Related
The input I'm giving to the GLM function is:
glm(family=fam,data=regFrame1,start=starter1,formula=as.formula(paste(yvar,"~.+0")),na.action=na.exclude,y=T)
Where the family is Gamma and the link function is identity.
I'm trying to manually reproduce the coefficients from my model where one of them is for example:
Estimate Std. Error t value Pr(>|t|)
coefficient A 480.6062 195.2952 2.461 0.013902 *
I know the equation I need for coefficient A is:
βA = (XTX)−1XTY
Where y is my dependent variable and x is my independent variable.
In R I write this to produce βA:
# x transposed multiplied by x when both are matrices
xtx <- t(x) %*% x
# x transposed multiplied by y when both are matrices
xty <- t(x) %*% y
# we need to inverse xtx
xtxinv <- solve(xtx, tol=0)
# finally we multiply the inverse of xtx by xty to get betaHat
betaHat <- xtxinv %*% xty
betaHat = 148
When I complete this calculation manually I get the coefficient that is produced when running a GLM on the default normal Gaussian family without specifying a family. Which looks like this:
glm(data=regFrame1,formula=as.formula(paste(yvar,"~.+0")),na.action=na.exclude,y=T)
So the question is how do I tailor my manual calculation to the Gamma family identity link function instead of the Gaussian identity default that is in the glm.fit function in R.
The only two differences with my two runs using the glm function are:
providing the family (Gamma identity)
giving the model starting values (100 for each column in the dataframe)
I tried to recreate glm.fit function manually to get out the coefficient (beta). When I didn't provide a family or starting values I got the correct answer but when I gave Gamma as the family and identity as the link with starting values I get a much different coefficient.
For linear regression, which is fit with least squares, BA is indeed (XTX)-1XTY. However, for generalized linear regression, BA is fit by iteratively weighted least squares, which is an iterative algorithm. Therefore, there is no direct formula to compute BA. However, we can compute the equivalent of the hat matrix H in linear regression. In linear regression, the hat matrix is H=X(XTX)-1XT. In generalized linear model, the analogy of the hat matrix is H=WX(XTWX)-1XT where W = diag(mu'(XB)). In both cases, Hy give the fitted values, yA. Here is code to demonstrate.
#' Test that the two parameterizations of Gamma are the same
curve(dgamma(x, 3, scale=3), xlim=c(0, 10))
grid <- seq(0, 10, length=1000)
d <- 1/grid/gamma(3)*(grid/(1/3)/9)^3*exp(-grid/3)
plot(grid, d, type='l')
#' Generate random variates according to GLM with
#' Y_i ~ Gamma(mean=mu,
#' squared coefficient of variation (variance over squared mean) = phi)
#' Y_i ~ Gamma(shape=alpha, scale=beta)
#' mu = alpha*beta
#' phi= 1/alpha
#' Let Beta = (3, 4)
set.seed(123)
X <- data.frame(x1=runif(1000, 0, 10))
mu = (3+4*X$x1)^(-1)
y=NULL
for (i in 1:1000) {
alpha = 1/3
beta = mu[i] * 3
y[i]=rgamma(1, alpha, scale=beta)
}
#' Fit the model and compute the hat matrix, then the fitted values manually
mod <- glm(y ~ ., family=Gamma(), data=X)
x <- as.matrix(cbind(1, X))
W=diag(c(-(x%*%c(3, 4))^(-2)))
H=W%*%x%*%solve(t(x)%*%W%*%x)%*%t(x)
#Manual fitted values
head(H%*%y)
#Fitted values from model
head(mod$fitted.values)
I found the parameters a and b of the above equation by fitting a linear model to log(y) = log(a) + b*log(X). I am wanting to back transform the model into a non-linear plot of the line following the equation y = aX^b using R software. I understand there are functions in R to fit a model (e.g., nls()), however, I am not interested in fitting a non-linear model I only want to plot the non-linear line that was found using the log-log transformation. Any suggestions?
Thank you in advance!
If you have a fully parameterized equation, you just need to make a vector of the domain you want to view (the X values), directly compute the Y values, and plot them.
a=1; b=2;
x = seq(-10, 10, 0.1)
y = a*(x^b)
plot(x,y)
You can try the code below
a <- 1
b <- 2
f <- function(x) a * x^b
curve(f, -10, 10)
and you will see
I have a problem with fitting a curve in 3D point set (or point cloud) in space. When I look at curve fitting tools, they mostly create a surface when given a point set [x,y,z]. But it is not what I want. I would like to fit on point set curve not surface.
So please help me what is the best solution for curve fitting in space (3D).
Particularly, my data looks like polynomial curve in 3d.
Equation is
z ~ ax^2 + bxy + cy^2 + d
and there is not any pre-estimated coefficients [a,b,c,d].
Thanks.
xyz <- read.table( text="x y z
518315,750 4328698,260 101,139
518315,429 4328699,830 101,120
518315,570 4328700,659 101,139
518315,350 4328702,050 101,180
518315,3894328702,849 101,190
518315,239 4328704,020 101,430", header=TRUE, dec=",")
sample image is here
With a bit of data we can now demonstrate a rather hackis effort in the direction you suggest, although this really is estimating a surface, despite your best efforts to convince us otherwise:
xyz <- read.table(text="x y z
518315,750 4328698,260 101,139
518315,429 4328699,830 101,120
518315,570 4328700,659 101,139
518315,350 4328702,050 101,180
518315,389 4328702,849 101,190
518315,239 4328704,020 101,430", header=TRUE, dec=",")
lm( z ~ I(x^2)+I(x*y) + I(y^2), data=xyz)
#---------------
Call:
lm(formula = z ~ I(x^2) + I(x * y) + I(y^2), data = xyz)
Coefficients:
(Intercept) I(x^2) I(x * y) I(y^2)
-1.182e+05 -3.187e-07 9.089e-08 NA
The collinearity of x^2 and x*y with y^2 is preventing an estimate of the y^2 variable coefficient since y = x*y/x. You can also use nls to estimate parameters for non-linear surfaces.
I suppose that you want to fit a parametrized curve of of this type:
r(t) = a + bt + ct^2
Therefore, you will have to do three independent fits:
x = ax + bx*t + cx*t^2
y = ay + by*t + cy*t^2
z = az + bz*t + cz*t^2
and obtain nine fitting parameters ax,ay,az,bx,by,bz,cx,cy,cz. Your data contains the positions x,y,z and you also need to include the time variable t=1,2,3,...,5 assuming that the points are sampled at equal time intervals.
If the 'time' parameter of your data points is unknown/random, then I suppose that you will have to estimate it yourself as another fitting parameter, one per data point. So what I suggest is the following:
Assume some reasonable parameters a,b,c.
Write a function which calculates the time t_i of each data point by
minimizing the square distance between that point and the tentative
curve r(t).
Calculate the sum of all (r(t)-R(t))^2
between the curve and your dataset R. This will be your fitting score, or
the Figure of Merit
use Matlab's genetic algoritm ga() routine to
obtain an optimal a,b,c which will minimize the Figure
of Merit as defined above
Good luck!
I want to use y=a^(b^x) to fit the data below,
y <- c(1.0385, 1.0195, 1.0176, 1.0100, 1.0090, 1.0079, 1.0068, 1.0099, 1.0038)
x <- c(3,4,5,6,7,8,9,10,11)
data <- data.frame(x,y)
When I use the non-linear least squares procedure,
f <- function(x,a,b) {a^(b^x)}
(m <- nls(y ~ f(x,a,b), data = data, start = c(a=1, b=0.5)))
it produces an error: singular gradient matrix at initial parameter estimates. The result is roughly a = 1.1466, b = 0.6415, so there shouldn't be a problem with intial parameter estimates as I have defined them as a=1, b=0.5.
I have read in other topics that it is convenient to modify the curve. I was thinking about something like log y=log a *(b^x), but I don't know how to deal with function specification. Any idea?
I will expand my comment into an answer.
If I use the following:
y <- c(1.0385, 1.0195, 1.0176, 1.0100, 1.0090, 1.0079, 1.0068, 1.0099, 1.0038)
x <- c(3,4,5,6,7,8,9,10,11)
data <- data.frame(x,y)
f <- function(x,a,b) {a^b^x}
(m <- nls(y ~ f(x,a,b), data = data, start = c(a=0.9, b=0.6)))
or
(m <- nls(y ~ f(x,a,b), data = data, start = c(a=1.2, b=0.4)))
I obtain:
Nonlinear regression model
model: y ~ f(x, a, b)
data: data
a b
1.0934 0.7242
residual sum-of-squares: 0.0001006
Number of iterations to convergence: 10
Achieved convergence tolerance: 3.301e-06
I always obtain an error if I use 1 as a starting value for a, perhaps because 1 raised to anything is 1.
As for automatically generating starting values, I am not familiar with a procedure to do that. One method I have read about is to simulate curves and use starting values that generate a curve that appears to approximate your data.
Here is the plot generated using the above parameter estimates using the following code. I admit that maybe the lower right portion of the line could fit a little better:
setwd('c:/users/mmiller21/simple R programs/')
jpeg(filename = "nlr.plot.jpeg")
plot(x,y)
curve(1.0934^(0.7242^x), from=0, to=11, add=TRUE)
dev.off()
Suppose I have x values, y values, and expected y values f (from some nonlinear best fit curve).
How can I compute R^2 in R? Note that this function is not a linear model, but a nonlinear least squares (nls) fit, so not an lm fit.
You just use the lm function to fit a linear model:
x = runif(100)
y = runif(100)
spam = summary(lm(x~y))
> spam$r.squared
[1] 0.0008532386
Note that the r squared is not defined for non-linear models, or at least very tricky, quote from R-help:
There is a good reason that an nls model fit in R does not provide
r-squared - r-squared doesn't make sense for a general nls model.
One way of thinking of r-squared is as a comparison of the residual
sum of squares for the fitted model to the residual sum of squares for
a trivial model that consists of a constant only. You cannot
guarantee that this is a comparison of nested models when dealing with
an nls model. If the models aren't nested this comparison is not
terribly meaningful.
So the answer is that you probably don't want to do this in the first
place.
If you want peer-reviewed evidence, see this article for example; it's not that you can't compute the R^2 value, it's just that it may not mean the same thing/have the same desirable properties as in the linear-model case.
Sounds like f are your predicted values. So the distance from them to the actual values devided by n * variance of y
so something like
1-sum((y-f)^2)/(length(y)*var(y))
should give you a quasi rsquared value, so long as your model is reasonably close to a linear model and n is pretty big.
As a direct answer to the question asked (rather than argue that R2/pseudo R2 aren't useful) the nagelkerke function in the rcompanion package will report various pseudo R2 values for nonlinear least square (nls) models as proposed by McFadden, Cox and Snell, and Nagelkerke, e.g.
require(nls)
data(BrendonSmall)
quadplat = function(x, a, b, clx) {
ifelse(x < clx, a + b * x + (-0.5*b/clx) * x * x,
a + b * clx + (-0.5*b/clx) * clx * clx)}
model = nls(Sodium ~ quadplat(Calories, a, b, clx),
data = BrendonSmall,
start = list(a = 519,
b = 0.359,
clx = 2304))
nullfunct = function(x, m){m}
null.model = nls(Sodium ~ nullfunct(Calories, m),
data = BrendonSmall,
start = list(m = 1346))
nagelkerke(model, null=null.model)
The soilphysics package also reports Efron's pseudo R2 and adjusted pseudo R2 value for nls models as 1 - RSS/TSS:
pred <- predict(model)
n <- length(pred)
res <- resid(model)
w <- weights(model)
if (is.null(w)) w <- rep(1, n)
rss <- sum(w * res ^ 2)
resp <- pred + res
center <- weighted.mean(resp, w)
r.df <- summary(model)$df[2]
int.df <- 1
tss <- sum(w * (resp - center)^2)
r.sq <- 1 - rss/tss
adj.r.sq <- 1 - (1 - r.sq) * (n - int.df) / r.df
out <- list(pseudo.R.squared = r.sq,
adj.R.squared = adj.r.sq)
which is also the pseudo R2 as calculated by the accuracy function in the rcompanion package. Basically, this R2 measures how much better your fit becomes compared to if you would just draw a flat horizontal line through them. This can make sense for nls models if your null model is one that allows for an intercept only model. Also for particular other nonlinear models it can make sense. E.g. for a scam model that uses stricly increasing splines (bs="mpi" in the spline term), the fitted model for the worst possible scenario (e.g. where your data was strictly decreasing) would be a flat line, and hence would result in an R2 of zero. Adjusted R2 then also penalize models with higher nrs of fitted parameters. Using the adjusted R2 value would already address a lot of the criticisms of the paper linked above, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892436/ (besides if one swears by using information criteria to do model selection the question becomes which one to use - AIC, BIC, EBIC, AICc, QIC, etc).
Just using
r.sq <- max(cor(y,yfitted),0)^2
adj.r.sq <- 1 - (1 - r.sq) * (n - int.df) / r.df
I think would also make sense if you have normal Gaussian errors - i.e. the correlation between the observed and fitted y (clipped at zero, so that a negative relationship would imply zero predictive power) squared, and then adjusted for the nr of fitted parameters in the adjusted version. If y and yfitted go in the same direction this would be the R2 and adjusted R2 value as reported for a regular linear model. To me this would make perfect sense at least, so I don't agree with outright rejecting the usefulness of pseudo R2 values for nls models as the answer above seems to imply.
For non-normal error structures (e.g. if you were using a GAM with non-normal errors) the McFadden pseudo R2 is defined analogously as
1-residual deviance/null deviance
See here and here for some useful discussion.
Another quasi-R-squared for non-linear models is to square the correlation between the actual y-values and the predicted y-values. For linear models this is the regular R-squared.
As an alternative to this problem I used at several times the following procedure:
compute a fit on data with the nls function
using the resulting model make predictions
Trace (plot...) the data against the values predicted by the model (if the model is good, points should be near the bissectrix).
Compute the R2 of the linear régression.
Best wishes to all. Patrick.
With the modelr package
modelr::rsquare(nls_model, data)
nls_model <- nls(mpg ~ a / wt + b, data = mtcars, start = list(a = 40, b = 4))
modelr::rsquare(nls_model, mtcars)
# 0.794
This gives essentially the same result as the longer way described by Tom from the rcompanion resource.
Longer way with nagelkerke function
nullfunct <- function(x, m){m}
null_model <- nls(mpg ~ nullfunct(wt, m),
data = mtcars,
start = list(m = mean(mtcars$mpg)))
nagelkerke(nls_model, null_model)[2]
# 0.794 or 0.796
Lastly, using predicted values
lm(mpg ~ predict(nls_model), data = mtcars) %>% broom::glance()
# 0.795
Like they say, it's only an approximation.