While trying to prove some things, I encountered an innocent looking claim that I failed to prove in Coq. The claim is that for a given Finite Ensemble, the powerset is also finite. The statement is given in the Coq code below.
I looked through the Coq documentation on finite sets and facts about finite sets and powersets, but I could not find something that deconstructs the powerset into a union of subsets (such that the Union_is_finite constructor can be used). Another approach may be to show that the cardinal number of the powerset is 2^|S| but here I certainly have no idea how to approach the proof.
From Coq Require Export Sets.Ensembles.
From Coq Require Export Sets.Powerset.
From Coq Require Export Sets.Finite_sets.
Lemma powerset_finite {T} (S : Ensemble T) :
Finite T S -> Finite (Ensemble T) (Power_set T S).
Proof.
(* I don't know how to proceed. *)
Admitted.
I did not solve it completely because I myself struggled a lot with this proof. I merely transferred it along your line of thought. Now the crux of problem is, proving the cardinality of power set of a set of n elements is 2^n.
From Coq Require Export Sets.Ensembles.
From Coq Require Export Sets.Powerset.
From Coq Require Export Sets.Finite_sets.
From Coq Require Export Sets.Finite_sets_facts.
Fixpoint exp (n m : nat) : nat :=
match m with
| 0 => 1
| S m' => n * (exp n m')
end.
Theorem power_set_empty :
forall (U : Type), Power_set _ (Empty_set U) = Singleton _ (Empty_set _).
Proof with auto with sets.
intros U.
apply Extensionality_Ensembles.
unfold Same_set. split.
+ unfold Included. intros x Hin.
inversion Hin; subst.
apply Singleton_intro.
symmetry. apply less_than_empty; auto.
+ unfold Included. intros x Hin.
constructor. inversion Hin; subst.
unfold Included; intros; assumption.
Qed.
Lemma cardinality_power_set :
forall (U : Type) (A : Ensemble U) (n : nat),
cardinal U A n -> cardinal _ (Power_set _ A) (exp 2 n).
Proof.
intros U A n. revert A.
induction n; cbn; intros He Hc.
+ inversion Hc; subst. rewrite power_set_empty.
Search Singleton.
rewrite <- Empty_set_zero'.
constructor; repeat auto with sets.
+ inversion Hc; subst; clear Hc.
Admitted.
Lemma powerset_finite {T} (S : Ensemble T) :
Finite T S -> Finite (Ensemble T) (Power_set T S).
Proof.
intros Hf.
destruct (finite_cardinal _ S Hf) as [n Hc].
eapply cardinal_finite with (n := exp 2 n).
apply cardinality_power_set; auto.
Qed.
Related
This question is better explained with an example. Suppose I want to prove the following lemma:
lemma int_inv: "(n::int) - (n::int) = (0::int)"
How I'd informally prove this is something along these lines:
Lemma: n - n = 0, for any integer n and 0 = abs_int(0,0).
Proof:
Let abs_int(a,b) = n for some fixed natural numbers a and b.
--- some complex and mind blowing argument here ---
That means it suffices to prove that a+b+0 = a+b+0, which is true by reflexivity.
QED.
However, I'm having trouble with the first step "Let abs_int(a,b) = n". The let statement doesn't seem to be made for this, as it only allows one term on the left side, so I'm lost at how I could introduce the variables a and b in an arbitrary representation for n.
How may I introduce a fixed reprensentation for a quotient type so I may use the variables in it?
Note: I know the statement above can be proved by auto, and the problem may be sidestepped by rewriting the lemma as "lemma int_inv: "Abs_integ(a,b) - Abs_integ(a,b) = (0::int)". However, I'm looking specifically for a way to prove by introducing an arbitrary representation in the proof.
You can introduce a concrete representation with the theorem int.abs_induct. However, you almost never want to do that manually.
The general method of proving statements about quotients is to first state an equivalent theorem about the underlying relation, and then use the transfer tool. It would've helped if your example wasn't automatically discharged by automation... in fact, let's create our own little int type so that it isn't:
theory Scratch
imports Main
begin
quotient_type int = "nat × nat" / "intrel"
morphisms Rep_Integ Abs_Integ
proof (rule equivpI)
show "reflp intrel" by (auto simp: reflp_def)
show "symp intrel" by (auto simp: symp_def)
show "transp intrel" by (auto simp: transp_def)
qed
lift_definition sub :: "int ⇒ int ⇒ int"
is "λ(x, y) (u, v). (x + v, y + u)"
by auto
lift_definition zero :: "int" is "(0, 0)".
Now, we have
lemma int_inv: "sub n n = zero"
apply transfer
proof (prove)
goal (1 subgoal):
1. ⋀n. intrel ((case n of (x, y) ⇒ λ(u, v). (x + v, y + u)) n) (0, 0)
So, the version we want to prove is
lemma int_inv': "intrel ((case n of (x, y) ⇒ λ(u, v). (x + v, y + u)) n) (0, 0)"
by (induct n) simp
Now we can transfer it with
lemma int_inv: "sub n n = zero"
by transfer (fact int_inv')
Note that the transfer proof method is backtracking — this means that it will try many possible transfers until one of them succeeds. Note however, that this backtracking doesn't apply across separate apply commands. Thus you will always want to write a transfer proof as by transfer something_simple, instead of, say proof transfer.
You can see the many possible versions with
apply transfer
back back back back back
Note also, that if your theorem mentions constants about int which weren't defined with lift_definition, you will need to prove a transfer rule for them separately. There are some examples of that here.
In general, after defining a quotient you will want to "forget" about its underlying construction as soon as possible, proving enough properties by transfer so that the rest can be proven without peeking into your type's construction.
I want to prove the following
lemma
fixes pi :: "'a path" and T :: "'a ts"
shows "valid_path T pi s ⟹ ∀ op ∈ set pi. valid_operator T op"
by induction on pi where
fun valid_path :: "'a ts ⇒ 'a path ⇒ 'a state ⇒ bool" where
"valid_path T [] s = True" |
"valid_path T (op#ops) s = (valid_operator T op ∧ valid_path T ops (effect op s))
and path is just a type synonym for an operator list.
The other definitions should not play a role for the proof.
The base case works fine.
The problem is that, informally, for the inductive step where pi = (x # xs) I'm assuming that
if valid_path T xs s
then ∀ op ∈ set xs. valid_operator T op
and I must show that this implies
if valid_path T (x#xs) s
then ∀ op ∈ set (x#xs). valid_operator T op
I can use the definition of valid_path here, so this last expression is equivalent to
if valid_path T (xs) (effect x s)
then ∀ op ∈ set (x#xs). valid_operator T op
If I could be able to use the induction hypothesis on valid_path T (xs) (effect x s) I would be done.
I can't since the hypothesis only holds for valid_path T (xs) s instead of valid_path T xs (effect x s).
But this does not really matter since the predicate of that if statement does not depend on s at all!
But Isabelle does not know that so it complains.
How can I make it such that I can apply the inductive hypothesis on valid_path T (xs) (effect x s)?
I have a feeling that I have to make the claim more general, so that I can use the hypothesis on the proof, but I don't know how.
It is very common that you have to generalize some terms in an induction. Use the keyword arbitrary in the induct method.
proof (induct pi arbitrary: s)
This is explained in Chapter 2.4 of Programming and Proving in Isabelle/HOL.
I need to prove the following:
lemma "m = min_list(x#xs) ⟹ m ∈ set (x#xs)"
In plain English, I need to prove that the return value from "min_list (x#xs)" is always a member of (x#xs)
I tried:
apply(induct xs)
apply(auto)
I also tried to reuse existing lemmas for the min_list by using:
find_theorems min_list
The sub-goal at this point is so long that I do not know how to proceed.
I am not looking for a full answer just hints on how to approach this lemma. Moreover, is this proof an easy one or significantly difficult one for someone just learning Isabelle?
Spoiler: it is possible to use the standard list induction and auto to prove the theorem, i.e. something similar to by (induct xs ...) (auto simp: ...). I deliberately left out sections in the proof for you to fill in on your own. You will need to think about if any variables (i.e. m or x) need to be specified as arbitrary and also understand what information the simplifier may need (look for clues in the specification of min_list in the theory List).
With regard to your question about the difficulty of the problem, I believe, that difficulty is a function of experience. Most certainly, when I started learning Isabelle, I was finding it difficult to formalise proofs similar to the one in your question. After a certain time spent coding in Isabelle (by the time of answering this question, I must have accrued an equivalent of 4-5 months of full-time coding in Isabelle), such problems no longer seem to present a significant challenge for me. Of course, there are other factors that need to be taken into account, e.g. previous training in mathematics or logic and previous coding experience.
General advice from someone who is learning Isabelle on his own (the advice may not be consistent with the approach that is normally recommended by professional instructors)
I believe, when proving similar results, it is important to understand that Isabelle is, primarily, a tool for formalisation of 'pen-and-paper' proofs. Therefore, it is important to have the 'pen-and-paper' proof at hand before trying to formalise it. I would suggest the following general approach when attacking similar problems:
Write the proof on paper.
Formalise the proof using Isar, providing as many details as possible and not caring too much about the length of the proof. Also, try not to rely on the tools for automated reasoning (i.e. auto, blast, meson, metis, fastforce) and use direct methods like rule and intro as much as you can.
Once your Isar proof is complete, apply tools for automated reasoning (e.g. auto, blast) to your Isar proof to simplify your proof as much as possible.
Of course, eventually, it will become increasingly easy to omit 1 and 2 as you make progress in learning Isabelle.
I can provide further details, e.g. the complete short proof and the long Isar version of the proof.
UPDATE
As per your request in the comments, I provide an informal proof.
Lemma. m = min_list (x # xs) ⟹ m ∈ set (x # xs).
Remarks. For completeness, I also provide the definition of min_list and some comments about the const set. The definition of min_list can be found in the theory List:
fun min_list :: "'a::ord list ⇒ 'a" where
"min_list (x # xs) = (case xs of [] ⇒ x | _ ⇒ min x (min_list xs))"
The const set is defined implicitly and constitutes a part of the datatype infrastructure for list (see the document "Defining (Co)datatypes and Primitively (Co)recursive Functions in Isabelle/HOL" in the standard documentation if Isabelle). In particular, it is called the 'set function' of the datatype. Many basic properties of the const set can be found by inspection/search, e.g. find_theorems list.set. I believe that the theorem thm list.set is representative of the main properties of the const set (I took the liberty to rename the schematic variables in the theorem):
set [] = {}
set (?x # ?xs) = insert ?x (set ?xs)
Proof. The proof is by structural induction on the list xs. The induction principle is stated as an unnamed lemma at the beginning of the theory List. For completeness, I restate the induction principle below:
"P [] ⟹ (⋀a list. P list ⟹ P (a # list)) ⟹ P list"
Base case: assume xs = [], show m = min_list (x # xs) ⟹ m ∈ set (x # xs) for all x. From the definition of min_list, it is trivial to see that min_list (x # []) = x. Similarly, set (x # []) = {x} can be shown directly from the properties of the const set. Substituting into the predicate above, it remains to show that m = x ⟹ m ∈ {x} for all x. This follows from basic set theory.
Inductive step: assume ⋀x. m = min_list (x # xs) ⟹ m ∈ set (x # xs), show m = min_list (a # x # xs) ⟹ m ∈ set (a # x # xs) for all a, x and xs. Fix a, x and xs. Assume m = min_list (a # x # xs). Then it remains to show that m ∈ set (a # x # xs). Given m = min_list (a # x # xs), from the definition of min_list, it is easy to infer that either m = a or m = min_list (x # xs). Consider these cases explicitly:
Case I: m = a. a ∈ set (a # x # xs) follows from the definitions. Then, m ∈ set (a # x # xs) by substitution.
Case II: m = min_list (x # xs). Then, from the assumption ⋀x. m = min_list (x # xs) ⟹ m ∈ set (x # xs) it follows that m ∈ set (x # xs). Thus, m ∈ set (a # x # xs) follows from the properties of set.
In all possible cases m ∈ set (a # x # xs), which is what was required to prove.
Thus, the proof is concluded.
Concluding thoughts. Try converting this informal proof to an Isar proof. Also, please note that the proof may not be ideal - I might make edits to the proof later.
In Isabelle, I have defined a function f:'a -> nat where 'a is some algebraic structure that extends a monoid (i.e. a group, semiring, ring, integral domain, field, ...).
I would like to use the output of this function as "coefficients" for my type 'a in other constructs. That is, if x:'a and n:nat, I would like to be able to use some operation ·:'a -> nat -> 'a that allows me to tell Isabelle that n·x = x + x + ... + x.
By searching a bit, I found the "Power.thy" theory and, in a sense, it does what I want. However, it does it for the "multiplicative version" of my problem. This is an issue if I want to change 'a for e.g. the integers. Using it would mean that instead of computing n·x, Isabelle would do x^n. Is there an analogous version to "Power.thy" that does what I want? Or are there any other ways to circumvent this problem?
I do not know of any predefined constant that implements such an operation, but it can easily be implemented by iterating addition, e.g., using comppow on nat:
definition scale :: "nat => 'a => 'a" where
"scale a n = ((plus a) ^^ n) 0"
where plus refers to the addition operation of your structure and 0 is the neutral element. If you are using the arithmetic type classes from Isabelle/HOL, you should add the sort constraint 'a :: monoid to scale's type.
There is also a type class operation scaleR in Complex_Main that implements such a coefficient scaling operation, but it allows real numbers, not only nats, so your structure might not satisfy all the required axioms (type class real_vector).
A quite idiomatic way to express this is multiplication and »of_nat«:
context semiring_1
begin
definition scale :: "nat ⇒ 'a ⇒ 'a"
where "scale n = times (of_nat n)"
lemma [simp]:
"scale 0 a = 0"
"scale (Suc n) a = a + scale n a"
by (simp_all add: scale_def algebra_simps)
lemma
"((plus a) ^^ n) 0 = scale n a"
by (induct n) (simp_all)
end
I would like to prove some basic facts about a datatype_new and a codatatype: the first does not have an infinite element, and that the latter does have one.
theory Co
imports BNF
begin
datatype_new natural = Zero | Successor natural
lemma "¬ (∃ x. x = Successor x)"
oops
codatatype conat = CoZero | CoSucc conat
lemma "∃ x. x = CoSucc x"
oops
The problem was that I could not come up with a pen-and-paper proof, let alone a proof script.
An idea for the first was to use the size function, which has a theorem
size (Successor ?natural) = size ?natural + Suc 0
and somehow using that size is a function, applying it to the two sides of the original equation one cannot have a natural number equal to its successor. But I do not see how I could formalise this.
For the latter I did not even have an idea how to derive this theorem from the facts that the codatatype package proves.
How can I prove these?
Personally, I don't know the first thing about codatatypes. But let me try to help you nevertheless.
The first lemma you posted can be proven automatically by sledgehammer. It finds a proof using the size function, effectively reducing the problem on natural to the same problem on nat:
by (metis Scratch.natural.size(2) n_not_Suc_n nat.size(4) size_nat)
If you want a very basic, step-by-step version of this proof, you could write it like this:
lemma "¬(∃x. x = Successor x)"
proof clarify
fix x assume "x = Successor x"
hence "size x = size (Successor x)" by (rule subst) (rule refl)
also have "... = size x + Suc 0" by (rule natural.size)
finally have "0 = Suc 0" by (subst (asm) add_0_iff) (rule sym)
moreover have "0 ≠ Suc 0" by (rule nat.distinct(1))
ultimately show False by contradiction
qed
If you want a more “elementary” proof, without the use of HOL natural numbers, you can do a proof by contradiction using induction on your natural:
lemma "¬(∃x. x = Successor x)"
proof clarify
fix x assume "x = Successor x"
thus False by (induction x) simp_all
qed
You basically get the two cases in the induction:
Zero = Successor Zero ⟹ False
⋀x. (x = Successor x ⟹ False) ⟹
Successor x = Successor (Successor x) ⟹ False
The first subgoal is a direct consequence of natural.distinct(1), the second one can be reduced to the induction hypothesis using natural.inject. Since these rules are in the simpset, simp_all can solve it automatically.
As for the second lemma, the only solution I can think of is to explicitly construct the infinite element using primcorec:
primcorec infinity :: conat where
"infinity = CoSucc infinity"
Then you can prove your second lemma simply by unfolding the definition:
lemma "∃x. x = CoSucc x"
proof
show "infinity = CoSucc infinity" by (rule infinity.ctr)
qed
Caveat: these proofs work, but I am not sure whether they are the easiest and/or most elegant solution to this problem. I have virtually no knowledge of codatatypes or the new datatype package.