0.6, 0.8, 0.8, 0.8, 0.8, 0.6, 0.8, 0.6, 0.8, 0.6, 0.8, 0.8,
0.6, 0.6, 0.6, 0.6, 0.6, 0.8, 0.8, 0.6, 0.8, 0.6, 0.8, 0.6, 0.8,
0.8, 0.6, 0.8, 0.8, 0.6, 0.8, 0.6, 0.6, 0.8, 0.6, 0.6, 0.8, 0.8,
0.6, 0.8, 0.6, 0.6), aury = c(0.8, 0.6, 0.6, 0.6, 0.8, 0.6, 0.8,
0.6, 0.8, 0.6, 0.6, 0.8, 0.6, 0.8, 0.6, 0.6, 0.8, 0.6, 0.8, 0.6,
0.8, 0.8, 0.8, 0.6, 0.8, 0.6, 0.6, 0.8, 0.8, 0.6, 0.6, 0.8, 0.8,
0.8, 0.6, 0.6, 0.6, 0.6, 0.6, 0.8, 0.6, 0.8, 0.6, 0.8, 0.8, 0.6,
0.8, 0.6, 0.8, 0.6, 0.8, 0.6, 0.8, 0.8, 0.6, 0.8, 0.6, 0.8, 0.8,
0.8, 0.6, 0.6, 0.8, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8, 0.8, 0.8, 0.6,
0.6, 0.6, 0.8, 0.8, 0.6, 0.6, 0.8, 0.6, 0.6, 0.8, 0.6, 0.8, 0.8,
0.6, 0.6, 0.8, 0.8, 0.8, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8, 0.6, 0.6,
0.6, 0.8, 0.8, 0.8), cova = c(0.0767650449455536, 0.023479773134789,
0.079250541929235, 0.0497028270157154, 0.217607799079627, 0.168683335594918,
0.150794456586447, 0.27283026101063, 0.690314230152603, 0.0235259541982523,
0.702603056392517, 0.490115926773996, 0.0505076752505145, 1.93010433620619,
0.0798575573537466, 0.171573575141921, 0.0784006741340135, 0.28486748087407,
0.156814170306613, 0.0803151708822509, 0.754445007375547, 0.226801448778645,
0.079735730985492, 0.755994056890623, 0.525290423561159, 0.0511604604964653,
0.0235558887825711, 0.162030264083756, 0.559246976325596, 0.295696528479825,
0.173935711302792, 0.235063054293184, 0.818154209385252, 0.080823259527356,
0.80766448894273, 0.0235752474868944, 0.0516895405415864, 0.305415501682546,
0.0806599420516001, 0.59193655065581, 0.175863895489332, 0.166532200794381,
0.0235877421429864, 2.22373977593273, 0.242470710342392, 0.0809195781739381,
0.249100119500662, 0.0521181251083318, 0.881239650574519, 0.857515819530478,
0.0817077551411662, 0.177436314599814, 0.170404901664453, 2.54251804738705,
0.314120482284585, 0.0824262284334331, 0.0235957929692925, 0.62332889414795,
0.943529017271466, 2.88745078017984, 0.0811150355928273, 0.905481581223059,
3.25958506793805, 0.0524651556999694, 0.321903676726418, 0.178717602990971,
0.173727014344408, 0.255023388431499, 1.00487624869021, 0.653409404225594,
3.66000427224439, 0.951522116145514, 0.0236009729296943, 0.0812621413155391,
0.0830092693966824, 0.260308295568005, 0.179761001622845, 0.0527460575456124,
0.17657007247267, 0.0236043015726037, 0.328852247070274, 0.0834820393132251,
0.995620065250206, 0.682176435239891, 1.06515843598909, 0.0529733721858174,
0.180610243434384, 0.178998254606776, 4.08982898920573, 0.265017899614053,
0.335047641163975, 0.0236064382275949, 0.0814561191768848, 1.12427313098231,
0.709638986736915, 0.0838651574035433, 1.03777649778554, 0.0531572840695336,
0.181301171395821, 0.181068531268503, 0.269210391598863, 0.735814722588949
), ncp = c(0.00000046267086872831, 0.0000000313011696562171,
-2364.79037081984, -0.000000597414327785373, 351.394396380274,
151.990268357971, 0.00000743399141356349, 19.7703358054714, 2440.01464180378,
-7240.58302952931, 70.9914281773526, 149.740843244857, -3309.66286159754,
16647.7277528127, -2582.00822814501, -1561.43493972577, -0.000000475047272630036,
19.6414650627339, 0.0000108720123535022, 315.029701597647, 135.427727860704,
22.4076952430914, 0.0000000233412720263004, -752.562054366463,
80.5575949394988, -0.00000442085001850501, -1179.58693431943,
0.000000114778231363744, -7327.08611100476, -1949.39119122034,
-2388.61869873563, 22.1016658367153, 2824.56886877323, -0.0000042213941924274,
-730.911226568125, -1099.31476127236, 0.00000000339059624820948,
2378.51963226983, -3114.53016945277, 3984.12834500313, 175.787574969581,
0.00000653910683467984, -0.000000110070686787367, 1181.21838523608,
21.8320325434906, -3186.31096406218, 345.549440360701, 13365.6075074154,
14.6078058980493, 2258.65831825051, -700.956671146072, -406.573908048507,
0.0000124756261357106, 1164.89840225065, 19.3309273536142, -0.00000834093225421384,
-6412.21120826376, 69.809013458027, 1435.53987527536, 1438.76661482502,
28.9054297961484, 2385.37075061088, 27660.1530534023, 0.000000160784111358225,
-3822.79946768601, -2315.2593892417, 0.00000594364973949268,
27.1325407072363, 3411.75060408833, 2138.85256412776, 30763.6924561956,
64.9265390225191, -2428.93211152896, -2914.7903949441, 0.00000096066651167348,
678.510061382112, -826.474972046213, 0.000000630076101515442,
0.00000610958522884175, -0.00000443263706983998, -3691.07725347468,
0.00000263373658526689, 12496.6406096131, 111.59293522677, 13.801709866937,
0.0000000575091689825058, -482.465671315367, 0.00000894447293831035,
-944.987300472989, 26.6739735744122, -1686.73710901346, 0.000000106025254353881,
-1838.70931961411, 1602.34840365657, -5004.48179096662, -0.0000282387336483225,
1476.99946196973, 0.000000139494659379125, -3032.83538644376,
0.000000328800524584949, -4550.10670159884, 2268.41146332065),
df = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L),
proximal = c(0.02, 0.02, -0.039, 0.02, 0.02, 0.023, 0.02,
0.02, 0.02, -0.229, 0.02, 0.02, 0.096, 0.02, -0.241, 0.174,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.04, 0.02, 0.02,
0.022, 0.02, 0.129, -0.093, -0.216, 0.02, 0.02, 0.02, -0.061,
0.014, 0.02, -0.025, -0.715, 0.024, 0.02, 0.02, 0.02, 0.02,
0.02, 0.036, 0.02, -6.749, 0.02, 0.02, 0.012, -0.032, 0.02,
0.02, 0.02, 0.02, -0.093, 0.021, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, -0.27, -0.194, 0.02, 0.02, 0.02, 0.02, 0.02,
0.022, -0.071, -0.103, 0.02, 0.02, 0.121, 0.02, 0.02, 0.02,
0.083, 0.02, 0.02, -0.013, 0.02, 0.02, -0.401, 0.02, 0.115,
0.02, 0.084, 0.02, 0.041, 0.018, -0.099, 0.02, 0.02, 0.02,
-0.089, 0.02, -0.056, -0.063), distal = c(0, 0, 0.209, 0,
0.2, 0.396, 0, 0.2, 0.2, 0.145, 0.4, 0.4, -0.09, 0.4, 0.341,
0.273, 0, 0.2, 0, 0.2, 0.2, 0.2, 0, 0.392, 0.4, 0, -0.019,
0, 0.503, 0.29, 0.54, 0.2, 0.2, 0, 0.474, 0, 0, 0.237, 0.621,
0.396, 0.4, 0, 0, 0.4, 0.2, 0.195, 0.2, 6.526, 0.2, 0.4,
0.005, 0.425, 0, 0.4, 0.2, 0, 0.143, 0.4, 0.2, 0.4, 0.2,
0.4, 0.4, 0, 0.512, 0.613, 0, 0.2, 0.2, 0.4, 0.4, 0.396,
0.085, 0.264, 0, 0.2, 0.309, 0, 0, 0, 0.173, 0, 0.4, 0.409,
0.2, 0, 0.708, 0, 0.307, 0.2, 0.131, 0, 0.205, 0.201, 0.594,
0, 0.4, 0, 0.519, 0, 0.238, 0.465), historical = c(0.02,
0.02, 0.02, 0.02, 0.02, 0.026, 0.02, 0.02, 0.02, 0.062, 0.02,
0.02, -0.15, 0.02, -0.225, -0.121, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.085, 0.02, 0.02, 0.037, 0.02, 0.124,
-0.082, -0.202, 0.02, 0.02, 0.02, 0.07, 0.024, 0.02, -0.022,
-0.69, 0.023, 0.02, 0.02, 0.02, 0.02, 0.02, 0.038, 0.02,
0.151, 0.02, 0.02, 0.082, -0.063, 0.02, 0.02, 0.02, 0.02,
0.159, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, -0.117,
-0.033, 0.02, 0.02, 0.02, 0.02, 0.02, 0.025, -0.086, -0.044,
0.02, 0.022, -0.168, 0.02, 0.02, 0.02, 0.299, 0.02, 0.02,
-0.015, 0.02, 0.02, -0.128, 0.02, -0.088, 0.02, 0.035, 0.02,
0.041, 0.019, -0.218, 0.02, 0.02, 0.02, -0.062, 0.02, -0.088,
-0.057)), class = "data.frame", row.names = c(NA, -102L))
For this data I am getting:
Whereas I expected it to be colored by two groups:
2y == 0.4 & aur == 0.8 & aury == 0.8 ~ "x2y0.4_aur0.8_aury0.8",
x2y == 0.2 & aur == 0.6 & aury == 0.6 ~ "x2y0.2_aur0.6_aury0.6")
You need to move the color specification inside the aes call:
umxSim3 %>%
mutate(group = case_when(x2y == 0.4 & aur == 0.8 & aury == 0.8 ~ "x2y0.4_aur0.8_aury0.8",
x2y == 0.2 & aur == 0.6 & aury == 0.6 ~ "x2y0.2_aur0.6_aury0.6")) %>%
drop_na() %>%
ggplot(aes(temp, cova, color = as.factor(group))) +
geom_line(stat = "summary") +
geom_point(stat = "summary") +
theme_bw(12) +
theme(legend.position = c(0.8, 0.8),
panel.border = element_rect(colour = "black"),
legend.background = element_rect(linetype = 1, size = 0.2, colour = 1))+
scale_color_manual(values = c('red', 'blue'), name = 'Group')
Note you didn't provide the cb_palette object, so I have just set the colors to red and blue for this example.

ggplot: How to color/fill area between ROC curves and diagonal?

I have this ROC curve
Written with this code:
ggplot(a, aes(y = TPR, x = FPR, color = model)) +
geom_line() +
geom_segment(aes(y = 0, yend = 1, x = 0, xend = 1), color = "grey50")
I want to color the space between red and green curve, and the area between the green curve and the diagonal.
I tried to color the expected output manually in free hand (my apologies for the artistic skills)
I sought solutions using geom_area() but could not get it work.
How can I fill these area?
Here is my data sample. My apologies for many datapoints, but that was the only way I could reproduce "the full curves" reaching (0,0) and (1,1).
a <- structure(list(model = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), levels = c("Null model",
"SSA+", "SSA-"), class = "factor"), risk = c(1, 1, 1, 1, 1, 0.99,
0.99, 0.99, 0.98, 0.98, 0.97, 0.97, 0.97, 0.96, 0.95, 0.95, 0.94,
0.93, 0.92, 0.91, 0.91, 0.91, 0.91, 0.9, 0.89, 0.89, 0.88, 0.87,
0.87, 0.85, 0.85, 0.81, 0.81, 0.8, 0.78, 0.77, 0.76, 0.76, 0.76,
0.76, 0.75, 0.74, 0.72, 0.69, 0.69, 0.69, 0.67, 0.66, 0.65, 0.65,
0.64, 0.63, 0.63, 0.6, 0.59, 0.58, 0.58, 0.57, 0.57, 0.57, 0.53,
0.53, 0.52, 0.5, 0.46, 0.46, 0.46, 0.45, 0.44, 0.42, 0.41, 0.4,
0.4, 0.39, 0.38, 0.37, 0.35, 0.31, 0.29, 0.27, 0.27, 0.26, 0.24,
0.23, 0.2, 0.19, 0.19, 0.18, 0.18, 0.16, 0.15, 0.15, 0.11, 0.11,
0.09, 0.07, 0.06, 0.04, 0.93, 0.92, 0.92, 0.91, 0.91, 0.9, 0.9,
0.9, 0.9, 0.89, 0.86, 0.86, 0.86, 0.86, 0.86, 0.85, 0.85, 0.84,
0.83, 0.82, 0.81, 0.81, 0.81, 0.8, 0.79, 0.78, 0.78, 0.77, 0.77,
0.76, 0.75, 0.74, 0.74, 0.74, 0.73, 0.72, 0.71, 0.7, 0.66, 0.65,
0.65, 0.64, 0.63, 0.61, 0.6, 0.59, 0.56, 0.54, 0.52, 0.51, 0.51,
0.5, 0.47, 0.45, 0.45, 0.43, 0.42, 0.42, 0.38, 0.36, 0.34, 0.32,
0.32, 0.31, 0.3, 0.3, 0.29, 0.28, 0.27, 0.27, 0.26, 0.24, 0.23,
0.18, 0.16, 0.14, 0.13, 0.13, 0.12, 0.09), TPR = c(0.02, 0.03,
0.05, 0.07, 0.08, 0.1, 0.11, 0.13, 0.15, 0.16, 0.18, 0.2, 0.21,
0.23, 0.25, 0.26, 0.28, 0.3, 0.31, 0.33, 0.34, 0.34, 0.36, 0.38,
0.38, 0.39, 0.41, 0.43, 0.44, 0.44, 0.44, 0.46, 0.48, 0.49, 0.49,
0.51, 0.52, 0.54, 0.56, 0.57, 0.59, 0.61, 0.62, 0.62, 0.64, 0.66,
0.67, 0.69, 0.7, 0.72, 0.74, 0.74, 0.75, 0.75, 0.77, 0.77, 0.79,
0.8, 0.8, 0.82, 0.82, 0.82, 0.84, 0.84, 0.84, 0.85, 0.85, 0.87,
0.89, 0.9, 0.92, 0.92, 0.93, 0.93, 0.95, 0.95, 0.95, 0.97, 0.98,
0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0.03, 0.05, 0.07, 0.08, 0.1, 0.11, 0.11,
0.13, 0.15, 0.15, 0.16, 0.18, 0.21, 0.23, 0.25, 0.25, 0.26, 0.26,
0.28, 0.31, 0.33, 0.33, 0.33, 0.34, 0.38, 0.39, 0.43, 0.49, 0.51,
0.56, 0.59, 0.61, 0.62, 0.66, 0.69, 0.7, 0.7, 0.72, 0.72, 0.74,
0.75, 0.75, 0.77, 0.77, 0.79, 0.79, 0.79, 0.8, 0.82, 0.84, 0.84,
0.85, 0.87, 0.89, 0.89, 0.89, 0.89, 0.9, 0.92, 0.93, 0.93, 0.93,
0.93, 0.93, 0.93, 0.95, 0.98, 0.98, 0.98, 0.98, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1), FPR = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0.03, 0.03, 0.05, 0.05, 0.05, 0.05,
0.05, 0.08, 0.11, 0.11, 0.11, 0.11, 0.13, 0.13, 0.13, 0.16, 0.16,
0.16, 0.16, 0.16, 0.16, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18,
0.18, 0.21, 0.21, 0.24, 0.24, 0.26, 0.26, 0.26, 0.29, 0.29, 0.32,
0.34, 0.34, 0.37, 0.39, 0.39, 0.42, 0.42, 0.42, 0.42, 0.42, 0.45,
0.45, 0.47, 0.47, 0.5, 0.53, 0.53, 0.53, 0.55, 0.58, 0.61, 0.63,
0.66, 0.68, 0.71, 0.74, 0.76, 0.76, 0.79, 0.82, 0.84, 0.87, 0.89,
0.92, 0.95, 0.97, 1, 0, 0, 0, 0, 0, 0, 0.03, 0.03, 0.03, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.08, 0.08, 0.11, 0.11, 0.11, 0.11,
0.13, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.18, 0.18, 0.18, 0.18,
0.18, 0.18, 0.21, 0.24, 0.26, 0.26, 0.29, 0.29, 0.29, 0.32, 0.32,
0.34, 0.34, 0.37, 0.39, 0.39, 0.39, 0.39, 0.42, 0.42, 0.45, 0.45,
0.47, 0.5, 0.53, 0.53, 0.53, 0.53, 0.55, 0.58, 0.61, 0.63, 0.66,
0.66, 0.66, 0.71, 0.74, 0.76, 0.76, 0.79, 0.82, 0.84, 0.87, 0.89,
0.92, 0.95, 0.97, 1)), row.names = c(NA, -178L), class = c("data.table",
"data.frame"))
You can use geom_ribbon. The ymax will be TPR, and since the diagonal occurs at TPR = FPR, the ymin will be FPR.
ggplot(a, aes(y = TPR, x = FPR)) +
geom_ribbon(aes(ymin = FPR, ymax = TPR, fill = model)) +
geom_line(aes(group = model), color = "black") +
geom_segment(aes(y = 0, yend = 1, x = 0, xend = 1), color = "grey50") +
scale_fill_manual(values = c("#ba6329", "#5f7c37")) +
coord_equal() +
theme_light(base_size = 16)

How to perform rolling regression in R with this dataset?

Let's suppose I have the following dataframe made of up 219 rows. The dataset is not perfectly monthly for some structural reasons.
df = structure(list(X1 = c(0.67, -1.45, 0.01, -1.07, -0.8, 0.21, -0.27,
0.44, 1.09, 0.99, 0.62, -0.43, -0.29, -0.57, -1.1, 0.18, 0.26,
0.38, -2.38, 0.79, 0.11, 0.03, 1.02, 0.02, 0.33, 1.03, -0.41,
-1.46, -0.06, 1.95, -1.04, -0.95, 1.61, 0.46, -0.6, -1.42, -0.8,
0.92, 0.84, -1, 1.55, -0.86, 0.58, -0.35, 1.13, 0.39, -0.71,
-0.67, 1.47, -0.01, 0.09, -1.19, 0.22, -1.8, -0.59, 1.06, -1.05,
1.42, -1.91, 0.73, 0.75, 0.82, -0.69, -0.52, 1.1, -0.56, -0.52,
1.16, -0.35, -0.71, 0.92, -0.01, 0.89, -0.06, 0.87, 0.96, 0.97,
0.38, 0.95, -0.23, -0.43, -1.17, 0.65, -0.76, 2.12, -0.16, 2.21,
1.06, -0.35, 0.44, -0.46, 1.56, 1.66, -0.51, 1.08, -0.81, 0.71,
1.08, 0.79, -0.44, 0.92, -0.03, -0.15, -0.25, -0.48, 0.28, -0.86,
-1.07, -2.52, 0.15, -0.5, 1.13, 1.94, -0.35, -0.3, -0.12, -0.04,
2.48, -0.3, -0.28, -3.04, 0.68, 1.02, -1.07, 1.59, -0.11, -0.44,
1.27, 0.1, -0.1, 1.32, 0.08, 1.24, 1.46, 0.33, 1.55, -0.87, 1.26,
-0.56, 0.76, -0.51, -0.24, -0.94, 0.88, -0.08, -2.27, 1.09, 1.15,
-1.59, -0.65, 1.22, 0, 1.49, -2.03, 0.16, 0.21, 0.25, -2.21,
1.43, 0.67, -1.33, 0.06, -0.34, 0.15, 1.93, -0.94, 0.21, -0.97,
-0.95, -0.43, 1.86, 0.96, -0.32, 0.69, -0.54, 0.16, -0.04, -0.78,
1.39, -0.39, -0.52, -0.82, -0.51, -0.18, -0.38, -0.68, 0.44,
1.38, -0.27, 0.63, -0.56, 0.12, -1.02, 1.59, -1.03, -0.77, -0.17,
-0.89, 0.56, -0.22, 1.43, -0.55, 0.69, 0.82, -0.32, 0.55, -0.94,
0.31, 0.55, 1.11, -0.54, 0.58, -1.49, 2.33, -1.45, 1.05, 0.28,
1.68, 0.86), X2 = c(0.67, -1.45, 0.01, -1.07, -0.8, 0.21, -0.27,
0.44, 1.09, 0.99, 0.62, -0.43, -0.29, -0.57, -1.1, 0.18, 0.26,
0.38, -2.38, 0.79, 0.11, 0.03, 1.02, 0.02, 0.33, 1.03, -0.41,
-1.46, -0.06, 1.95, -1.04, -0.95, 1.61, 0.46, -0.6, -1.42, -0.8,
0.92, 0.84, -1, 1.55, -0.86, 0.58, -0.35, 1.13, 0.39, -0.71,
-0.67, 1.47, -0.01, 0.09, -1.19, 0.22, -1.8, -0.59, 1.06, -1.05,
1.42, -1.91, 0.73, 0.75, 0.82, -0.69, -0.52, 1.1, -0.56, -0.52,
1.16, -0.35, -0.71, 0.92, -0.01, 0.89, -0.06, 0.87, 0.96, 0.97,
0.38, 0.95, -0.23, -0.43, -1.17, 0.65, -0.76, 2.12, -0.16, 2.21,
1.06, -0.35, 0.44, -0.46, 1.56, 1.66, -0.51, 1.08, -0.81, 0.71,
1.08, 0.79, -0.44, 0.92, -0.03, -0.15, -0.25, -0.48, 0.28, -0.86,
-1.07, -2.52, 0.15, -0.5, 1.13, 1.94, -0.35, -0.3, -0.12, -0.04,
2.48, -0.3, -0.28, -3.04, 0.68, 1.02, -1.07, 1.59, -0.11, -0.44,
1.27, 0.1, -0.1, 1.32, 0.08, 1.24, 1.46, 0.33, 1.55, -0.87, 1.26,
-0.56, 0.76, -0.51, -0.24, -0.94, 0.88, -0.08, -2.27, 1.09, 1.15,
-1.59, -0.65, 1.22, 0, 1.49, -2.03, 0.16, 0.21, 0.25, -2.21,
1.43, 0.67, -1.33, 0.06, -0.34, 0.15, 1.93, -0.94, 0.21, -0.97,
-0.95, -0.43, 1.86, 0.96, -0.32, 0.69, -0.54, 0.16, -0.04, -0.78,
1.39, -0.39, -0.52, -0.82, -0.51, -0.18, -0.38, -0.68, 0.44,
1.38, -0.27, 0.63, -0.56, 0.12, -1.02, 1.59, -1.03, -0.77, -0.17,
-0.89, 0.56, -0.22, 1.43, -0.55, 0.69, 0.82, -0.32, 0.55, -0.94,
0.31, 0.55, 1.11, -0.54, 0.58, -1.49, 2.33, -1.45, 1.05, 0.28,
1.68, 0.86), X3 = c(0.67, -1.45, 0.01, -1.07, -0.8, 0.21, -0.27,
0.44, 1.09, 0.99, 0.62, -0.43, -0.29, -0.57, -1.1, 0.18, 0.26,
0.38, -2.38, 0.79, 0.11, 0.03, 1.02, 0.02, 0.33, 1.03, -0.41,
-1.46, -0.06, 1.95, -1.04, -0.95, 1.61, 0.46, -0.6, -1.42, -0.8,
0.92, 0.84, -1, 1.55, -0.86, 0.58, -0.35, 1.13, 0.39, -0.71,
-0.67, 1.47, -0.01, 0.09, -1.19, 0.22, -1.8, -0.59, 1.06, -1.05,
1.42, -1.91, 0.73, 0.75, 0.82, -0.69, -0.52, 1.1, -0.56, -0.52,
1.16, -0.35, -0.71, 0.92, -0.01, 0.89, -0.06, 0.87, 0.96, 0.97,
0.38, 0.95, -0.23, -0.43, -1.17, 0.65, -0.76, 2.12, -0.16, 2.21,
1.06, -0.35, 0.44, -0.46, 1.56, 1.66, -0.51, 1.08, -0.81, 0.71,
1.08, 0.79, -0.44, 0.92, -0.03, -0.15, -0.25, -0.48, 0.28, -0.86,
-1.07, -2.52, 0.15, -0.5, 1.13, 1.94, -0.35, -0.3, -0.12, -0.04,
2.48, -0.3, -0.28, -3.04, 0.68, 1.02, -1.07, 1.59, -0.11, -0.44,
1.27, 0.1, -0.1, 1.32, 0.08, 1.24, 1.46, 0.33, 1.55, -0.87, 1.26,
-0.56, 0.76, -0.51, -0.24, -0.94, 0.88, -0.08, -2.27, 1.09, 1.15,
-1.59, -0.65, 1.22, 0, 1.49, -2.03, 0.16, 0.21, 0.25, -2.21,
1.43, 0.67, -1.33, 0.06, -0.34, 0.15, 1.93, -0.94, 0.21, -0.97,
-0.95, -0.43, 1.86, 0.96, -0.32, 0.69, -0.54, 0.16, -0.04, -0.78,
1.39, -0.39, -0.52, -0.82, -0.51, -0.18, -0.38, -0.68, 0.44,
1.38, -0.27, 0.63, -0.56, 0.12, -1.02, 1.59, -1.03, -0.77, -0.17,
-0.89, 0.56, -0.22, 1.43, -0.55, 0.69, 0.82, -0.32, 0.55, -0.94,
0.31, 0.55, 1.11, -0.54, 0.58, -1.49, 2.33, -1.45, 1.05, 0.28,
1.68, 0.86), X4 = c(0.67, -1.45, 0.01, -1.07, -0.8, 0.21, -0.27,
0.44, 1.09, 0.99, 0.62, -0.43, -0.29, -0.57, -1.1, 0.18, 0.26,
0.38, -2.38, 0.79, 0.11, 0.03, 1.02, 0.02, 0.33, 1.03, -0.41,
-1.46, -0.06, 1.95, -1.04, -0.95, 1.61, 0.46, -0.6, -1.42, -0.8,
0.92, 0.84, -1, 1.55, -0.86, 0.58, -0.35, 1.13, 0.39, -0.71,
-0.67, 1.47, -0.01, 0.09, -1.19, 0.22, -1.8, -0.59, 1.06, -1.05,
1.42, -1.91, 0.73, 0.75, 0.82, -0.69, -0.52, 1.1, -0.56, -0.52,
1.16, -0.35, -0.71, 0.92, -0.01, 0.89, -0.06, 0.87, 0.96, 0.97,
0.38, 0.95, -0.23, -0.43, -1.17, 0.65, -0.76, 2.12, -0.16, 2.21,
1.06, -0.35, 0.44, -0.46, 1.56, 1.66, -0.51, 1.08, -0.81, 0.71,
1.08, 0.79, -0.44, 0.92, -0.03, -0.15, -0.25, -0.48, 0.28, -0.86,
-1.07, -2.52, 0.15, -0.5, 1.13, 1.94, -0.35, -0.3, -0.12, -0.04,
2.48, -0.3, -0.28, -3.04, 0.68, 1.02, -1.07, 1.59, -0.11, -0.44,
1.27, 0.1, -0.1, 1.32, 0.08, 1.24, 1.46, 0.33, 1.55, -0.87, 1.26,
-0.56, 0.76, -0.51, -0.24, -0.94, 0.88, -0.08, -2.27, 1.09, 1.15,
-1.59, -0.65, 1.22, 0, 1.49, -2.03, 0.16, 0.21, 0.25, -2.21,
1.43, 0.67, -1.33, 0.06, -0.34, 0.15, 1.93, -0.94, 0.21, -0.97,
-0.95, -0.43, 1.86, 0.96, -0.32, 0.69, -0.54, 0.16, -0.04, -0.78,
1.39, -0.39, -0.52, -0.82, -0.51, -0.18, -0.38, -0.68, 0.44,
1.38, -0.27, 0.63, -0.56, 0.12, -1.02, 1.59, -1.03, -0.77, -0.17,
-0.89, 0.56, -0.22, 1.43, -0.55, 0.69, 0.82, -0.32, 0.55, -0.94,
0.31, 0.55, 1.11, -0.54, 0.58, -1.49, 2.33, -1.45, 1.05, 0.28,
1.68, 0.86), X5 = c(0.67, -1.45, 0.01, -1.07, -0.8, 0.21, -0.27,
0.44, 1.09, 0.99, 0.62, -0.43, -0.29, -0.57, -1.1, 0.18, 0.26,
0.38, -2.38, 0.79, 0.11, 0.03, 1.02, 0.02, 0.33, 1.03, -0.41,
-1.46, -0.06, 1.95, -1.04, -0.95, 1.61, 0.46, -0.6, -1.42, -0.8,
0.92, 0.84, -1, 1.55, -0.86, 0.58, -0.35, 1.13, 0.39, -0.71,
-0.67, 1.47, -0.01, 0.09, -1.19, 0.22, -1.8, -0.59, 1.06, -1.05,
1.42, -1.91, 0.73, 0.75, 0.82, -0.69, -0.52, 1.1, -0.56, -0.52,
1.16, -0.35, -0.71, 0.92, -0.01, 0.89, -0.06, 0.87, 0.96, 0.97,
0.38, 0.95, -0.23, -0.43, -1.17, 0.65, -0.76, 2.12, -0.16, 2.21,
1.06, -0.35, 0.44, -0.46, 1.56, 1.66, -0.51, 1.08, -0.81, 0.71,
1.08, 0.79, -0.44, 0.92, -0.03, -0.15, -0.25, -0.48, 0.28, -0.86,
-1.07, -2.52, 0.15, -0.5, 1.13, 1.94, -0.35, -0.3, -0.12, -0.04,
2.48, -0.3, -0.28, -3.04, 0.68, 1.02, -1.07, 1.59, -0.11, -0.44,
1.27, 0.1, -0.1, 1.32, 0.08, 1.24, 1.46, 0.33, 1.55, -0.87, 1.26,
-0.56, 0.76, -0.51, -0.24, -0.94, 0.88, -0.08, -2.27, 1.09, 1.15,
-1.59, -0.65, 1.22, 0, 1.49, -2.03, 0.16, 0.21, 0.25, -2.21,
1.43, 0.67, -1.33, 0.06, -0.34, 0.15, 1.93, -0.94, 0.21, -0.97,
-0.95, -0.43, 1.86, 0.96, -0.32, 0.69, -0.54, 0.16, -0.04, -0.78,
1.39, -0.39, -0.52, -0.82, -0.51, -0.18, -0.38, -0.68, 0.44,
1.38, -0.27, 0.63, -0.56, 0.12, -1.02, 1.59, -1.03, -0.77, -0.17,
-0.89, 0.56, -0.22, 1.43, -0.55, 0.69, 0.82, -0.32, 0.55, -0.94,
0.31, 0.55, 1.11, -0.54, 0.58, -1.49, 2.33, -1.45, 1.05, 0.28,
1.68, 0.86), X6 = c(0.67, -1.45, 0.01, -1.07, -0.8, 0.21, -0.27,
0.44, 1.09, 0.99, 0.62, -0.43, -0.29, -0.57, -1.1, 0.18, 0.26,
0.38, -2.38, 0.79, 0.11, 0.03, 1.02, 0.02, 0.33, 1.03, -0.41,
-1.46, -0.06, 1.95, -1.04, -0.95, 1.61, 0.46, -0.6, -1.42, -0.8,
0.92, 0.84, -1, 1.55, -0.86, 0.58, -0.35, 1.13, 0.39, -0.71,
-0.67, 1.47, -0.01, 0.09, -1.19, 0.22, -1.8, -0.59, 1.06, -1.05,
1.42, -1.91, 0.73, 0.75, 0.82, -0.69, -0.52, 1.1, -0.56, -0.52,
1.16, -0.35, -0.71, 0.92, -0.01, 0.89, -0.06, 0.87, 0.96, 0.97,
0.38, 0.95, -0.23, -0.43, -1.17, 0.65, -0.76, 2.12, -0.16, 2.21,
1.06, -0.35, 0.44, -0.46, 1.56, 1.66, -0.51, 1.08, -0.81, 0.71,
1.08, 0.79, -0.44, 0.92, -0.03, -0.15, -0.25, -0.48, 0.28, -0.86,
-1.07, -2.52, 0.15, -0.5, 1.13, 1.94, -0.35, -0.3, -0.12, -0.04,
2.48, -0.3, -0.28, -3.04, 0.68, 1.02, -1.07, 1.59, -0.11, -0.44,
1.27, 0.1, -0.1, 1.32, 0.08, 1.24, 1.46, 0.33, 1.55, -0.87, 1.26,
-0.56, 0.76, -0.51, -0.24, -0.94, 0.88, -0.08, -2.27, 1.09, 1.15,
-1.59, -0.65, 1.22, 0, 1.49, -2.03, 0.16, 0.21, 0.25, -2.21,
1.43, 0.67, -1.33, 0.06, -0.34, 0.15, 1.93, -0.94, 0.21, -0.97,
-0.95, -0.43, 1.86, 0.96, -0.32, 0.69, -0.54, 0.16, -0.04, -0.78,
1.39, -0.39, -0.52, -0.82, -0.51, -0.18, -0.38, -0.68, 0.44,
1.38, -0.27, 0.63, -0.56, 0.12, -1.02, 1.59, -1.03, -0.77, -0.17,
-0.89, 0.56, -0.22, 1.43, -0.55, 0.69, 0.82, -0.32, 0.55, -0.94,
0.31, 0.55, 1.11, -0.54, 0.58, -1.49, 2.33, -1.45, 1.05, 0.28,
1.68, 0.86), X7 = c(0.67, -1.45, 0.01, -1.07, -0.8, 0.21, -0.27,
0.44, 1.09, 0.99, 0.62, -0.43, -0.29, -0.57, -1.1, 0.18, 0.26,
0.38, -2.38, 0.79, 0.11, 0.03, 1.02, 0.02, 0.33, 1.03, -0.41,
-1.46, -0.06, 1.95, -1.04, -0.95, 1.61, 0.46, -0.6, -1.42, -0.8,
0.92, 0.84, -1, 1.55, -0.86, 0.58, -0.35, 1.13, 0.39, -0.71,
-0.67, 1.47, -0.01, 0.09, -1.19, 0.22, -1.8, -0.59, 1.06, -1.05,
1.42, -1.91, 0.73, 0.75, 0.82, -0.69, -0.52, 1.1, -0.56, -0.52,
1.16, -0.35, -0.71, 0.92, -0.01, 0.89, -0.06, 0.87, 0.96, 0.97,
0.38, 0.95, -0.23, -0.43, -1.17, 0.65, -0.76, 2.12, -0.16, 2.21,
1.06, -0.35, 0.44, -0.46, 1.56, 1.66, -0.51, 1.08, -0.81, 0.71,
1.08, 0.79, -0.44, 0.92, -0.03, -0.15, -0.25, -0.48, 0.28, -0.86,
-1.07, -2.52, 0.15, -0.5, 1.13, 1.94, -0.35, -0.3, -0.12, -0.04,
2.48, -0.3, -0.28, -3.04, 0.68, 1.02, -1.07, 1.59, -0.11, -0.44,
1.27, 0.1, -0.1, 1.32, 0.08, 1.24, 1.46, 0.33, 1.55, -0.87, 1.26,
-0.56, 0.76, -0.51, -0.24, -0.94, 0.88, -0.08, -2.27, 1.09, 1.15,
-1.59, -0.65, 1.22, 0, 1.49, -2.03, 0.16, 0.21, 0.25, -2.21,
1.43, 0.67, -1.33, 0.06, -0.34, 0.15, 1.93, -0.94, 0.21, -0.97,
-0.95, -0.43, 1.86, 0.96, -0.32, 0.69, -0.54, 0.16, -0.04, -0.78,
1.39, -0.39, -0.52, -0.82, -0.51, -0.18, -0.38, -0.68, 0.44,
1.38, -0.27, 0.63, -0.56, 0.12, -1.02, 1.59, -1.03, -0.77, -0.17,
-0.89, 0.56, -0.22, 1.43, -0.55, 0.69, 0.82, -0.32, 0.55, -0.94,
0.31, 0.55, 1.11, -0.54, 0.58, -1.49, 2.33, -1.45, 1.05, 0.28,
1.68, 0.86), X8 = c(0.67, -1.45, 0.01, -1.07, -0.8, 0.21, -0.27,
0.44, 1.09, 0.99, 0.62, -0.43, -0.29, -0.57, -1.1, 0.18, 0.26,
0.38, -2.38, 0.79, 0.11, 0.03, 1.02, 0.02, 0.33, 1.03, -0.41,
-1.46, -0.06, 1.95, -1.04, -0.95, 1.61, 0.46, -0.6, -1.42, -0.8,
0.92, 0.84, -1, 1.55, -0.86, 0.58, -0.35, 1.13, 0.39, -0.71,
-0.67, 1.47, -0.01, 0.09, -1.19, 0.22, -1.8, -0.59, 1.06, -1.05,
1.42, -1.91, 0.73, 0.75, 0.82, -0.69, -0.52, 1.1, -0.56, -0.52,
1.16, -0.35, -0.71, 0.92, -0.01, 0.89, -0.06, 0.87, 0.96, 0.97,
0.38, 0.95, -0.23, -0.43, -1.17, 0.65, -0.76, 2.12, -0.16, 2.21,
1.06, -0.35, 0.44, -0.46, 1.56, 1.66, -0.51, 1.08, -0.81, 0.71,
1.08, 0.79, -0.44, 0.92, -0.03, -0.15, -0.25, -0.48, 0.28, -0.86,
-1.07, -2.52, 0.15, -0.5, 1.13, 1.94, -0.35, -0.3, -0.12, -0.04,
2.48, -0.3, -0.28, -3.04, 0.68, 1.02, -1.07, 1.59, -0.11, -0.44,
1.27, 0.1, -0.1, 1.32, 0.08, 1.24, 1.46, 0.33, 1.55, -0.87, 1.26,
-0.56, 0.76, -0.51, -0.24, -0.94, 0.88, -0.08, -2.27, 1.09, 1.15,
-1.59, -0.65, 1.22, 0, 1.49, -2.03, 0.16, 0.21, 0.25, -2.21,
1.43, 0.67, -1.33, 0.06, -0.34, 0.15, 1.93, -0.94, 0.21, -0.97,
-0.95, -0.43, 1.86, 0.96, -0.32, 0.69, -0.54, 0.16, -0.04, -0.78,
1.39, -0.39, -0.52, -0.82, -0.51, -0.18, -0.38, -0.68, 0.44,
1.38, -0.27, 0.63, -0.56, 0.12, -1.02, 1.59, -1.03, -0.77, -0.17,
-0.89, 0.56, -0.22, 1.43, -0.55, 0.69, 0.82, -0.32, 0.55, -0.94,
0.31, 0.55, 1.11, -0.54, 0.58, -1.49, 2.33, -1.45, 1.05, 0.28,
1.68, 0.86)), row.names = c(NA, -219L), class = "data.frame")
Then, what I want to do is setting up a rolling regression in a time window that encompasses, say, 2 years (24 months). To do so, I run the following codes:
library(rollRegres)
library(zoo)
roll_model1 = roll_regres(X1 ~ ., df, 24L, do_compute = c("sigmas", "r.squareds"), do_downdates = TRUE)
roll_model2 = rollapply(df, width = 24, FUN = function(x) coef(lm(X1 ~ ., data = as.data.frame(x))), by.column = FALSE, align = "right")
In the first case, the model doesn't work. In the second case, I only get results for the intercept (and only coefficinets). Besides, I don't understand why there are 196 coefficient observations.
Can anyone help me run a rolling regression over 2 years window with this dataset?
Thanks!
All columns of df are the same
all(df == df[, 1])
## [1] TRUE
so it can perfectly predict X1 using X2 and the others are not needed so it gives NA.
Regarding the rollapply code it only gave coefficients because that is what you asked for coef(lm(...)) . Your function should return a vector of whatever it is you want to get out.
It does a regression for rows 1:24, rows 2:25, ... rows 196:219 so clearly there are 196 such sets so the result has 196 rows. If you specify fill=NA then it will pad it with NAs to give the same number of rows as df.
Note that rollapplyr is available which defaults to align = "right".
Here is a possible function that returns a variety of information:
library(broom)
stats <- function(x) {
fm <- lm(X1 ~., as.data.frame(x))
c(coef(fm), unlist(glance(fm)))
}
rollapplyr(df, width = 24, FUN = stats, by.column = FALSE)

Summary of Dataset using lapply

This is a novice question, however, I am finding it very difficult to understand how to use lapply correctly, especially when the ID used is not numeric.
There are possibly better methods to trying to find the summary I have in mind, but for now, I'm trying to use lapply. Essentially, I have a large df with 17 columns. Two of the column are ID and Date. Not all IDs have a recorded value in a given column name. What I am interested in is finding the total number of rows available for each column, and the number of unique IDs that exist for that column. I have a dput example that makes things clearer. For example, Var8 has only 6 rows of data available, as a result it has 6 unique IDs. Also, Var15 has 20 rows and 12 unique IDs. But I want to know this for all Var15. I can do this manually using
Var8=df[!(is.na(df$Var8)),]
length(df$ID)
length(unique(df$ID))
remove(Var8)
But trying to automate:
lapply(COL.NAMES, function(x){
temp=df[!(is.na(df$paste(x))),]
rows=length(temp$ID)
num_comp=length(unique(temp$ID))
return(rows)
return(num_comp)
remove(temp)
})
leaves me with an error: attempt to apply non-function.
COL.NAMES<-c("Var1","Var2","Var3","Var4","Var5","Var6","Var7","Var8","Var9","Var10","Var11","Var12","Var13","Var14","Var15")
structure(list(ID = structure(c(1L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 2L, 3L, 4L, 1L, 5L, 6L, 7L, 8L, 9L, 10L, 11L), .Label = c("Comp1",
"Comp10", "Comp11", "Comp12", "Comp2", "Comp3", "Comp4", "Comp5",
"Comp6", "Comp7", "Comp8", "Comp9"), class = "factor"), Date = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L), .Label = c("0/1/2014", "0/1/2015"), class = "factor"),
Var1 = c(0.57, 0.34, 0.38, 0.93, 0.54, 0.17, 0.08, 0.28,
0.99, 1, 0.61, 0.73, 0.15, 0.09, 0.64, 0.3, 0.12, 0.79, 0.79,
0.15), Var2 = c(0.7, 0.77, 0.93, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.46, 0.26), Var3 = c(0.65,
0.7, 0.83, 0.7, 0.43, 0.81, 0.21, 0.44, 0.25, 0.77, 0.24,
0.29, 0.87, 0.42, 1, NA, NA, NA, NA, 0.79), Var4 = c(1, 0.7,
0.69, NA, NA, NA, NA, 0.2, 0.61, 0.89, 0.45, 0.02, 0.97,
0.33, 0.34, 0.81, 0.99, 0.35, 0.48, 0.33), Var5 = c(0.47,
0.95, 0.38, 0.69, 0.84, 0.21, 0.62, 0.59, 0.45, 0.63, 0.18,
0.49, NA, NA, NA, NA, 0.17, 0.15, 0.6, 0.44), Var6 = c(NA,
NA, NA, NA, 0.24, 0.07, 0.75, 0.24, 0.82, 0.14, 0.86, 0.63,
0.82, 0.92, 0.55, 0.22, 0.87, 0.69, 0.64, 0.73), Var7 = c(0.2,
0.11, 0.82, 0.31, 0.97, NA, NA, NA, NA, 0.83, 0.84, 0.81,
0.72, 0.36, 0.09, 0.15, 0.46, 0.79, 0.75, 0.39), Var8 = c(0.28,
0.55, NA, NA, NA, NA, 0.56, 0.89, 0.92, 0.46, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA), Var9 = c(0.11, 0.36, 1, 0.44,
0.53, 0.6, 0.24, 0.56, 0.6, 0.55, 0.55, 0.05, 0.77, 0.9,
NA, NA, NA, NA, 0.4, 0.33), Var10 = c(0.74, 0.13, 0.09, 0.61,
NA, NA, NA, NA, 0.27, 0.71, 0.56, 0.3, 0.36, 0.44, 0.78,
0.9, 0.46, 0.49, 0.87, 0.36), Var11 = c(0.58, 0.99, 0.07,
0.83, 0.45, 0.07, 0.16, 0.43, 0.34, 0.31, 0.06, 0.67, 0.02,
0.52, 0.19, 0.49, 0.31, 0.02, 0.62, 0.21), Var12 = c(0.93,
0.26, 0.77, 0.8, 0.67, 0.83, 0.12, 0.39, 0.78, 0.75, 0.44,
NA, NA, NA, NA, 0.42, 0.49, 0.06, 0.8, 0.54), Var13 = c(0.44,
0.75, NA, NA, NA, NA, 0.58, 0.3, 0.47, 0.88, 0.36, 0.21,
0.87, 0.33, 0.12, 0.31, 0.95, 0.59, 0.18, 0.43), Var14 = c(0.55,
0.03, 0.37, 0.66, NA, 0.91, 0.78, 0.84, 0.96, 0.34, 0.25,
0.92, 0.71, 0.41, 0.23, 0.54, 0.8, 0.87, 0.3, 0.37), Var15 = c(0.71,
0.66, 0.01, 0.7, 0.4, 0.04, 0.3, 1, 0.59, 0.69, 0.88, 0.28,
0.44, 0.51, 0.2, 0.17, 0.6, 0.11, 0.85, 0.04)), .Names = c("ID",
"Date", "Var1", "Var2", "Var3", "Var4", "Var5", "Var6", "Var7",
"Var8", "Var9", "Var10", "Var11", "Var12", "Var13", "Var14",
"Var15"), class = "data.frame", row.names = c(NA, -20L))
I would advise getting yourself familiar with data wrangling using dplyr. The magrittr pipes %>% implemented will help you with understanding the usage of apply.
Here's how I would change your function:
library(dplyr)
tmp<-lapply(COL.NAMES, function(x) df[,c("ID", x)] %>% na.omit) # loop and extract 15 data.frames, each with 2 columns; remove rows with missing value
rows <- sapply(tmp, nrow)
num_comp <- lapply(tmp, '[[', "ID") %>% lapply(., unique) %>% sapply(., length) #extract only ID column from list of 15 data.frame; loop across each vector to retain unique values; count length of vector.
Another approach would be,
df1 <- data.frame(n_rows = colSums(!is.na(df[,-(1:2)]), na.rm = TRUE),
unique_IDs = sapply(df[,-2], function(i) length(unique(df$ID[!is.na(i)])))[-1])
head(df1)
# n_rows unique_IDs
#Var1 20 12
#Var2 5 5
#Var3 16 12
#Var4 16 12
#Var5 16 12
#Var6 16 12
I am not sure if I have understood correctly but this could be your solution .
x is your dataframe
try1 <- function(df){
temp <- sum(!is.na(df)) ## no of non na entries
temp2 <- length(unique(df)) # length unique entries `
temp <- list("x"=temp,"y"=temp2)
temp
}
> lapply(x,try1)
Here is a data.table soln
library(data.table)
dd <- as.data.table(x)
COL.NAMES<-c("Var1","Var2","Var3","Var4","Var5","Var6","Var7","Var8","Var9","Var10","Var11","Var12","Var13","Var14","Var15")
dd[,lapply(.SD, try1),.SDcols=COL.NAMES]
However, I didn't use lapply,this solution does work
find.uniques<- function(df){
for(i in 1:ncol(df)){
uniques<- data.frame()
uniques[i,1]<- length(!is.na(unique(df[,i])))
uniques[i,2]<- length(which(!is.na(unique(df[,i]))))
}
return(uniques)
}
Result is a data.frame with V1 as how many rows are available, V2 how many IDs there are for each column.
You can also return(as.data.frame(t(uniques))) to change the rows to columns to see what is available for each column.

Resources