dplyr tidyr based subsetting not working in R - r

I have the following data frame created in R
df<-data.frame("X_F"=c(5,10,20,200, 5,10,15,25,30,60,200, NA),
"X_A"=c(1,2,3,4,1,2,3,4,5,6,7,NA),"Y_F"=c(5,20,200, NA, 5,12,16,25,100, NA,
NA, NA), "Y_A"=c(1,2,3,NA, 1,2,3,4,5,NA, NA, NA), "Z_F"=c(5,10,20,100,
4,12,1,7,30,100,200, 250), 'Z_A'=c(1,2,3,4,1,3,4,5,6,7,9,10), "ID"=c("A",
"A", "A", "A", "B", "B", "B", "B","B","B", "B", "B"))
The data frame has differing entries across rows and looks as follows
X_F X_A Y_F Y_A Z_F Z_A ID
1 5 1 5 1 5 1 A
2 10 2 20 2 10 2 A
3 20 3 200 3 20 3 A
4 200 4 NA NA 100 4 A
5 5 1 5 1 4 1 B
6 10 2 12 2 12 3 B
7 15 3 16 3 1 4 B
8 25 4 25 4 7 5 B
9 30 5 100 5 30 6 B
10 60 6 NA NA 100 7 B
11 200 7 NA NA 200 9 B
12 NA NA NA NA 250 10 B
next I have created a new column called SF that includes all values in X_F, Y_F Z_F as a sequence separated by one.
library(dplyr)
library(tidyr)
df=df %>% group_by(ID) %>%
mutate(SF=pmax(X_F,Y_F,Z_F,na.rm = TRUE)) %>%
complete(SF=full_seq(SF,1))
Next I have created the following columns
df[c("X_F2", "Y_F2", "Z_F2") ]<-df$SF
df[c("X_A2", "Y_A2", "Z_A2")]<-NA
The following code should transfer values in X_A to X_A2 based on the values in X_F being equal to X_F2.
df<-df%>%group_by(ID)%>%
mutate(X_A2, case_when(X_F2==X_F~X_A))%>%
mutate(Y_A2, case_when(Y_F2==Y_F~Y_A))%>%
mutate(Z_A2, case_when(Z_F2==Z_F~Z_A))
I am not getting the expected result
The expected result should be as follows
head(data.frame(df$`case_when(X_F2 == X_F ~ X_A)`, df$X_F2),10)
df..case_when.X_F2....X_F...X_A.. df.X_F2
1 5
NA 6
NA 7
NA 8
NA 9
2 10
NA 11
NA 12
NA 13
NA 14
However I am getting the following output
df..case_when.X_F2....X_F...X_A.. df.X_F2
1 5
NA 6
NA 7
NA 8
NA 9
NA 10
NA 11
NA 12
NA 13
NA 14
I request someone to take a look. have also tried else if but that clearly doesnt work

Related

Complete a dataframe in R By ID upto selected values of the dataframe only

I have created the following dataframe in R
library(tidyR)
library(dplyr)
DF11<- data.frame("ID"= c("A", "A", "A", "B", "B", "B", "B", "B"))
DF11$X_F<-c(5, 7,9,6,7,8,9,10)
DF11$X_A<-c(7, 8,9,3,6,7,9,10)
The dataframe looks as follows
ID X_F X_A
A 5 7
A 7 8
A 9 9
B 6 3
B 7 6
B 8 7
B 9 9
B 10 10
ID is the grouping variable. I would like to use dplyr to create the following dataframe.
ID X_F X_A
A 0 NA
A 1 NA
A 2 NA
A 3 NA
A 4 NA
A 5 7
A 7 8
A 9 9
A 10 NA
A 11 NA
A 12 NA
B 0 NA
B 1 NA
B 2 NA
B 3 NA
B 4 NA
B 5 NA
B 6 3
B 7 6
B 8 7
B 9 9
B 10 10
B 11 NA
B 12 NA
B 13 NA
The resultant dataframe should take DF11 and then group the X_F column using ID column. Next it should complete X_F group-wise from 0 to the minimum value of X_F by group, and then from the maximum value of X_F to maximum value X_F +3.
I tried the following code and was able to solve it partially.
DF112<-DF11%>%group_by(ID)%>%complete(X_F=seq(0, max(X_F)+3, by =1))
ID X_F X_A
A 0 NA
A 1 NA
A 2 NA
A 3 NA
A 4 NA
A 5 7
A 6 NA
A 7 8
A 8 NA
A 9 9
A 10 NA
A 11 NA
A 12 NA
B 0 NA
B 1 NA
B 2 NA
B 3 NA
B 4 NA
B 5 NA
B 6 3
B 7 6
B 8 7
B 9 9
B 10 10
B 11 NA
B 12 NA
B 13 NA
How do I get the desired output mentioned above. I request someone to guide me.
It would work to pass two vectors into your complete function call, one to do the lower values and one to do the upper:
library(tidyr)
library(dplyr)
DF11 <- data.frame("ID" = c("A", "A", "A", "B", "B", "B", "B", "B"))
DF11$X_F <- c(5, 7, 9, 6, 7, 8, 9, 10)
DF11$X_A <- c(7, 8, 9, 3, 6, 7, 9, 10)
DF11 %>%
group_by(ID) %>%
complete(X_F = c(seq(0, min(X_F) - 1 , by = 1), seq(max(X_F) + 1, max(X_F) + 3, by = 1))) |>
arrange(ID, X_F)
# A tibble: 25 × 3
# Groups: ID [2]
ID X_F X_A
<chr> <dbl> <dbl>
1 A 0 NA
2 A 1 NA
3 A 2 NA
4 A 3 NA
5 A 4 NA
6 A 5 7
7 A 7 8
8 A 9 9
9 A 10 NA
10 A 11 NA
11 A 12 NA
12 B 0 NA
13 B 1 NA
14 B 2 NA
15 B 3 NA
16 B 4 NA
17 B 5 NA
18 B 6 3
19 B 7 6
20 B 8 7
21 B 9 9
22 B 10 10
23 B 11 NA
24 B 12 NA
25 B 13 NA
Created on 2022-11-01 with reprex v2.0.2

Avoid the for loops-R

I have two data frames, x and y. For each value of x[,2], I look if the value is equal to the value of the elements of y[,1]. If so, I add a third column in the first data frame that contains the values of y[,2].
I managed to do that with loops, but how can I do this using vectors?
x=data.frame(1:15,15:1)
y=data.frame(3:5,c(7.2,8.5,0.3))
for ( i in 1:nrow(x)) {
for (j in 1:nrow(y)) {
if (x[i,2]==y[j,1]){
x[i,3]=y[j,2]
}else{
}
}
}
Use a join instead of loops - based on the loop comparision, the second column of 'x' is compared with the first column of 'y', thus those columns are used in the on, assign (:=) the second column (col2) from the second dataset to create the new column 'col3' in first data
library(data.table)
setDT(x)[y, col3 := i.col2, on = .(col2 = col1)]
-output
> x
col1 col2 col3
1: 1 15 NA
2: 2 14 NA
3: 3 13 NA
4: 4 12 NA
5: 5 11 NA
6: 6 10 NA
7: 7 9 NA
8: 8 8 NA
9: 9 7 NA
10: 10 6 NA
11: 11 5 0.3
12: 12 4 8.5
13: 13 3 7.2
14: 14 2 NA
15: 15 1 NA
data
x <- data.frame(col1 = 1:15, col2 = 15:1)
y <- data.frame(col1 = 3:5, col2 = c(7.2,8.5,0.3))
Update: Many thanks to #TrainingPizza (who has drawn my attention to the false output of my first answer and also provided how it could work:
library(dplyr)
x %>%
rowwise() %>%
mutate(col3 = ifelse(col2 %in% y$col1, y$col2[y$col1==col2], NA))
col1 col2 col3
<int> <int> <dbl>
1 1 15 NA
2 2 14 NA
3 3 13 NA
4 4 12 NA
5 5 11 NA
6 6 10 NA
7 7 9 NA
8 8 8 NA
9 9 7 NA
10 10 6 NA
11 11 5 0.3
12 12 4 8.5
13 13 3 7.2
14 14 2 NA
15 15 1 NA
First answer (not correct)
Here is dplyr way how to avoid the for - loop:
library(dplyr)
x %>%
mutate(V3 = ifelse(V2 %in% y$V1, y$V2, NA))
V1 V2 V3
1 1 15 NA
2 2 14 NA
3 3 13 NA
4 4 12 NA
5 5 11 NA
6 6 10 NA
7 7 9 NA
8 8 8 NA
9 9 7 NA
10 10 6 NA
11 11 5 8.5
12 12 4 0.3
13 13 3 7.2
14 14 2 NA
15 15 1 NA

How can I make some row values NA if other is NA in R?

I have a dataframe with three columns Time, observed value (Obs.Value), and an interpolated value (Interp.Value). If the value of Obs.Value is NA then the value of Interp.Value should also be NA. I can make the whole row NA but I need to keep the Time value.
Here is the repex:
dat <- data.frame(matrix(ncol = 3, nrow = 10))
x <- c("Time", "Obs.Value", "Interp.Value")
colnames(dat) <- x
dat$Time <- seq(1,10,1)
dat$Obs.Value <- c(5,6,7,NA,NA,5,4,3,NA,2)
interp <- approx(dat$Time,dat$Obs.Value,dat$Time)
dat$Interp.Value <- round(interp$y,1)
Here is the code that makes the whole row NA
dat[with(dat, is.na(Obs.Value)|is.na("Interp.Value")),] <- NA
Here is what the output should look like:
Time Obs.Value Interp.Value
1 1 5 5
2 2 6 6
3 3 7 7
4 4 NA NA
5 5 NA NA
6 6 5 5
7 7 4 4
8 8 3 3
9 9 NA NA
10 10 2 2
dat$Interp.Value[is.na(dat$Obs.Value)] <- NA
dat
# Time Obs.Value Interp.Value
# 1 1 5 5
# 2 2 6 6
# 3 3 7 7
# 4 4 NA NA
# 5 5 NA NA
# 6 6 5 5
# 7 7 4 4
# 8 8 3 3
# 9 9 NA NA
# 10 10 2 2
Or if either column being NA is sufficient, then
dat[!complete.cases(dat[,-1]),-1] <- NA
If there is only one column to change #r2evans' answer is pretty straightforward and way to go. If there are more than one column that you want to change you can use across in dplyr.
library(dplyr)
dat %>%
mutate(across(-c(Time,Obs.Value), ~replace(., is.na(Obs.Value), NA)))
# Time Obs.Value Interp.Value
#1 1 5 5
#2 2 6 6
#3 3 7 7
#4 4 NA NA
#5 5 NA NA
#6 6 5 5
#7 7 4 4
#8 8 3 3
#9 9 NA NA
#10 10 2 2

Make values not adjacent to each other NA

The values >=10 in the data frame below (values 31,89,12,69) does sometimes come in order like 89 and 12. By that I mean de order 123456789, they are adjacent to eachother. I would like to make the values which are not adjacent to each other(31,69, in 31 nr 2 is missing in between to be in order, for 69, nr 7 and8 are missing to be in order) NA. How to code this? Imagine a big dataset! :)
id <- factor(rep(letters[1:2], each=5))
A <- c(1,2,NA,67,8,9,0,6,7,9)
B <- c(5,6,31,9,8,1,NA,9,7,4)
C <- c(2,3,5,NA,NA,2,7,6,4,6)
D <- c(6,5,89,3,2,9,NA,12,69,8)
df <- data.frame(id, A, B,C,D)
df
id A B C D
1 a 1 5 2 6
2 a 2 6 3 5
3 a NA 31 5 89
4 a 67 9 NA 3
5 a 8 8 NA 2
6 b 9 1 2 9
7 b 0 NA 7 NA
8 b 6 9 6 12
9 b 7 7 4 69
10 b 9 4 6 8
It should look like:
id A B C D
1 a 1 5 2 6
2 a 2 6 3 5
3 a NA NA 5 89
4 a 67 9 NA 3
5 a 8 8 NA 2
6 b 9 1 2 9
7 b 0 NA 7 NA
8 b 6 9 6 12
9 b 7 7 4 NA
10 b 9 4 6 8
Another solution defining a vector of the values to keep beforehand (only up to two-digit numbers, but could be extended):
numerals <- 1:9
vector <- 0:9
for (i in numerals) {
j <- numerals[i+1]
if (!is.na(j)) {
number <- as.numeric(paste(c(i, j), collapse = ""))
number_reverse <- as.numeric(paste(c(j, i), collapse = ""))
vector <- c(vector, number, number_reverse)
}
}
vector
[1] 0 1 2 3 4 5 6 7 8 9 12 21 23 32 34 43 45 54 56 65 67 76 78 87 89 98
Function to replace number if not in vector:
replace <- function(x) {
x <- ifelse(!x %in% vector, NA, x)
return(x)
}
Result:
df %>% mutate_at(c("A", "B", "C", "D"), replace)
id A B C D
1 a 1 5 2 6
2 a 2 6 3 5
3 a NA NA 5 89
4 a 67 9 NA 3
5 a 8 8 NA 2
6 b 9 1 2 9
7 b 0 NA 7 NA
8 b 6 9 6 12
9 b 7 7 4 NA
10 b 9 4 6 8
Here is a function that tests individual numbers
MyFunction <- function(A){
NumbersToCheck <- lapply(strsplit(as.character(A),""),as.integer)
check <- lapply(2:length(unlist(NumbersToCheck)), function(X) ifelse(NumbersToCheck[[1]][X]-NumbersToCheck[[1]][X-1]==1,TRUE,FALSE))
return(ifelse(FALSE %in% check,NA,A))
}
Which can then be applied to your entire df as follows
df[,2:ncol(df)] <- lapply(2:ncol(df), function(X) unlist(lapply(df[,X],MyFunction)))
to get the following result
> df
id A B C D
1 a 1 5 2 6
2 a 2 6 3 5
3 a NA NA 5 89
4 a 67 9 NA 3
5 a 8 8 NA 2
6 b 9 1 2 9
7 b 0 NA 7 NA
8 b 6 9 6 12
9 b 7 7 4 NA
10 b 9 4 6 8
df[] <- lapply(df, function(col) {
# Split each value character by character
NAs <- sapply(strsplit(as.character(col), split = ""), function(chars) {
# Convert them back to integer to compare with `diff`
# and verify the increment is always 1 or -1
diff <- diff(as.integer(chars))
!all(diff == 1) && !all(diff == -1)
})
# If not, replace those values with NA
col[NAs] <- NA
col
})
#> Warning in diff(as.integer(chars)): NAs introduced by coercion
#> Warning in diff(as.integer(chars)): NAs introduced by coercion
#> ...
#> Warning in diff(as.integer(chars)): NAs introduced by coercion
df
#> id A B C D
#> 1 a 1 5 2 6
#> 2 a 2 6 3 5
#> 3 a NA NA 5 89
#> 4 a 67 9 NA 3
#> 5 a 8 8 NA 2
#> 6 b 9 1 2 9
#> 7 b 0 NA 7 NA
#> 8 b 6 9 6 12
#> 9 b 7 7 4 NA
#> 10 b 9 4 6 8
Created on 2020-03-31 by the reprex package (v0.3.0)

R: creating multiple new variables based on conditions of selection of other variables with similar names

I have a data frame where each condition (in the example: hope, dream, joy) has 5 variables (in the example, coded with suffixes x, y, z, a, b - the are the same for each condition).
df <- data.frame(matrix(1:16,5,16))
names(df) <- c('ID','hopex','hopey','hopez','hopea','hopeb','dreamx','dreamy','dreamz','dreama','dreamb','joyx','joyy','joyz','joya','joyb')
df[1,2:6] <- NA
df[3:5,c(7,10,14)] <- NA
This is how the data looks like:
ID hopex hopey hopez hopea hopeb dreamx dreamy dreamz dreama dreamb joyx joyy joyz joya joyb
1 1 NA NA NA NA NA 15 4 9 14 3 8 13 2 7 12
2 2 7 12 1 6 11 16 5 10 15 4 9 14 3 8 13
3 3 8 13 2 7 12 NA 6 11 NA 5 10 15 NA 9 14
4 4 9 14 3 8 13 NA 7 12 NA 6 11 16 NA 10 15
5 5 10 15 4 9 14 NA 8 13 NA 7 12 1 NA 11 16
I want to create a new variable for each condition (hope, dream, joy) that codes whether all of the variables x...b for that condition are NA (0 if all are NA, 1 if any is non-NA). And I want the new variables to be stored in the data frame. Thus, the output should be this:
ID hopex hopey hopez hopea hopeb dreamx dreamy dreamz dreama dreamb joyx joyy joyz joya joyb hope joy dream
1 1 NA NA NA NA NA 15 4 9 14 3 8 13 2 7 12 0 1 1
2 2 7 12 1 6 11 16 5 10 15 4 9 14 3 8 13 1 1 1
3 3 8 13 2 7 12 NA 6 11 NA 5 10 15 NA 9 14 1 1 1
4 4 9 14 3 8 13 NA 7 12 NA 6 11 16 NA 10 15 1 1 1
5 5 10 15 4 9 14 NA 8 13 NA 7 12 1 NA 11 16 1 1 1
The code below does it, but I'm looking for a more elegant solution (e.g., for a case where I have even more conditions). I've tried with various combinations of all(), select(), mutate(), but while they all seem useful, I cannot figure out how to combine them to get what I want. I'm stuck and would be interested in learning to code more efficiently. Thanks in advance!
df$hope <- 0
df[is.na(df$hopex) == FALSE | is.na(df$hopey) == FALSE | is.na(df$hopez) == FALSE | is.na(df$hopea) == FALSE | is.na(df$hopeb) == FALSE, "hope"] <- 1
df$dream <- 0
df[is.na(df$dreamx) == FALSE | is.na(df$dreamy) == FALSE | is.na(df$dreamz) == FALSE | is.na(df$dreama) == FALSE | is.na(df$dreamb) == FALSE, "dream"] <- 1
df$joy<- 0
df[is.na(df$joyx) == FALSE | is.na(df$joyy) == FALSE | is.na(df$joyz) == FALSE | is.na(df$joya) == FALSE | is.na(df$joyb) == FALSE, "joy"] <- 1
Here is an option with tidyverse
library(dplyr)
library(purrr)
library(magrittr)
df %>%
mutate(hope = select(., starts_with('hope')) %>%
is.na %>%
`!` %>%
rowSums %>%
is_greater_than(0) %>%
as.integer)
# hopex hopey hopez hopea hopeb dreamx dreamy dreamz dreama dreamb joyx joyy joyz joya joyb hope
#1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0
#2 1 1 4 3 2 3 5 4 5 2 5 NA 4 3 1 1
#3 2 NA 4 4 4 3 5 NA 5 5 4 NA 4 5 1 1
#4 4 3 NA 1 1 1 5 2 NA 5 1 2 1 1 1 1
#5 1 NA 4 NA NA 2 1 5 1 2 NA 3 1 2 5 1
Or with rowSums
df %>%
mutate(hope = +(rowSums(!is.na(select(., starts_with('hope'))))!= 0))
For multiple columns, we can create a function
f1 <- function(dat, colSubstr) {
dplyr::select(dat, starts_with(colSubstr)) %>%
is.na %>%
`!` %>%
rowSums %>%
is_greater_than(0) %>%
as.integer
}
df %>%
mutate(hope = f1(., 'hope'),
dream = f1(., 'dream'),
joy = f1(., 'joy'))
Or using base R
cbind(df, sapply(split.default(df, sub(".$", "", names(df))),
function(x) +(rowSums(!is.na(x)) != 0)))
If we want to subset columns
nm1 <- setdiff(names(df), "ID")
cbind(df, sapply(split.default(df[nm1], sub(".$", "", names(df[nm1]))),
function(x) +(rowSums(!is.na(x)) != 0)))
data
set.seed(24)
df <- as.data.frame(matrix(sample(c(NA, 1:5), 5 * 15, replace = TRUE),
ncol = 15, dimnames = list(NULL, paste0(rep(c("hope", "dream", "joy"),
each = 5), c('x', 'y', 'z', 'a', 'b')))))
df[1,] <- NA

Resources