Can't get Geom_smooth working for my dataset - r

I am currently working with a big biological dataset with many datapoint. The Head() function in R gives me the following column names:
intensity - Sample - Acession - Study - Dx
Intensity is the only data that is numeric. The others are character.
First, I have unfactorized all data into the following df: unfactordata. Next, I am interested in making a scatterplot of a specific subset of data which I do with the following piece of code where after I try to scatterplot it with a geom_smooth line in between. I use the following code:
scatplotprot <- function(name){
proteinname <- subset(unfactordata, Acession == name)
p <- ggplot(data = proteinname, aes(x = Dx, y = intensity, color = Study)) +
geom_point() +
geom_smooth(method = 'lm', aes(group = Dx))
return(p)
}
This does gives me a scatterplot with all the intensity values between 2 groups (Dx), as well as being coloured depending on which Study the datapoint originates from. However, it will not show me a line between the two groups (Dx). Depending on which Acession I call I expect to see between 3 to 8 lines.
Hope anyone can help me clear this hopefully small problem.
Warmest,
Patrick

Related

Extend line length with geom_line

I want to represent three lines on a graph overlain with datapoints that I used in a discriminant function analysis. From my analysis, I have two points that fall on each line and I want to represent these three lines. The lines represent the probability contours of the classification scheme and exactly how I got the points on the line are not relevant to my question here. However, I want the lines to extend further than the points that define them.
df <-
data.frame(Prob = rep(c("5", "50", "95"), each=2),
Wing = rep(c(107,116), 3),
Bill = c(36.92055, 36.12167, 31.66012, 30.86124, 26.39968, 25.6008))
ggplot()+
geom_line(data=df, aes(x=Bill, y=Wing, group=Prob, color=Prob))
The above df is a dataframe for my points from which the three lines are constructed. I want the lines to extend from y=105 to y=125.
Thanks!
There are probably more idiomatic ways of doing it but this is one way to get it done.
In short you quickly calculate the linear formula that will connect the lines i.e y = mx+c
df_withFormula <- df |>
group_by(Prob) |>
#This mutate command will create the needed slope and intercept for the geom_abline command in the plotting stage.
mutate(increaseBill = Bill - lag(Bill),
increaseWing = Wing - lag(Wing),
slope = increaseWing/increaseBill,
intercept = Wing - slope*Bill)
# The increaseBill, increaseWing and slope could all be combined into one calculation but I thought it was easier to understand this way.
ggplot(df_withFormula, aes(Bill, Wing, color = Prob)) +
#Add in this just so it has something to plot ontop of. You could remove this and instead manually define all the limits (expand_limits would work).
geom_point() +
#This plots the three lines. The rows with NA are automatically ignored. More explicit handling of the NA could be done in the data prep stage
geom_abline(aes(slope = slope, intercept = intercept, color = Prob)) +
#This is the crucial part it lets you define what the range is for the plot window. As ablines are infite you can define whatever limits you want.
expand_limits(y = c(105,125))
Hope this helps you get the graph you want.
This is very much dependent on the structure of your data it could though be changed to fit different shapes.
Similar to the approach by #James in that I compute the slopes and the intercepts from the given data and use a geom_abline to plot the lines but uses
summarise instead of mutate to get rid of the NA values
and a geom_blank instead of a geom_point so that only the lines are displayed but not the points (Note: Having another geom is crucial to set the scale or the range of the data and for the lines to show up).
library(dplyr)
library(ggplot2)
df_line <- df |>
group_by(Prob) |>
summarise(slope = diff(Wing) / diff(Bill),
intercept = first(Wing) - slope * first(Bill))
ggplot(df, aes(x = Bill, y = Wing)) +
geom_blank() +
geom_abline(data = df_line, aes(slope = slope, intercept = intercept, color = Prob)) +
scale_y_continuous(limits = c(105, 125))

How to incorporate data into plot which was constructed in ggplot2 using data from another file (R)?

Using a dataset, I have created the following plot:
I'm trying to create the following plot:
Specifically, I am trying to incorporate Twitter names over the first image. To do this, I have a dataset with each name in and a value that corresponds to a point on the axes. A snippet looks something like:
Name Score
#tedcruz 0.108
#RealBenCarson 0.119
Does anyone know how I can plot this data (from one CSV file) over my original graph (which is constructed from data in a different CSV file)? The reason that I am confused is because in ggplot2, you specify the data you want to use at the start, so I am not sure how to incorporate other data.
Thank you.
The question you ask about ggplot combining source of data to plot different element is answered in this post here
Now, I don't know for sure how this is going to apply to your specific data. Here I want to show you an example that might help you to go forward.
Imagine we have two data.frames (see bellow) and we want to obtain a plot similar to the one you presented.
data1 <- data.frame(list(
x=seq(-4, 4, 0.1),
y=dnorm(x = seq(-4, 4, 0.1))))
data2 <- data.frame(list(
"name"=c("name1", "name2"),
"Score" = c(-1, 1)))
The first step is to find the "y" coordinates of the names in the second data.frame (data2). To do this I added a y column to data2. y is defined here as a range of points from the may value of y to the min value of y with some space for aesthetics.
range_y = max(data1$y) - min(data1$y)
space_y = range_y * 0.05
data2$y <- seq(from = max(data1$y)-space, to = min(data1$y)+space, length.out = nrow(data2))
Then we can use ggplot() to plot data1 and data2 following some plot designs. For the current example I did this:
library(ggplot2)
p <- ggplot(data=data1, aes(x=x, y=y)) +
geom_point() + # for the data1 just plot the points
geom_pointrange(data=data2, aes(x=Score, y=y, xmin=Score-0.5, xmax=Score+0.5)) +
geom_text(data = data2, aes(x = Score, y = y+(range_y*0.05), label=name))
p
which gave this following plot:

ggplot2: how to overlay 2 plots when using stat_summary

i am totally new in R so maybe the answer to the question is trivial but I couldn't find any solution after searching in the net for days.
I am using ggplot2 to create graphs containing the mean of my samples with the confidence interval in a ribbon (I can't post the pic but something like this: S1
I have a data frame (df) with time in the first column and the values of the variable measured in the other columns (each column is a replicate of the measurement).
I do the following:
mdf<-melt(df, id='time', variable_name="samples")
p <- ggplot(data=mdf, aes(x=time, y=value)) +
geom_point(size=1,colour="red")
stat_sum_df <- function(fun, geom="crosbar", ...) {
stat_summary(fun.data=fun, geom=geom, colour="red")
}
p + stat_sum_df("mean_cl_normal", geom = "smooth")
and I get the graph I have shown at the beginning.
My question is: if I have two different data frames, each one with a different variable, measured in the same sample at the same time, how I can plot the 2 graphs in the same plot? Everything I have tried ends in doing the statistics in the both sets of data or just in one of them but not in both. Is it possible just to overlay the plots?
And a second small question: is it possible to change the colour of the ribbon?
Thanks!
something like this:
library(ggplot2)
a <- data.frame(x=rep(c(1,2,3,5,7,10,15,20), 5),
y=rnorm(40, sd=2) + rep(c(4,3.5,3,2.5,2,1.5,1,0.5), 5),
g = rep(c('a', 'b'), each = 20))
ggplot(a, aes(x=x,y=y, group = g, colour = g)) +
geom_point(aes(colour = g)) +
geom_smooth(aes(fill = g))
I'd suggest you reading the basics of ggplot. Check ?ggplot2 for help on ggplot but also available help topics here and particularly how group aesthetic may be manipulated.
You'll find useful the discussion group at Google groups and maybe join it. Also, QuickR have a lot of examples on ggplot graphs and, obviously, here at Stackoverflow.

Plotting level plot in R

I have 12 variables, M1, M2, ..., M12, for which I compute a certain statistic x.
df = data.frame(model = paste("M", 1:28, sep = ""), x = runif(28, 1, 1.05))
levels = seq(0.8, 1.2, 0.05)
I would like to plot this data as follows:
Each circle (contour) represents the a level of that statistic "x". The three blue lines simply represent three different scenarios.
The dataframe included in this example represents one scenario. The blue line would simply join the values of all the models M1 to M28 for that specific scenario.
Is there any tool in R that allow for such a plot? I tried contour() from library(MASS) but the contours are not drawn as perfect circles.
Any help would be appreciated. Thanks!
Here is a ggplot solution:
library(ggplot2)
ggplot(data=df, aes(x=model, y=x, group=1)) +
geom_line() + coord_polar() +
scale_y_continuous(limits=range(levels), breaks=levels, labels=levels)
Note this is a little confusing because of the names in your data frame. x is really the y variable here, and model the real x, so the graph scale label seems odd.
EDIT: I had to set your factor levels for model in the data frame so they plot in the correct order.

Plotting error while using ggplot faceting function in R

I am trying to do the comparison of my observed and modeled data sets for two stations. One station is called station "red" and another is called "blue". I was able to create the facets but when I tried to add two series in one facet, only one facet got updated while other didn't.
This means for blue only one series is plotted and for red two series are plotted.
The code I used is as follows:
# install.packages("RCurl", dependencies = TRUE)
require(RCurl)
out <- postForm("https://dl.dropbox.com/s/ainioj2nn47sis4/watersurf1.csv?dl=1", format="csv")
watersurf <- read.csv(textConnection(out))
watersurf[1:100,]
watersurf$coupleid <- factor(rep(unlist(by(watersurf$id,watersurf$group1,
function(x) {ave(as.numeric(unique(x)),FUN=seq_along)}
)),each=6239))
p <- ggplot(data=watersurf,aes(x=time,y=data,group=id))+geom_line(aes(linetype=group1),size=1)+facet_wrap(~coupleid)
p
Is it also possible to add a third series in the graph but of unequal length (i.e not same interval)?
The output is
I followed the example on this page to create the graphs.
http://www.ats.ucla.edu/stat/r/faq/growth.htm
Is this what you are looking for,
ggplot(data = watersurf, aes( x = time, y = data))
+ geom_line(aes(linetype = group1, colour = group1), size = 0.2)
+ facet_wrap(~ id)

Resources