Related
I have this ROC curve
Written with this code:
ggplot(a, aes(y = TPR, x = FPR, color = model)) +
geom_line() +
geom_segment(aes(y = 0, yend = 1, x = 0, xend = 1), color = "grey50")
I want to color the space between red and green curve, and the area between the green curve and the diagonal.
I tried to color the expected output manually in free hand (my apologies for the artistic skills)
I sought solutions using geom_area() but could not get it work.
How can I fill these area?
Here is my data sample. My apologies for many datapoints, but that was the only way I could reproduce "the full curves" reaching (0,0) and (1,1).
a <- structure(list(model = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), levels = c("Null model",
"SSA+", "SSA-"), class = "factor"), risk = c(1, 1, 1, 1, 1, 0.99,
0.99, 0.99, 0.98, 0.98, 0.97, 0.97, 0.97, 0.96, 0.95, 0.95, 0.94,
0.93, 0.92, 0.91, 0.91, 0.91, 0.91, 0.9, 0.89, 0.89, 0.88, 0.87,
0.87, 0.85, 0.85, 0.81, 0.81, 0.8, 0.78, 0.77, 0.76, 0.76, 0.76,
0.76, 0.75, 0.74, 0.72, 0.69, 0.69, 0.69, 0.67, 0.66, 0.65, 0.65,
0.64, 0.63, 0.63, 0.6, 0.59, 0.58, 0.58, 0.57, 0.57, 0.57, 0.53,
0.53, 0.52, 0.5, 0.46, 0.46, 0.46, 0.45, 0.44, 0.42, 0.41, 0.4,
0.4, 0.39, 0.38, 0.37, 0.35, 0.31, 0.29, 0.27, 0.27, 0.26, 0.24,
0.23, 0.2, 0.19, 0.19, 0.18, 0.18, 0.16, 0.15, 0.15, 0.11, 0.11,
0.09, 0.07, 0.06, 0.04, 0.93, 0.92, 0.92, 0.91, 0.91, 0.9, 0.9,
0.9, 0.9, 0.89, 0.86, 0.86, 0.86, 0.86, 0.86, 0.85, 0.85, 0.84,
0.83, 0.82, 0.81, 0.81, 0.81, 0.8, 0.79, 0.78, 0.78, 0.77, 0.77,
0.76, 0.75, 0.74, 0.74, 0.74, 0.73, 0.72, 0.71, 0.7, 0.66, 0.65,
0.65, 0.64, 0.63, 0.61, 0.6, 0.59, 0.56, 0.54, 0.52, 0.51, 0.51,
0.5, 0.47, 0.45, 0.45, 0.43, 0.42, 0.42, 0.38, 0.36, 0.34, 0.32,
0.32, 0.31, 0.3, 0.3, 0.29, 0.28, 0.27, 0.27, 0.26, 0.24, 0.23,
0.18, 0.16, 0.14, 0.13, 0.13, 0.12, 0.09), TPR = c(0.02, 0.03,
0.05, 0.07, 0.08, 0.1, 0.11, 0.13, 0.15, 0.16, 0.18, 0.2, 0.21,
0.23, 0.25, 0.26, 0.28, 0.3, 0.31, 0.33, 0.34, 0.34, 0.36, 0.38,
0.38, 0.39, 0.41, 0.43, 0.44, 0.44, 0.44, 0.46, 0.48, 0.49, 0.49,
0.51, 0.52, 0.54, 0.56, 0.57, 0.59, 0.61, 0.62, 0.62, 0.64, 0.66,
0.67, 0.69, 0.7, 0.72, 0.74, 0.74, 0.75, 0.75, 0.77, 0.77, 0.79,
0.8, 0.8, 0.82, 0.82, 0.82, 0.84, 0.84, 0.84, 0.85, 0.85, 0.87,
0.89, 0.9, 0.92, 0.92, 0.93, 0.93, 0.95, 0.95, 0.95, 0.97, 0.98,
0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0.03, 0.05, 0.07, 0.08, 0.1, 0.11, 0.11,
0.13, 0.15, 0.15, 0.16, 0.18, 0.21, 0.23, 0.25, 0.25, 0.26, 0.26,
0.28, 0.31, 0.33, 0.33, 0.33, 0.34, 0.38, 0.39, 0.43, 0.49, 0.51,
0.56, 0.59, 0.61, 0.62, 0.66, 0.69, 0.7, 0.7, 0.72, 0.72, 0.74,
0.75, 0.75, 0.77, 0.77, 0.79, 0.79, 0.79, 0.8, 0.82, 0.84, 0.84,
0.85, 0.87, 0.89, 0.89, 0.89, 0.89, 0.9, 0.92, 0.93, 0.93, 0.93,
0.93, 0.93, 0.93, 0.95, 0.98, 0.98, 0.98, 0.98, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1), FPR = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0.03, 0.03, 0.05, 0.05, 0.05, 0.05,
0.05, 0.08, 0.11, 0.11, 0.11, 0.11, 0.13, 0.13, 0.13, 0.16, 0.16,
0.16, 0.16, 0.16, 0.16, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18,
0.18, 0.21, 0.21, 0.24, 0.24, 0.26, 0.26, 0.26, 0.29, 0.29, 0.32,
0.34, 0.34, 0.37, 0.39, 0.39, 0.42, 0.42, 0.42, 0.42, 0.42, 0.45,
0.45, 0.47, 0.47, 0.5, 0.53, 0.53, 0.53, 0.55, 0.58, 0.61, 0.63,
0.66, 0.68, 0.71, 0.74, 0.76, 0.76, 0.79, 0.82, 0.84, 0.87, 0.89,
0.92, 0.95, 0.97, 1, 0, 0, 0, 0, 0, 0, 0.03, 0.03, 0.03, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.08, 0.08, 0.11, 0.11, 0.11, 0.11,
0.13, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.18, 0.18, 0.18, 0.18,
0.18, 0.18, 0.21, 0.24, 0.26, 0.26, 0.29, 0.29, 0.29, 0.32, 0.32,
0.34, 0.34, 0.37, 0.39, 0.39, 0.39, 0.39, 0.42, 0.42, 0.45, 0.45,
0.47, 0.5, 0.53, 0.53, 0.53, 0.53, 0.55, 0.58, 0.61, 0.63, 0.66,
0.66, 0.66, 0.71, 0.74, 0.76, 0.76, 0.79, 0.82, 0.84, 0.87, 0.89,
0.92, 0.95, 0.97, 1)), row.names = c(NA, -178L), class = c("data.table",
"data.frame"))
You can use geom_ribbon. The ymax will be TPR, and since the diagonal occurs at TPR = FPR, the ymin will be FPR.
ggplot(a, aes(y = TPR, x = FPR)) +
geom_ribbon(aes(ymin = FPR, ymax = TPR, fill = model)) +
geom_line(aes(group = model), color = "black") +
geom_segment(aes(y = 0, yend = 1, x = 0, xend = 1), color = "grey50") +
scale_fill_manual(values = c("#ba6329", "#5f7c37")) +
coord_equal() +
theme_light(base_size = 16)
I want to remove primary y-axis labels and ticks while keeping labels and ticks of the secondary y-axis. I have used the following code
library(tidyverse)
data %>%
pivot_longer(cols = -c(Dependent, Sig_pair_count)) %>%
ggplot() +
geom_col(aes(x = Dependent, y = Sig_pair_count, alpha = 0.3, width=1)) +
geom_line(aes(x = Dependent, y = value*2.5, colour = name)) +
scale_y_continuous(sec.axis = sec_axis(~./2.5, name="Reflectance")) +
theme_bw(base_size = 12) + xlab("Wavelength") + ylab("") +
scale_colour_manual(values = c("blue", "red")) +
theme(legend.position = "none", axis.ticks.y = element_blank(),
text = element_text(family = "serif", color = "black", size = 15),
axis.text = element_text(family = "serif", color = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
which returns me
You can see that though the variable of primary y-axis has values 0 and 1, the plot shows 0-2. How can I have the values between 0-1 and have the plot like this
Data
data = structure(list(Dependent = 350:1799, Sig_pair_count = c(0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), PUSA44 = c(0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04,
0.04, 0.04, 0.04, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06,
0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06,
0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06,
0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.04,
0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04,
0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04,
0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04,
0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04,
0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.05, 0.05, 0.05, 0.06,
0.06, 0.06, 0.06, 0.07, 0.07, 0.08, 0.08, 0.08, 0.09, 0.09, 0.09,
0.1, 0.1, 0.11, 0.11, 0.11, 0.12, 0.12, 0.13, 0.13, 0.14, 0.14,
0.15, 0.15, 0.16, 0.16, 0.17, 0.17, 0.18, 0.18, 0.19, 0.19, 0.2,
0.2, 0.21, 0.21, 0.22, 0.22, 0.23, 0.23, 0.24, 0.24, 0.25, 0.25,
0.26, 0.26, 0.27, 0.27, 0.27, 0.28, 0.28, 0.28, 0.29, 0.29, 0.29,
0.29, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.31, 0.31, 0.31, 0.31,
0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.31, 0.31, 0.31,
0.31, 0.31, 0.31, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3,
0.3, 0.3, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29,
0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29,
0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29,
0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29,
0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.3, 0.3, 0.3, 0.3, 0.3,
0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.31, 0.31, 0.31, 0.31,
0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31,
0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33,
0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33,
0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33,
0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32,
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.31, 0.31, 0.31, 0.31,
0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.3, 0.3, 0.3, 0.3,
0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29,
0.29, 0.29, 0.29, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.27, 0.27,
0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27,
0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27,
0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27,
0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27,
0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27,
0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27,
0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27,
0.27, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28,
0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28,
0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28,
0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28,
0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28,
0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28, 0.28,
0.28, 0.28, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27,
0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.26, 0.26, 0.26, 0.26, 0.26,
0.26, 0.26, 0.26, 0.26, 0.26, 0.26, 0.25, 0.25, 0.25, 0.25, 0.25,
0.25, 0.25, 0.25, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24,
0.24, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23,
0.23, 0.23, 0.23, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08,
0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08,
0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08,
0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08,
0.08, 0.08, 0.08, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09,
0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.11,
0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11,
0.11, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12,
0.12, 0.12, 0.12, 0.13, 0.13, 0.13, 0.13, 0.13, 0.13, 0.13, 0.13,
0.13, 0.13, 0.13, 0.13, 0.13, 0.13, 0.13, 0.14, 0.14, 0.14, 0.14,
0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14,
0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15,
0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.16, 0.16, 0.16,
0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16,
0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.17, 0.17, 0.17,
0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17,
0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17,
0.17, 0.17, 0.17, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18,
0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18,
0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18,
0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18,
0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18,
0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18,
0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18,
0.18, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17,
0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17,
0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17,
0.17, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16,
0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16,
0.16, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15,
0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15,
0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15,
0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15), PB6 = c(0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.04, 0.04,
0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06,
0.06, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07,
0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.08, 0.08, 0.08, 0.08,
0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.07, 0.07, 0.07, 0.07,
0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.06,
0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06,
0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04,
0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04,
0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03,
0.03, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.05, 0.05, 0.05,
0.06, 0.06, 0.06, 0.07, 0.07, 0.08, 0.08, 0.09, 0.09, 0.1, 0.1,
0.11, 0.11, 0.12, 0.12, 0.13, 0.13, 0.14, 0.14, 0.15, 0.15, 0.16,
0.17, 0.17, 0.18, 0.19, 0.19, 0.2, 0.21, 0.21, 0.22, 0.23, 0.24,
0.24, 0.25, 0.26, 0.27, 0.27, 0.28, 0.29, 0.29, 0.3, 0.31, 0.31,
0.32, 0.32, 0.33, 0.34, 0.34, 0.35, 0.35, 0.36, 0.36, 0.36, 0.37,
0.37, 0.37, 0.38, 0.38, 0.38, 0.38, 0.39, 0.39, 0.39, 0.39, 0.39,
0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4,
0.4, 0.4, 0.4, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42,
0.42, 0.42, 0.42, 0.42, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.4,
0.4, 0.4, 0.4, 0.4, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39,
0.39, 0.39, 0.39, 0.39, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38,
0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.37, 0.37, 0.37, 0.37, 0.37,
0.37, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38,
0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38,
0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.39, 0.39, 0.39, 0.39,
0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.4,
0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4,
0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.42, 0.42, 0.42, 0.42,
0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42,
0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42,
0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42,
0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41,
0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.4, 0.4,
0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.39, 0.39, 0.39, 0.39, 0.39,
0.39, 0.39, 0.39, 0.39, 0.39, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38,
0.38, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.36, 0.36, 0.36, 0.36,
0.36, 0.36, 0.36, 0.36, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36,
0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36,
0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36,
0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36,
0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36,
0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36,
0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36,
0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.35, 0.35, 0.35, 0.35,
0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.34, 0.34, 0.34, 0.34,
0.34, 0.34, 0.34, 0.34, 0.34, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33,
0.33, 0.33, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.31, 0.31, 0.31,
0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.3, 0.3, 0.3, 0.3, 0.3,
0.3, 0.3, 0.3, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11,
0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11,
0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11,
0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11,
0.11, 0.11, 0.11, 0.11, 0.11, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12,
0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.13, 0.13, 0.13, 0.13, 0.13,
0.13, 0.13, 0.13, 0.13, 0.13, 0.13, 0.14, 0.14, 0.14, 0.14, 0.14,
0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.15, 0.15, 0.15, 0.15, 0.15,
0.15, 0.15, 0.15, 0.15, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16,
0.16, 0.16, 0.16, 0.16, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17,
0.17, 0.17, 0.17, 0.17, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18,
0.18, 0.18, 0.18, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.19, 0.19,
0.19, 0.19, 0.19, 0.19, 0.19, 0.19, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.21, 0.21,
0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21,
0.21, 0.21, 0.21, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22,
0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22,
0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23,
0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23,
0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.24, 0.24, 0.24, 0.24, 0.24,
0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24,
0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24,
0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24,
0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.23, 0.23, 0.23, 0.23, 0.23,
0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23,
0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23,
0.23, 0.23, 0.23, 0.23, 0.23, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22,
0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22,
0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.21, 0.21, 0.21, 0.21, 0.21,
0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21,
0.21, 0.21, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.19, 0.2, 0.2,
0.2, 0.2, 0.2, 0.2, 0.2)), class = "data.frame", row.names = c(NA,
-1450L))
As far as I get it there is no need for secondary axis. Simply map value on y, position the y-axis on the right and set the limits of the yaxis to the desired range via coord_cartesian. Try this:
library(tidyverse)
data %>%
pivot_longer(cols = -c(Dependent, Sig_pair_count)) %>%
ggplot() +
geom_col(aes(x = Dependent, y = Sig_pair_count, alpha = 0.3, width=1)) +
geom_line(aes(x = Dependent, y = value, colour = name)) +
scale_y_continuous(name="Reflectance", position = "right") +
coord_cartesian(ylim = c(0, 0.5)) +
theme_bw(base_size = 12) +
xlab("Wavelength") +
ylab("") +
scale_colour_manual(values = c("blue", "red")) +
theme(legend.position = "none", axis.ticks.y = element_blank(),
text = element_text(family = "serif", color = "black", size = 15),
axis.text = element_text(family = "serif", color = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
#> Warning: Ignoring unknown aesthetics: width
#> Warning: Removed 162 rows containing missing values (position_stack).
My data consists of 202 cases, each stand for a single interview. The variables reflect the interviewers' and interviewees' behaviours during different parts of the interview: p1, g1, pA, gA. in some interviews, certain parts were not carried out. part p1 wasn't carried out in one interview. part g1 wasn't conducted in 46 cases. part pA wasn't conducted with 14 subjects and gA with 27.
Different variables are different facets of the same underlying concept or latent variable. for example, all four variables belonging to part pA - pAx1, pAx2, pAx3, pAx4 - are different measures of the interviewee's cooperativeness during part pA.
I would like to impute the missing values while accounting for the fact that there is a pattern for values to be missing, such that if a value is missing for a variable of part pA, e.g., pAx1, then, necessarily that the other values pertaining to part pA - pAx2, pAx3, pAx4 - are also missing.
Help would be much appreciated!
this is my data -
df <- structure(list(p1x1 = c(0.54, 0.77, 0.84, 0.84, 0.75, 0.35, 0.67,
0.23, 0.9, 0.81, 0.76, 0.85, 0.61, 0.8, 0.1, 0.81, 0.96, 0.68,
0.83, 0.8, 0.89, 0.85, 1, 0.83, 0.52, 0.74, 0.47, 0.51, 1, 0.83,
0.93, 0, 0.31, 0.95, 0, 0.39, 0.84, 0.62, 0.81, 0.58, 0.7, 0.54,
0.94, 0.76, 0.76, 0.14, 0.67, 0.65, 1, 0.69, 0.31, 0.43, 0.83,
0.79, 0.94, 0.84, 0.28, 0.76, 0.78, 0.91, 0.89, 0.63, 0.76, 0.34,
0.91, 1, 0.72, 0.89, 0.43, 0.85, 0.8, 0.45, 0.12, 0.19, 0.91,
0.74, 0.88, 0.62, 0.92, 0.72, 0.54, 0.59, 0.74, 0.8, 1, 0.66,
0.48, 0.7, 0.96, 0.87, 0.65, 0.61, 0.79, 0.8, 0.93, 0.83, 0.88,
0.76, 0.58, 0.79, 0.65, 0.88, 0.37, 0.74, 0.63, 0.64, 0.58, 0.86,
0.62, 0.57, 0.09, 0.61, 0.29, 0.9, 0.91, 0.73, 0.92, 0.9, 0.56,
0.89, 0.89, 0.62, 0.24, 0.65, 0.76, 0.69, 0.42, 0.8, 0.39, 0.58,
0.72, 0.73, 0.48, NA, 0.5, 0.72, 0.91, 0.58, 0.8, 0, 0.47, 0.5,
0.85, 0.93, 0.81, 0.89, 0.93, 0.55, 0.78, 0.72, 0.77, 0.44, 0.57,
0.78, 0.84, 0.83, 0.62, 0.3, 0.67, 0.96, 0.62, 0.73, 0.29, 0.76,
0.86, 0.7, 0.54, 0.28, 0.74, 0.67, 0.17, 0.05, 0.62, 0.76, 0.73,
1, 0.7, 0.92, 0.31, 1, 0.33, 0.59, 0.62, 0.78, 0.26, 0.76, 0.7,
0.81, 0.82, 0.81, 0.83, 0.3, 0.79, 0, 0.72, 0.67, 0.78, 0.11,
0.32, 0.39, 0.6, 0.7), p1x2 = c(0, 0.08, 0.32, 0.11, 0.12, 0,
0.17, 0.08, 0.38, 0.12, 0, 0.15, 0.25, 0.05, 0, 0.15, 0.13, 0.08,
0.08, 0.13, 0.06, 0.46, 0.21, 0.14, 0.19, 0.11, 0.24, 0.08, 0.36,
0.08, 0.29, 0, 0, 0.14, 0, 0.07, 0.16, 0.04, 0.33, 0.32, 0.22,
0.08, 0.29, 0.06, 0.43, 0.07, 0.06, 0.16, 0.18, 0.19, 0.08, 0.1,
0.17, 0.21, 0.06, 0.11, 0.06, 0.24, 0.22, 0.13, 0.21, 0.26, 0.1,
0, 0.23, 0.44, 0.21, 0.16, 0, 0.15, 0.4, 0.07, 0, 0, 0.31, 0.1,
0.38, 0.43, 0.16, 0.12, 0.12, 0.18, 0.3, 0.45, 0.33, 0.02, 0.19,
0.15, 0.15, 0.2, 0.02, 0.04, 0.21, 0.27, 0.07, 0.14, 0.06, 0.05,
0.37, 0.05, 0.35, 0.25, 0.21, 0.09, 0.08, 0.08, 0.06, 0.71, 0.04,
0.05, 0, 0.04, 0.32, 0.4, 0.55, 0.12, 0.08, 0, 0.19, 0.33, 0.11,
0.06, 0.02, 0.29, 0.12, 0.03, 0.04, 0.33, 0.27, 0.25, 0, 0, 0.19,
NA, 0.08, 0.32, 0.48, 0.08, 0.07, 0, 0.11, 0.17, 0.2, 0.33, 0.19,
0.22, 0.33, 0.09, 0.28, 0.28, 0, 0.44, 0.27, 0.17, 0.32, 0.06,
0.29, 0, 0.1, 0.25, 0.22, 0.45, 0, 0.09, 0.14, 0.33, 0, 0.24,
0.21, 0.06, 0, 0, 0.5, 0.52, 0.36, 0.4, 0.2, 0.33, 0.14, 0.12,
0.08, 0.17, 0.31, 0, 0, 0.16, 0.02, 0, 0.45, 0.19, 0, 0, 0.02,
0, 0.25, 0.43, 0.39, 0, 0.21, 0, 0.02, 0.25), p1x3 = c(0.46,
0.12, 0.21, 0.47, 0.29, 0.4, 0.33, 0.38, 0.21, 0.12, 0.41, 0.1,
0.29, 0.45, 0.9, 0.3, 0.22, 0.18, 0, 0.27, 0.17, 0.23, 0, 0.28,
0.19, 0.16, 0.59, 0.38, 0.07, 0.25, 0.36, 1, 0.75, 0.14, 1, 0.43,
0.21, 0.42, 0.1, 0.42, 0.39, 0.53, 0.06, 0.35, 0.33, 0.64, 0.28,
0.29, 0.24, 0.19, 0.69, 0.61, 0.08, 0.37, 0.06, 0.26, 0.56, 0.34,
0.48, 0.17, 0.25, 0.11, 0.14, 0.24, 0.14, 0.07, 0.28, 0.37, 0.46,
0.35, 0.6, 0.52, 0.81, 0.39, 0.07, 0.23, 0.08, 0.19, 0.08, 0.44,
0.73, 0.3, 0.11, 0.15, 0.25, 0.32, 0.24, 0.44, 0.07, 0.13, 0.22,
0.26, 0.29, 0.2, 0.29, 0.28, 0.06, 0.29, 0.42, 0.05, 0.6, 0.25,
0.68, 0.26, 0.42, 0.31, 0.36, 0.14, 0.29, 0.03, 0.5, 0.14, 0.54,
0.3, 0.05, 0.35, 0.38, 0.3, 0.06, 0.11, 0.3, 0.41, 0.44, 0.47,
0.18, 0.28, 0.67, 0, 0.45, 0.25, 0.28, 0.27, 0.24, NA, 0.42,
0.24, 0.48, 0.21, 0.2, 1, 0.79, 0.33, 0.1, 0.07, 0.19, 0.28,
0.13, 0.45, 0.17, 0.17, 0.08, 0.62, 0.2, 0.26, 0.12, 0.17, 0.29,
0.7, 0.33, 0.04, 0.38, 0.18, 0.71, 0.24, 0.21, 0.41, 0.31, 0.56,
0, 0.39, 0.83, 0.65, 0.62, 0, 0.32, 0, 0.4, 0.08, 0.43, 0.65,
0.25, 0.28, 0.31, 0.09, 0.71, 0.08, 0.09, 0.17, 0.09, 0.24, 0.33,
0.52, 0.21, 1, 0.28, 0, 0.22, 0.89, 0.32, 0.48, 0.53, 0.45),
p1x4 = c(0, 0.71, 0.78, 0.73, 0.73, 0.75, NA, 0, 0.78, 1,
0.8, 0.71, 0.88, 0.9, NA, 0.73, 1, 0.57, 0.83, 0.67, 0.67,
1, 1, 0.47, 0, 0.86, NA, 0.4, 0.88, 0.86, 1, NA, 0.33, 0.73,
0, 0.28, 0.89, 0.62, 0.45, 0.4, 0.75, 0.42, 0.8, 0.5, 0.67,
0.33, 0.54, 0.25, 0.9, 0.54, NA, 0.33, 0, 0.67, 0.82, 0.62,
NA, 0.62, 0.5, NA, 0.81, 0, 0.6, 0, 0.88, 0, 0.45, 0.8, 0,
0.89, NA, 0.47, NA, 0.3, 0.25, NA, 0, 0, 0.82, 0, 0.5, 0.53,
0.61, 0.58, 1, 0, 0.23, 0.53, 0.78, 0, 0.33, 0.57, 0.57,
0.89, 1, 0.6, 0.88, 0.9, 0.5, 0.56, 0.42, 0.75, NA, 0.71,
0, 0.59, NA, NA, 0.33, 0.4, 0.22, 0.33, 0.3, 0.86, 0.7, 0.78,
1, 0.92, 0, 0.89, 0.61, 0.6, 0.16, 0.4, 0.55, 0, 0.36, 0.6,
0, 0.43, 0.5, 0.42, 0.36, NA, 0.33, 0.8, 0.81, 0, 0.62, 0,
0.56, 0.6, 0, 0.88, 0.67, 0.83, 1, 0.36, 0, 0.4, 0, 0.29,
0.45, 0.82, 0.67, 0.8, 0.59, 0.17, 0.24, 0, 0, 0.69, 0.25,
0.56, 0.38, 0.64, NA, 0, 0.64, 0.75, NA, NA, 0.44, 0.65,
0.67, 1, 0.78, NA, 0.17, 0.9, 0, 0.53, 0.22, 1, 0, 0, 0.53,
0.56, 1, 0.77, 0, 0, 0, NA, 0.73, 0.33, 0.71, NA, 0, 0, 0.46,
0.78), p1y1 = c(0.42, 0.27, 0.63, 0.32, 0.46, 0.8, 0.5, 0.31,
0.59, 0.38, 0.24, 0.55, 0.71, 0.7, 0.8, 0.59, 0.35, 0.08,
0.33, 0.6, 0.22, 0.46, 0.43, 0.38, 0.33, 0.32, 0.41, 0.24,
0.43, 0.33, 0.64, 1, 0.44, 0.33, 0.5, 0.25, 0.53, 0.29, 0.33,
0.89, 0.26, 0.34, 0.59, 0.35, 0.48, 0.43, 0.44, 0.45, 0.53,
0.46, 0.69, 0.18, 0.54, 0.32, 0.41, 0.58, 0.17, 0.28, 0.26,
0.35, 0.43, 0.58, 0.33, 0.07, 0.27, 0.59, 0.59, 0.58, 0.14,
0.54, 1, 0.24, 0.35, 0.24, 0.29, 0.13, 0.88, 0.38, 0.48,
0.16, 0.35, 0.36, 0.41, 0.45, 1, 0.22, 0.33, 0.22, 0.15,
0.27, 0.02, 0.35, 0.57, 0.6, 0.5, 0.52, 0.41, 0.57, 0.42,
0.53, 0.35, 0.31, 0.58, 0.34, 0.37, 0.5, 0.44, 0.71, 0.46,
0.16, 0.32, 0.39, 0.43, 0.6, 0.86, 0.38, 0.33, 0.55, 0.5,
0.56, 0.19, 0.38, 0.13, 0.53, 0.65, 0.22, 0.46, 0.4, 0.42,
0.5, 0.32, 0.42, 0.33, 0, 0.5, 0.56, 0.26, 0.12, 0.47, 0.5,
0.53, 0, 0.55, 0.4, 0.29, 0.17, 0.33, 0.45, 0.72, 0.33, 0.77,
0.75, 0.6, 0.25, 0.48, 1, 0.33, 0.5, 0.59, 0.38, 0.22, 0.45,
0.35, 0.24, 0.57, 0.48, 0.31, 0.36, 0.32, 0.56, 0.46, 0.25,
0.25, 0.64, 0.91, 0.67, 0.5, 0.92, 0.17, 0.47, 0.83, 0.24,
0.23, 0.43, 0.32, 0.55, 0.14, 0.09, 0.73, 0.29, 0.39, 0.39,
0.32, 1.2, 0.39, 0.48, 0.39, 0.33, 0.74, 0.55, 0.29, 0.6),
g1y2 = c(0.46, 0.79, 0.83, 0.44, NA, 0.84, NA, NA, 1.44,
0.55, 0.86, 0.35, 0.63, 1.05, NA, 1.45, 0.67, 0.85, 0.45,
1.13, 0.42, 0.45, 0.6, 1.12, 1, 0.63, NA, NA, 0.68, 1.09,
1.28, NA, 1.17, 0.93, NA, 0.45, 0.5, 1.06, 0.51, 0.86, 1.09,
1.28, 0.83, 0.94, 1.1, NA, 0.95, NA, 1.1, 0.94, NA, 0.31,
1.33, 0.97, 0.57, 0.94, NA, NA, 0.79, NA, 1.02, 0.62, 1.11,
0.52, 0.97, 0.89, NA, 1, 0.46, 0.85, NA, 0.5, NA, 1.25, 0.75,
NA, 0.71, 1, 0.6, 0.51, 0.8, 0.86, 1.03, 0.8, 0.79, 0.6,
NA, 0.87, 0.57, 0.36, 0.64, 0.43, 0.88, 1.14, 0.76, NA, 0.71,
0.77, 0.7, 0, 0.94, 0.93, NA, 0.47, NA, 0.98, NA, NA, NA,
0.44, 1, 0.62, 0.7, 0.96, 0.94, 0.74, 0.65, 0.86, 1.5, 0.92,
NA, 1.11, 0.75, 1.09, 0.79, 0.6, 0.75, 0.71, NA, 0.62, 1.08,
0.58, 0.62, NA, 0.67, 1.11, 1.11, 0.32, 0.77, NA, 1.5, 0.47,
NA, 0.93, NA, 0.4, NA, 0.94, 1, 0.72, 0.85, 0.73, 0.79, 0.32,
0.81, 0.92, 0.93, NA, 1, 0.7, 0.88, 1, NA, 0.85, 1, 0.92,
0.67, NA, 0.68, 0.64, NA, NA, 0.67, 1, NA, 1.08, 1.21, NA,
NA, 1, NA, 0.72, 0.5, 0.95, 1, 0.79, 0.65, 0.72, 1.03, 0.86,
0.84, NA, 1.11, NA, 0.97, NA, 0.85, NA, NA, 1.22, 0.31, 0.81
), g1y3 = c(0.21, 0.05, 0.13, 0, NA, 0.18, NA, NA, 0.12,
0.1, 0.27, 0.08, 0.11, 0.35, NA, 0.36, 0.33, 0.03, 0.27,
0.13, 0.17, 0.05, 0.4, 0.06, 0.5, 0.07, NA, NA, 0.08, 0.18,
0.11, NA, 0.5, 0.13, NA, 0.27, 0.17, 0.06, 0.14, 0.29, 0.18,
0.05, 0.12, 0.19, 0.05, NA, 0.2, NA, 0.3, 0.28, NA, 0.38,
0.33, 0.12, 0.05, 0.29, NA, NA, 0.15, NA, 0.07, 0.12, 0.06,
0, 0.05, 0.09, NA, 0.09, 0, 0.15, NA, 0.12, NA, 0.12, 0.12,
NA, 0.06, 0.25, 0.08, 0, 0.06, 0.14, 0.09, 0.16, 0.07, 0.07,
NA, 0.1, 0.11, 0.36, 0.06, 0.29, 0.19, 0.14, 0.05, NA, 0.09,
0.04, 0.04, 0, 0.1, 0.21, NA, 0.07, NA, 0.14, NA, NA, NA,
0.08, 0, 0.23, 0.03, 0.15, 0.18, 0.04, 0.15, 0.1, 0.5, 0.08,
NA, 0.05, 0.5, 0.27, 0.03, 0.1, 0.09, 0.18, NA, 0.1, 0.15,
0.18, 0.23, NA, 0.1, 0.05, 0.33, 0.05, 0.31, NA, 0.08, 0,
NA, 0.31, NA, 0.2, NA, 0.18, 0.17, 0.11, 0.15, 0.04, 0.14,
0.09, 0.06, 0.08, 0.21, NA, 0.12, 0.04, 0.27, 0.14, NA, 0.07,
0.11, 0.12, 0, NA, 0.04, 0.18, NA, NA, 0.09, 0.17, NA, 0.08,
0.12, NA, NA, 0.15, NA, 0.13, 0.3, 0.09, 0.12, 0.09, 0.18,
0.1, 0.16, 0.29, 0.05, NA, 0.17, NA, 0.06, NA, 0.08, NA,
NA, 0.11, 0.2, 0.19), g1y4 = c(0, 0, 0, 0, NA, 0, NA, NA,
0, 0, 0, 0, 0, 0, NA, 0, 0, 0.17, 0, 0, 0, 0, 0, 0, 0, 0,
NA, NA, 0, 0, 0, NA, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, NA, 0, NA, 0, 0, NA, 0, 0, 0, 0, 0, NA, NA, 0, NA, 0,
0, 0, 0.1, 0, 0, NA, 0, 0, 0, NA, 0, NA, 0, 0, NA, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, NA, 0,
0, 0, 0, 0, 0, NA, 0, NA, 0, NA, NA, NA, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, NA,
0, 0.08, 0, 0, 0, NA, 0, 0, NA, 0, NA, 0, NA, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, NA, 0, 0, 0, 0, NA, 0,
0, NA, NA, 0, 0, NA, 0, 0, NA, NA, 0, NA, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, NA, 0, NA, 0, NA, 0, NA, NA, 0, 0, 0), g1y5 = c(0.21,
0.11, 0.13, 0.25, NA, 0, NA, NA, 0.12, 0.25, 0, 0.23, 0.37,
0.05, NA, 0, 0, 0.1, 0.18, 0.13, 0.33, 0.36, 0.1, 0.06, 0,
0.2, NA, NA, 0.16, 0, 0, NA, 0.17, 0, NA, 0.09, 0.2, 0.06,
0.3, 0.14, 0, 0, 0.12, 0.25, 0, NA, 0, NA, 0, 0.06, NA, 0.23,
0, 0, 0.3, 0, NA, NA, 0.06, NA, 0, 0.5, 0.03, 0.07, 0.28,
0.08, NA, 0.15, 0.15, 0, NA, 0.31, NA, 0, 0, NA, 0.37, 0,
0.2, 0.34, 0.1, 0, 0, 0, 0.21, 0.37, NA, 0.03, 0.18, 0.18,
0.24, 0.21, 0, 0, 0.05, NA, 0.13, 0.12, 0.32, 0, 0, 0, NA,
0.25, NA, 0, NA, NA, NA, 0.28, 0, 0.15, 0.22, 0, 0.12, 0.13,
0.15, 0, 0, 0, NA, 0, 0, 0, 0.24, 0.4, 0.06, 0.18, NA, 0.38,
0, 0.21, 0, NA, 0.29, 0.02, 0, 0.26, 0, NA, 0, 0.35, NA,
0, NA, 0.2, NA, 0, 0, 0, 0, 0.12, 0, 0.5, 0.1, 0.2, 0, NA,
0.08, 0.36, 0, 0, NA, 0.07, 0, 0.08, 0, NA, 0.28, 0.11, NA,
NA, 0.03, 0, NA, 0, 0, NA, NA, 0, NA, 0.06, 0.1, 0, 0, 0.27,
0.11, 0.17, 0.08, 0, 0.11, NA, 0, NA, 0, NA, 0.15, NA, NA,
0, 0.4, 0), g1y6 = c(0.68, 0.47, 0.43, 0.44, NA, 0.47, NA,
NA, 0.44, 0.65, 0.32, 0.77, 0.63, 0.7, NA, 0.45, 0.67, 0.24,
0.91, 0.47, 0.92, 0.77, 0.8, 0.21, 0.5, 0.6, NA, NA, 0.43,
0.18, 0.22, NA, 1, 0.13, NA, 0.73, 0.67, 0.31, 0.6, 0.43,
0.27, 0.26, 0.5, 0.75, 0.08, NA, 0.2, NA, 0.5, 0.44, NA,
0.85, 0.33, 0.34, 0.54, 0.29, NA, NA, 0.3, NA, 0.13, 0.75,
0.17, 0.57, 0.44, 0.28, NA, 0.5, 0.46, 0.38, NA, 0.69, NA,
0.25, 0.62, NA, 0.57, 0.25, 0.52, 0.54, 0.29, 0.14, 0.11,
0.32, 0.55, 0.53, NA, 0.27, 0.5, 0.91, 0.52, 0.86, 0.44,
0.14, 0.3, NA, 0.38, 0.31, 0.56, 1, 0.16, 0.29, NA, 0.6,
NA, 0.14, NA, NA, NA, 0.68, 0.29, 0.77, 0.46, 0.19, 0.47,
0.35, 0.8, 0.28, 0.5, 0.15, NA, 0.05, 0.5, 0.36, 0.47, 0.7,
0.31, 0.53, NA, 0.71, 0.31, 0.61, 0.69, NA, 0.62, 0.11, 0.33,
0.84, 0.43, NA, 0.17, 0.59, NA, 0.52, NA, 1, NA, 0.29, 0.25,
0.5, 0.31, 0.45, 0.36, 0.82, 0.52, 0.6, 0.25, NA, 0.48, 0.47,
0.39, 0.23, NA, 0.26, 0.11, 0.33, 0.67, NA, 0.44, 0.46, NA,
NA, 0.42, 0.17, NA, 0.17, 0.25, NA, NA, 0.23, NA, 0.32, 0.7,
0.32, 0.12, 0.45, 0.49, 0.45, 0.32, 0.43, 0.37, NA, 0.39,
NA, 0.11, NA, 0.35, NA, NA, 0.11, 0.8, 0.31), g1y7 = c(0.46,
0.42, 0.3, 0.44, NA, 0.29, NA, NA, 0.31, 0.55, 0.05, 0.69,
0.53, 0.35, NA, 0.09, 0.33, 0.21, 0.64, 0.33, 0.75, 0.73,
0.4, 0.15, 0, 0.53, NA, NA, 0.35, 0, 0.11, NA, 0.5, 0, NA,
0.45, 0.5, 0.25, 0.47, 0.14, 0.09, 0.21, 0.38, 0.56, 0.02,
NA, 0, NA, 0.2, 0.17, NA, 0.46, 0, 0.22, 0.49, 0, NA, NA,
0.15, NA, 0.07, 0.62, 0.11, 0.57, 0.38, 0.19, NA, 0.41, 0.46,
0.23, NA, 0.56, NA, 0.12, 0.5, NA, 0.51, 0, 0.44, 0.54, 0.22,
0, 0.03, 0.16, 0.48, 0.47, NA, 0.17, 0.39, 0.55, 0.45, 0.57,
0.25, 0, 0.24, NA, 0.29, 0.27, 0.52, 1, 0.06, 0.07, NA, 0.53,
NA, 0, NA, NA, NA, 0.6, 0.29, 0.54, 0.43, 0.04, 0.29, 0.3,
0.65, 0.17, 0, 0.08, NA, 0, 0, 0.09, 0.44, 0.6, 0.22, 0.35,
NA, 0.62, 0.15, 0.42, 0.46, NA, 0.52, 0.06, 0, 0.79, 0.11,
NA, 0.08, 0.59, NA, 0.21, NA, 0.8, NA, 0.12, 0.08, 0.39,
0.15, 0.41, 0.21, 0.73, 0.45, 0.52, 0.04, NA, 0.36, 0.43,
0.12, 0.09, NA, 0.2, 0, 0.21, 0.67, NA, 0.4, 0.29, NA, NA,
0.33, 0, NA, 0.08, 0.12, NA, NA, 0.08, NA, 0.19, 0.4, 0.23,
0, 0.36, 0.32, 0.34, 0.16, 0.14, 0.32, NA, 0.22, NA, 0.06,
NA, 0.27, NA, NA, 0, 0.6, 0.12), pAx1 = c(0.2, 0.56, 0.67,
NA, 0.7, 0.5, 1, NA, 1, NA, 1, 0.67, 0.67, 0.57, 0.85, 0.91,
0.82, 0.65, 1, 0.8, 0.67, 1, 0.67, 0.5, 0.64, 0.45, 0.8,
0.74, 0.67, 0, 1, 0.42, NA, 0.4, 0.77, 0.62, 1, 0.44, 0.59,
0.4, 0.5, 0.14, 0.93, 0.82, 0.85, 0.8, 0.71, 0.62, 0.6, 1,
0.95, 0.4, 0.6, 0.75, 0.36, 1, 0.53, 0.63, 0.67, 0.65, 0.82,
0.43, 0.5, NA, 0.76, 0.78, 1, 0.88, 0.6, 0.57, 0.77, 0, 0.71,
0.46, 0.9, 0.89, 0.95, 0.14, 1, 0.4, 0.31, NA, 1, 1, 0.92,
1, NA, 0.91, 0.94, 1, 0.83, 0.67, 1, 1, 0.62, 0.5, 0.9, 0.76,
0.61, 0.29, 0.58, 0.67, 0.88, 0.45, 0.86, 0.53, 0.88, 1,
0.65, NA, 0.12, 0.79, 0.92, 1, 0.83, 0.8, 0.79, 1, 0, NA,
0.5, 0.47, 0.52, 0.86, 1, 1, 0.5, 1, 0.14, 0.58, 0.7, 0.5,
0.56, 0.42, 0.3, 0.18, 1, 0.61, 0.25, 0.83, 0.75, 0.78, 0.6,
1, 0.38, 0, NA, 0.67, 0, 0.53, NA, 0.89, 0, 0.75, 0.67, 0.75,
1, 0.75, 0.59, 0.67, NA, 0, 0.33, 0.25, 0.8, 0.58, NA, 0.19,
0.89, 0.67, 0.11, 0.43, 0, 0.09, 1, NA, 0.71, 0.15, 0, 0.81,
0.4, 0.58, 0.17, 0, 0, 0.5, 0.38, 0.5, 0, 0.72, 1, 0.33,
0, 0.91, 0, 0.12, 0.04, 0.4, 0.43, 0.34, 0, 1), pAx2 = c(0,
0, 0.17, NA, 0.05, 0.07, 0, NA, 0.5, NA, 0, 0.08, 0.17, 0,
0.1, 0, 0.05, 0.06, 1, 0.4, 0, 0, 0, 0.05, 0.27, 0, 0.13,
0.29, 0, 0, 0, 0, NA, 0, 0.23, 0.12, 0, 0, 0.12, 0, 0.1,
0.29, 0.43, 0.18, 0.4, 0, 0.14, 0, 0, 0.33, 0.5, 0.2, 0,
0.75, 0.07, 0, 0, 0.11, 0, 0.35, 0.41, 0.29, 0.08, NA, 0.06,
0.24, 0, 0.24, 0, 0.05, 0.27, 0, 0.07, 0, 0, 0.11, 0.29,
0.14, 0.25, 0.2, 0.12, NA, 0.33, 0.83, 0.23, 0, NA, 0.05,
0.1, 0, 0.1, 0.33, 0.2, 0, 0, 0, 0, 0.18, 0.11, 0.14, 0.5,
0.33, 0.12, 0.03, 0.18, 0.05, 0.08, 0.18, 0.08, NA, 0, 0,
0.08, 0.67, 0.5, 0.13, 0.04, 0, 1, NA, 0, 0.05, 0, 0.14,
0.25, 0, 0.12, 0, 0, 0.16, 0, 0, 0, 0.12, 0, 0.14, 0.75,
0.44, 0.25, 0.06, 0, 0.17, 0.2, 0.08, 0.38, 0.33, NA, 0.17,
0, 0.24, NA, 0.11, 0, 0, 0, 0.25, 0.38, 0.08, 0.05, 0.12,
NA, 0.5, 0, 0, 0.4, 0.12, NA, 0.62, 0.17, 0, 0, 0.04, 1,
0.45, 1, NA, 0.07, 0.11, 0, 0.06, 0, 0.15, 0.17, 0, 0, 0,
0.12, 0.04, 0, 0.17, 0, 0, 0.03, 0.14, 0.21, 0.25, 0.04,
0.02, 0.07, 0.02, 0, 0), pAx3 = c(0.5, 0.38, 0.33, NA, 0.5,
0.21, 0, NA, 0.25, NA, 0, 0.08, 0.22, 0.29, 0.25, 0.36, 0.45,
0.19, 0, 0.2, 0, 0, 0, 0.35, 0.45, 0.1, 0.27, 0.09, 0.67,
0, 0, 0.58, NA, 0.6, 0.31, 0.38, 1, 0.56, 0.24, 0.4, 0.5,
0.29, 0.07, 0.36, 0.6, 0, 0.21, 0.38, 0.4, 0, 0.1, 0.2, 0,
0, 0.21, 1, 0.42, 0.21, 0.28, 0.29, 0.12, 0.43, 0.58, NA,
0.06, 0.19, 0, 0.18, 0.4, 0.43, 0.35, 0.5, 0.36, 0.08, 0,
0.03, 0.11, 0.09, 0, 0.4, 0.59, NA, 0.33, 0.33, 0, 1, NA,
0.14, 0.1, 0, 0.24, 0.33, 0.2, 0, 0.12, 0.5, 0, 0.29, 0.17,
0, 0.17, 0, 0, 0.52, 0.23, 0.5, 0.38, 0.18, 0.38, NA, 0.38,
0.11, 0.31, 0.33, 0.33, 0.07, 0.39, 0, 0, NA, 0.5, 0.68,
0.43, 0.43, 0.5, 0, 0.25, 1, 0.64, 0, 0.3, 0.25, 0.44, 0.42,
0.2, 0.39, 0.25, 0.33, 0, 0.17, 0.75, 0.56, 0.4, 0.08, 0.12,
0.67, NA, 0.5, 1, 0.41, NA, 0.78, 0.5, 0.12, 0.33, 0.5, 0,
0.33, 0.64, 0.29, NA, 0.62, 0.71, 0.12, 0, 0.46, NA, 0.31,
0.11, 0, 0.56, 0.57, 1, 0.27, 0, NA, 0.21, 0.22, 1, 0.19,
0.6, 0.15, 0.28, 1, 1, 0, 0.25, 0.18, 0.62, 0.5, 0.5, 0.5,
0.4, 0.18, 0.14, 0.25, 0.28, 0.32, 0.43, 0.5, 0.5, 0.33),
pAx4 = c(NA, 0.12, NA, NA, 0.69, 0.29, 0.92, NA, NA, NA,
NA, 0.71, 0.82, 0.4, 0.46, 1, 0.2, 0.5, NA, NA, NA, NA, NA,
0, 0.38, 0, 0.73, 0.46, NA, NA, NA, 0.2, NA, NA, 0.43, 0.43,
NA, NA, 0.38, 0.5, NA, NA, 0.71, 0.83, 0.7, NA, 0.75, 0.5,
NA, 1, 0.86, NA, 0, NA, 0.69, 1, 0.29, 0.6, 0.71, 1, 0.8,
NA, NA, NA, 0.73, 0.59, NA, 0, NA, 0.6, 0.38, NA, NA, 0.75,
0.54, 0, 0, 0, NA, NA, 0.19, NA, NA, NA, 1, 0, NA, 0.91,
NA, NA, NA, NA, NA, NA, NA, NA, 0.88, 0, 0.53, 0.29, NA,
NA, 0, 0.43, 0, 0.28, 0.6, 0.67, 0.42, NA, NA, NA, 0.91,
NA, NA, NA, 0, NA, NA, NA, 0, 0.67, NA, NA, NA, 0, NA, NA,
0.07, 0.3, NA, NA, 0, 0.28, 0, 0, NA, 0.67, NA, 0.78, NA,
0.75, NA, NA, NA, NA, NA, NA, 0, 0, NA, 1, NA, 0.62, NA,
NA, NA, 0.67, 0.69, 0, NA, 0, 0.25, 0, NA, 0.5, NA, 0.08,
0.92, NA, NA, 0.56, NA, NA, NA, NA, 0.6, 0, NA, 0.67, 0.33,
0.32, NA, NA, NA, NA, 0.67, 0, NA, 0.57, 1, 0, NA, 0.73,
NA, 0.12, 0, 0.21, 0, 0, NA, NA), pAy1 = c(0.1, 0.19, 0.5,
0, 0.2, 0.07, 0.15, 0, 0.75, 0, 1, 0.5, 0.17, 0.71, 0.2,
0.27, 0.27, 0.1, 2, 0.6, 1, 1, 0, 0.4, 0.18, 0.2, 0.13, 0.4,
0.33, 1, 0, 0.5, 0, 0.8, 0.35, 0.25, 1, 0.33, 0.35, 0.4,
0.4, 0.29, 0.57, 0.64, 0.35, 0.8, 0.21, 0.25, 0.8, 0, 0.8,
0.2, 0.6, 0.75, 0.14, 0, 0.05, 0.37, 0.11, 0.41, 0.35, 0.14,
0.25, 0, 0.24, 0.37, 0, 0.41, 0, 0.38, 0.65, 0, 0.64, 0.46,
0.13, 0.23, 0.42, 0.32, 0.5, 0.2, 0.31, 0, 1, 0.5, 0.77,
1, 0, 0.32, 0.32, 0.5, 0.1, 0.67, 0.4, 0, 0, 0.17, 0.5, 0.59,
0.17, 0.86, 0.75, 0.67, 0.42, 0.42, 0.41, 0.34, 0.23, 0.09,
0.27, 0, 0.25, 0.21, 0.23, 0.67, 0.17, 0.4, 0.11, 0, 0, 0,
0, 0.37, 0.24, 1.29, 1.25, 1.5, 0.62, 0, 0.36, 0.16, 0.2,
0.25, 0.22, 0.46, 0.6, 0.37, 0.75, 0.56, 0.75, 0.33, 0.5,
0.5, 0.6, 0.23, 0.38, 0, 0, 0.67, 1, 0.41, 0, 0.33, 0.5,
0, 0.67, 0, 0.75, 0.08, 0.5, 0.33, 0, 0.25, 0.24, 0.25, 1.2,
0.58, 0, 0.5, 0.28, 0, 0.56, 0.26, 0, 0.27, 1, 0, 0.39, 0.15,
0.67, 0.31, 1, 0.11, 0.17, 1, 0.2, 1, 0.12, 0.11, 0.38, 0.28,
0.5, 0.33, 0.07, 0.36, 0.38, 0.38, 0.04, 0.15, 0.21, 0.57,
0.62, 1), gAy2 = c(NA, 0.4, 1.27, 0.25, 1.03, 1, NA, 0.6,
1.23, 0.69, 0.78, 0.81, 0, 1.07, NA, 1.11, 0.38, 0.59, 0.29,
NA, 0.33, 0.38, 0.2, NA, 0.5, 0.5, 0.67, 0.67, 1, NA, NA,
0.64, NA, 0.8, 0.44, 0.31, NA, 0.73, 0.52, 0.84, 1.08, 1.25,
0.36, 0.36, 1, 0.25, 0.4, 0.82, 1.14, 0.77, 0.76, 0, 0.9,
1, 0, 0.68, 0.67, 1.08, 1, 1.13, NA, 0.5, 0.73, 0.33, 0.92,
0.88, NA, 1.26, 1, 0.8, 1.18, 0.29, 0.78, 1.14, 0.62, 0,
0.62, 0.61, 0.43, 0.27, 0, 1.07, NA, 0.5, 1.25, 0.18, 0.71,
1, 0.85, 0.1, NA, 0.5, 0.71, 1.18, 0.71, 0.42, 1.4, 1, 0.89,
0.33, 0.91, 0.32, 0.52, 0.5, 1.04, 0.9, 0.64, 0.2, 1.33,
NA, 0.67, 0.78, NA, NA, 0.57, 0.88, NA, NA, 0.22, 0.67, 0.55,
1, 0, 0.81, 1, 0.62, 0.75, 0.67, 0.55, 0.2, NA, NA, 0.5,
0.6, 0.6, 1.05, 0.89, 0, 1, 0.73, 0.57, 1.33, 0.16, NA, 0.69,
0, 0.56, 0.14, 1, 0.8, 1.25, 3, 0.81, 0.5, 1.67, NA, 0, 0.8,
1.25, 0.6, 0.79, NA, 0.52, 1.2, 0.84, 1, 0.46, 0.18, 0.62,
0.71, 0.4, 0.12, 0.2, 1.25, 1, NA, 0.92, 0.38, 0.58, 1.38,
1, 0.7, NA, 0.4, 0.69, 0.89, 0.36, 0.67, 0.87, 0.38, 1.08,
0.94, NA, 0.73, 0.29, 0.83, NA, 1, 0.47, 0.98, 0.11, 2),
gAy3 = c(NA, 0.2, 0, 0, 0.08, 1, NA, 0.2, 0, 0.15, 0.07,
0, 1, 0.1, NA, 0.22, 0, 0.18, 0.43, NA, 0.11, 0.15, 0.4,
NA, 0.75, 0.5, 0.5, 0.22, 1, NA, NA, 0.14, NA, 0.4, 0.33,
0.62, NA, 0.13, 0, 0.16, 0.17, 0.38, 0.36, 0.27, 0.56, 0.38,
0.3, 0.06, 0.14, 0, 0.12, 0.11, 0.03, 0.25, 0.5, 0.11, 1,
0.08, 0, 0.33, NA, 0.04, 0.09, 0.67, 0, 0.38, NA, 0, 0, 0,
0.09, 0.07, 0.33, 0.14, 0.23, 0, 0, 0.13, 0, 0, 0, 0, NA,
0, 0.12, 0, 0.14, 1, 0, 0.4, NA, 0.38, 0, 0, 0, 0.25, 0,
1, 0.11, 0.08, 0.05, 0.21, 0.14, 0.09, 0.08, 0.1, 0.18, 0.3,
0.67, NA, 0, 0.11, NA, NA, 0.07, 0.38, NA, NA, 0.11, 0.33,
0.27, 0.5, 0, 0.05, 0, 0.12, 0.15, 1, 0.06, 0, NA, NA, 0,
0.6, 0, 0.05, 0.21, 0.2, 0.5, 0.18, 0.29, 1, 0, NA, 0.08,
0, 0.22, 0.14, 0, 0.1, 0, 1, 0.05, 0.3, 0, NA, 1, 0.3, 0.12,
0.1, 0.02, NA, 0.09, 0.2, 0.05, 0.5, 0.06, 0.36, 0.12, 0.06,
0.13, 0, 0.1, 0.5, 0.17, NA, 0.15, 0.15, 0.25, 0, 0.2, 0.04,
NA, 0, 0, 0, 0, 0, 0.33, 0.12, 0, 0.08, NA, 0.13, 0.14, 0.5,
NA, 1, 0.47, 0.1, 0, 1), gAy4 = c(NA, 0, 0, 0, 0, 0, NA,
0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, NA, 0, 0, 0, NA, 0,
0, 0, 0, 0, NA, NA, 0, NA, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, 0,
0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, NA, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, NA, NA, 0, 0, NA, NA,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, NA, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA,
0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
NA, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0.57, 0, 0, 0, 0, 0, 0, NA,
0, 0, 0, NA, 0, 0, 0, 0, 0), gAy5 = c(NA, 0.4, 0.18, 0.33,
0.08, 0, NA, 0, 0, 0.08, 0.15, 0, 0, 0.13, NA, 0, 0.19, 0,
0.14, NA, 0.44, 0.31, 0, NA, 0, 0, 0, 0.11, 0, NA, NA, 0.18,
NA, 0, 0, 0, NA, 0.2, 0.1, 0.32, 0.25, 0, 0.21, 0.27, 0,
0.12, 0, 0.06, 0.14, 0.31, 0.08, 0.22, 0.1, 0, 0, 0.21, 0,
0.13, 0.09, 0, NA, 0.25, 0.18, 0, 0.08, 0, NA, 0.05, 0, 0.08,
0, 0.36, 0, 0, 0.31, 0, 0.2, 0.13, 0.57, 0.45, 1, 0, NA,
0, 0, 0.45, 0.14, 0, 0, 0.1, NA, 0.5, 0.29, 0, 0, 0.25, 0,
0, 0, 0.33, 0.07, 0.21, 0.24, 0.25, 0.15, 0.1, 0, 0.3, 0,
NA, 0.14, 0.11, NA, NA, 0.21, 0, NA, NA, 0.17, 0, 0.27, 0,
0.75, 0.05, 0, 0.38, 0.1, 0, 0.36, 0.4, NA, NA, 0.5, 0, 0.6,
0.05, 0, 0.33, 0, 0.18, 0, 0, 0.72, NA, 0, 0, 0.22, 0.29,
0.5, 0.1, 0, 0, 0.05, 0, 0, NA, 0, 0, 0, 0, 0.05, NA, 0.35,
0, 0.05, 0, 0.17, 0.18, 0.56, 0.24, 0.33, 0.5, 0.2, 0, 0,
NA, 0.08, 0.08, 0.17, 0.12, 0.3, 0.15, NA, 0.4, 0.23, 0.09,
0.09, 0.29, 0.2, 0.25, 0.08, 0.18, NA, 0.27, 0.29, 0, NA,
0, 0, 0, 0, 0), gAy6 = c(NA, 0.8, 0.27, 0.67, 0.37, 1, NA,
0.6, 0, 0.31, 0.46, 0.25, 1, 0.53, NA, 0.33, 0.57, 0.45,
1, NA, 1, 0.85, 1, NA, 0.75, 0.5, 0.83, 0.78, 1, NA, NA,
0.68, NA, 0.6, 0.78, 0.75, NA, 0.6, 0.52, 0.79, 0.75, 0.38,
0.93, 0.91, 0.56, 1, 0.8, 0.29, 0.57, 0.62, 0.4, 1, 0.33,
0.5, 1, 0.54, 1, 0.36, 0.13, 0.4, NA, 0.46, 0.36, 0.67, 0.33,
0.5, NA, 0.16, 0, 0.4, 0.36, 0.86, 0.78, 0.14, 0.85, 1, 0.4,
0.52, 0.79, 0.45, 1, 0, NA, 1, 0.12, 0.82, 0.5, 1, 0.23,
1, NA, 0.88, 0.53, 0, 0.14, 0.75, 0, 1, 0.11, 0.88, 0.25,
0.74, 0.67, 0.62, 0.38, 0.32, 0.55, 1, 0.67, NA, 0.38, 0.44,
NA, NA, 0.57, 0.38, NA, NA, 0.94, 0.33, 1, 0.5, 1, 0.52,
0, 0.62, 0.35, 1, 0.61, 0.8, NA, NA, 1, 0.9, 0.8, 0.21, 0.37,
1, 0.5, 0.82, 0.57, 1, 0.88, NA, 0.31, 1, 0.78, 0.86, 1,
0.4, 1, 1, 0.33, 0.5, 0.5, NA, 1, 0.5, 0.12, 0.6, 0.36, NA,
0.87, 0.2, 0.16, 1, 0.63, 1, 0.88, 0.29, 0.73, 0.88, 0.8,
0.5, 0.17, NA, 0.38, 0.69, 0.75, 0.5, 0.8, 0.37, NA, 0.8,
0.69, 0.14, 0.36, 0.57, 0.73, 0.75, 0.08, 0.35, NA, 0.6,
0.86, 0.83, NA, 1, 0.73, 0.24, 0.95, 1), gAy7 = c(NA, 0.6,
0.27, 0.67, 0.29, 0, NA, 0.4, 0, 0.15, 0.39, 0.25, 0, 0.43,
NA, 0.11, 0.57, 0.27, 0.57, NA, 0.89, 0.69, 0.6, NA, 0, 0,
0.33, 0.56, 0, NA, NA, 0.55, NA, 0.2, 0.44, 0.12, NA, 0.47,
0.52, 0.63, 0.58, 0, 0.57, 0.64, 0, 0.62, 0.5, 0.24, 0.43,
0.62, 0.28, 0.89, 0.3, 0.25, 0.5, 0.43, 0, 0.28, 0.13, 0.07,
NA, 0.43, 0.27, 0, 0.33, 0.12, NA, 0.16, 0, 0.4, 0.27, 0.79,
0.44, 0, 0.62, 1, 0.4, 0.39, 0.79, 0.45, 1, 0, NA, 1, 0,
0.82, 0.36, 0, 0.23, 0.6, NA, 0.5, 0.53, 0, 0.14, 0.5, 0,
0, 0, 0.79, 0.2, 0.53, 0.52, 0.53, 0.31, 0.22, 0.36, 0.7,
0, NA, 0.38, 0.33, NA, NA, 0.5, 0, NA, NA, 0.83, 0, 0.73,
0, 1, 0.48, 0, 0.5, 0.2, 0, 0.55, 0.8, NA, NA, 1, 0.3, 0.8,
0.16, 0.16, 0.8, 0, 0.64, 0.29, 0, 0.88, NA, 0.23, 1, 0.56,
0.71, 1, 0.3, 1, 0, 0.29, 0.2, 0.5, NA, 0, 0.2, 0, 0.5, 0.33,
NA, 0.78, 0, 0.11, 0.5, 0.57, 0.64, 0.75, 0.24, 0.6, 0.88,
0.7, 0, 0, NA, 0.23, 0.54, 0.5, 0.5, 0.6, 0.33, NA, 0.8,
0.69, 0.14, 0.36, 0.57, 0.4, 0.62, 0.08, 0.27, NA, 0.47,
0.71, 0.33, NA, 0, 0.27, 0.15, 0.95, 0)), row.names = c(NA,
-202L), class = "data.frame")
If it makes sense to impute the values, then even if you do not have the 4 questions of a part, you can predict them using the relationship between variables and the similarities between observations.
To take into account the colinearities, you can use methods based on low rank,
see the package missMDA for instance with imputePCA or imputeMFA function, in addition you can have a look at the website
https://rmisstastic.netlify.com/
for information,
Best,
JJ
This question already has answers here:
Reshaping data.frame from wide to long format
(8 answers)
Closed 4 years ago.
I want to convert row names to values to a column with keeping the corresponding values. My data has country names in the first column and years for the column names for the remaining of the columns with values in the cells. I want to convert this to a proper table formate. See below for an example.
Example of the table formate:
Country | 2002 | 2003| ...
Canada | 2.2 | 2.4 | ...
US | 4.2 | 7.4 | ...
.
.
.
I would like to have the table in the format of:
Country | Year | Value
Canada | 2002 | 2.2
Canada | 2.2 | 2.4
...
I believe the tidy data package should work by the country is being dropped. See my example below.
Data:
ElectricCarStock_BEVandPHEV<- structure(list(Country = structure(c(1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 17L, 18L, 19L, 20L,
22L, 23L, 16L, 21L), .Label = c("Australia", "Brazil", "Canada",
"Chile", "China", "Finland", "France", "Germany", "India", "Japan",
"Korea", "Mexico", "Netherlands", "New Zealand", "Norway", "Others",
"Portugal", "South Africa", "Sweden", "Thailand", "Total", "United Kingdom",
"United States"), class = "factor"), `2005` = c(NA, NA, NA, NA,
NA, NA, 0.01, 0.02, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
0.22, 1.12, 0.53, 1.89), `2006` = c(NA, NA, NA, NA, NA, NA, 0.01,
0.02, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.01, 0.55, 1.12,
0.53, 2.23), `2007` = c(NA, NA, NA, NA, NA, NA, 0.01, 0.02, NA,
NA, NA, NA, NA, NA, 0.01, NA, NA, NA, 0.01, 1, 1.12, 0.53, 2.69
), `2008` = c(NA, NA, NA, NA, NA, NA, 0.01, 0.09, 0.37, NA, NA,
NA, 0.01, NA, 0.26, NA, NA, NA, 0.01, 1.22, 2.58, 0.61, 5.15),
`2009` = c(NA, NA, NA, NA, 0.48, NA, 0.12, 0.1, 0.53, 1.08,
NA, NA, 0.15, NA, 0.4, NA, NA, NA, 0.01, 1.4, 2.58, 0.64,
7.48), `2010` = c(NA, NA, NA, NA, 1.91, NA, 0.3, 0.25, 0.88,
3.52, 0.06, NA, 0.27, 0.01, 0.79, NA, NA, NA, 0.01, 1.68,
3.77, 0.81, 14.26), `2011` = c(50, NA, 0.52, 0.01, 6.98,
0.06, 3.03, 1.89, 1.33, 16.14, 0.34, NA, 1.14, 0.03, 2.63,
NA, NA, 0.18, 0.01, 2.89, 21.5, 2.6, 61.33), `2012` = c(300,
NA, 2.54, 0.01, 16.88, 0.24, 9.29, 5.26, 2.76, 40.58, 0.85,
0.09, 6.26, 0.06, 7.15, NA, NA, 1.11, 0.02, 5.59, 74.74,
5.31, 179.03), `2013` = c(600, NA, 5.66, 0.02, 32.22, 0.47,
18.91, 12.19, 2.95, 69.46, 1.45, 0.1, 28.67, 0.09, 15.67,
NA, 0.03, 2.66, 0.03, 9.34, 171.44, 9.35, 381.3), `2014` = c(1920,
0.06, 10.73, 0.03, 105.39, 0.93, 31.54, 24.93, 3.35, 101.74,
2.76, 0.15, 43.76, 0.41, 35.44, NA, 0.05, 7.32, 0.1, 24.08,
290.22, 18.73, 703.65), `2015` = c(3690, 0.15, 17.69, 0.07,
312.77, 1.59, 54.49, 48.12, 4.35, 126.4, 5.95, 0.25, 87.53,
0.91, 69.17, NA, 0.29, 15.91, 0.37, 48.51, 404.09, 37.17,
1239.45), `2016` = c(5060, 0.32, 29.27, 0.1, 648.77, 3.29,
84, 72.73, 4.8, 151.25, 11.21, 0.66, 112.01, 2.41, 114.05,
NA, 0.67, 29.33, 0.38, 86.42, 563.71, 61.63, 1982.04), `2017` = c(7340,
0.68, 45.95, 0.25, 1227.77, 6.34, 118.77, 109.56, 6.8, 205.35,
25.92, 0.92, 119.33, 5.88, 176.31, 1.78, 0.86, 49.6, 0.4,
133.67, 762.06, 103.44, 3109.05)), .Names = c("Country",
"2005", "2006", "2007", "2008", "2009", "2010", "2011", "2012",
"2013", "2014", "2015", "2016", "2017"), class = "data.frame", row.names = c(NA,
-23L))
Code:
library(tidyr)
library(dplyr)
temp<-gather(ElectricCarStock_BEVandPHEV, Country, 2:13)
head(temp)
This should do it:
library(reshape2)
library(tidyverse)
ElectricCarStock_BEVandPHEV %>%
melt(id.vars="Country")
I have the following data:
df <- structure(list(TPR = c(0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14,
0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36,
0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58,
0.6, 0.62, 0.64, 0.64, 0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.76,
0.78, 0.8, 0.8, 0.82, 0.82, 0.84, 0.84, 0.84, 0.86, 0.86, 0.86,
0.86, 0.88, 0.88, 0.9, 0.92, 0.92, 0.92, 0.92, 0.94, 0.94, 0.96,
0.96, 0.96, 0.96, 0.96, 0.96, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98,
0.98, 0.98, 0.98, 0.98, 0.98, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.02, 0.04, 0.06, 0.08, 0.1,
0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.24, 0.26, 0.28, 0.3,
0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.42, 0.42, 0.44, 0.46, 0.48,
0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.6, 0.6, 0.6, 0.62, 0.62,
0.62, 0.64, 0.66, 0.66, 0.68, 0.68, 0.68, 0.7, 0.72, 0.74, 0.76,
0.78, 0.8, 0.8, 0.8, 0.82, 0.82, 0.84, 0.84, 0.84, 0.86, 0.86,
0.86, 0.86, 0.86, 0.88, 0.88, 0.88, 0.9, 0.9, 0.9, 0.9, 0.9,
0.9, 0.9, 0.92, 0.94, 0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0.96,
0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0.02, 0.04, 0.06, 0.08, 0.1, 0.1, 0.1, 0.12,
0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.24, 0.26, 0.28, 0.28, 0.3,
0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.42, 0.42, 0.42, 0.44, 0.44,
0.44, 0.46, 0.48, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.58, 0.6,
0.62, 0.62, 0.62, 0.64, 0.66, 0.68, 0.68, 0.7, 0.72, 0.72, 0.72,
0.72, 0.74, 0.74, 0.74, 0.76, 0.76, 0.78, 0.78, 0.8, 0.82, 0.84,
0.84, 0.84, 0.86, 0.88, 0.88, 0.9, 0.9, 0.92, 0.92, 0.92, 0.92,
0.92, 0.92, 0.92, 0.92, 0.94, 0.94, 0.96, 0.96, 0.96, 0.96, 0.98,
0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98,
1, 1, 1, 1, 0.02, 0.04, 0.06, 0.06, 0.06, 0.08, 0.08, 0.1, 0.12,
0.14, 0.16, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.28, 0.3,
0.32, 0.32, 0.34, 0.34, 0.36, 0.38, 0.4, 0.42, 0.42, 0.44, 0.46,
0.46, 0.46, 0.48, 0.48, 0.5, 0.52, 0.54, 0.56, 0.56, 0.58, 0.6,
0.62, 0.64, 0.64, 0.64, 0.64, 0.64, 0.66, 0.68, 0.68, 0.7, 0.7,
0.7, 0.7, 0.7, 0.72, 0.74, 0.76, 0.76, 0.78, 0.78, 0.78, 0.8,
0.8, 0.82, 0.82, 0.84, 0.86, 0.86, 0.86, 0.86, 0.88, 0.9, 0.92,
0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.94, 0.94, 0.94,
0.94, 0.94, 0.94, 0.96, 0.98, 0.98, 0.98, 0.98, 1, 1, 1, 1, 1,
1), FPR = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.02, 0.04, 0.04,
0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.06, 0.06, 0.08, 0.08,
0.1, 0.12, 0.12, 0.14, 0.16, 0.18, 0.18, 0.2, 0.2, 0.2, 0.22,
0.24, 0.26, 0.26, 0.28, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.38,
0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.58,
0.6, 0.62, 0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8,
0.82, 0.84, 0.86, 0.88, 0.9, 0.92, 0.94, 0.96, 0.98, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.04, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06,
0.06, 0.06, 0.06, 0.06, 0.08, 0.1, 0.12, 0.12, 0.14, 0.16, 0.16,
0.16, 0.18, 0.18, 0.2, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22,
0.24, 0.26, 0.26, 0.28, 0.28, 0.3, 0.32, 0.32, 0.34, 0.36, 0.38,
0.4, 0.4, 0.42, 0.44, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56,
0.56, 0.56, 0.56, 0.58, 0.6, 0.62, 0.64, 0.66, 0.68, 0.68, 0.7,
0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.84, 0.86, 0.88, 0.9,
0.92, 0.94, 0.96, 0.98, 1, 0, 0, 0, 0, 0, 0.02, 0.04, 0.04, 0.04,
0.04, 0.04, 0.04, 0.04, 0.04, 0.06, 0.06, 0.06, 0.08, 0.08, 0.08,
0.08, 0.08, 0.08, 0.08, 0.08, 0.1, 0.12, 0.14, 0.14, 0.16, 0.18,
0.18, 0.18, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.22, 0.22, 0.22, 0.24,
0.26, 0.26, 0.26, 0.26, 0.28, 0.28, 0.28, 0.3, 0.32, 0.34, 0.34,
0.36, 0.38, 0.38, 0.4, 0.4, 0.42, 0.42, 0.42, 0.42, 0.44, 0.46,
0.46, 0.46, 0.48, 0.48, 0.5, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6,
0.62, 0.64, 0.64, 0.66, 0.66, 0.68, 0.7, 0.72, 0.72, 0.74, 0.76,
0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.92, 0.94, 0.94, 0.96,
0.98, 1, 0, 0, 0, 0.02, 0.04, 0.04, 0.06, 0.06, 0.06, 0.06, 0.06,
0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.1, 0.1, 0.1, 0.12,
0.12, 0.14, 0.14, 0.14, 0.14, 0.14, 0.16, 0.16, 0.16, 0.18, 0.2,
0.2, 0.22, 0.22, 0.22, 0.22, 0.22, 0.24, 0.24, 0.24, 0.24, 0.24,
0.26, 0.28, 0.3, 0.32, 0.32, 0.32, 0.34, 0.34, 0.36, 0.38, 0.4,
0.42, 0.42, 0.42, 0.42, 0.44, 0.44, 0.46, 0.48, 0.48, 0.5, 0.5,
0.52, 0.52, 0.52, 0.54, 0.56, 0.58, 0.58, 0.58, 0.58, 0.6, 0.62,
0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.74, 0.76, 0.78, 0.8, 0.82,
0.84, 0.84, 0.84, 0.86, 0.88, 0.9, 0.9, 0.92, 0.94, 0.96, 0.98,
1), GeneSet = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("Distort = 1", "Distort = 1.5",
"Distort = 2", "Distort = 2.5"), class = "factor")), .Names = c("TPR",
"FPR", "GeneSet"), row.names = c(NA, -400L), class = "data.frame")
But why the following code fail to create the desired plot?
library(ggplot2)
library(RColorBrewer)
p <- qplot(FPR, TPR, data = df, geom = "blank", main = "ROC curve", xlab = "False Positive Rate (1-Specificity)", ylab = "True Positive Rate (Sensitivity)" )
p <- p + geom_line(aes(x = FPR, y = TPR, data = data, colour = GeneSet), size = 2, alpha = 0.7) + scale_colour_manual(values=colors)
p
I got this error message:
Don't know how to automatically pick scale for object of type data.frame. Defaulting to continuous
Error: Aesthetics must either be length one, or the same length as the dataProblems:data
The desired plot is this:
You don't need to plot geom="blank" and geom_line() - it can be done just by geom_line(). Only colors can't be reproduced because variable colors isn't provided in question.
ggplot(df,aes(FPR,TPR,color=GeneSet))+geom_line(size = 2, alpha = 0.7)+
labs(title= "ROC curve",
x = "False Positive Rate (1-Specificity)",
y = "True Positive Rate (Sensitivity)")