About the fft function - julia

Does anyone know which algorithm is used in Julia to perform the fast Fourier transform? The documentation only says:
...
A one-dimensional FFT computes the one-dimensional discrete Fourier transform (DFT) as defined by
\operatorname{DFT}(A)[k] =
\sum_{n=1}^{\operatorname{length}(A)}
\exp\left(-i\frac{2\pi
(n-1)(k-1)}{\operatorname{length}(A)} \right) A[n].
...
In particular, I have a discrepancy in my transformed data, i.e. this transformed data is "shifted" a phase of I think pi. Is there a convention to fix this global phase?
EDIT:
Perhaps it's worth saying that if I perform the inverse fft, then the discrepancy in the phase is corrected.

Julia uses the FFTW library, I believe, which uses several variants of the Cooley-Tukey algorithm, as described in the reference below.
http://www.fftw.org/fftw-paper-ieee.pdf

Related

8 point algorithm for estimating Fundamental Matrix

I'm watching a lecture about estimating the fundamental matrix for use in stereo vision using the 8 point algorithm. I understand that once we recover the fundamental matrix between two cameras we can compute the epipolar line on one camera given a point on the other. To my understanding this epipolar line (after it's been rectified) makes it easy to find feature correspondences, because we are simply matching features along a 1D line.
The confusion comes from the fact that 8-point algorithm itself requires at least 8 feature correspondences to estimate the Fundamental Matrix.
So, we are finding point correspondences to recover a matrix that is used to find point correspondences?
This seems like a chicken-egg paradox so I guess I'm misunderstanding something.
The fundamental matrix can be precomputed. This leads to two advantages:
You can use a nice environment in which features can be matched easily (like using a chessboard) to compute the fundamental matrix.
You can use more computationally expensive operations like a sequence of SIFT, FLANN and RANSAC across the entire image since you only need to do that once.
After getting the fundamental matrix, you can find correspondences in a noisy environment more efficiently than using the same method when you compute the fundamental matrix.

Is there an equivalent to matlab's rcond() function in Julia?

I'm porting some matlab code that uses rcond() to test for singularity, as also recommended here (for matlab singularity testing).
I see that there is a cond() function in Julia (as also in Matlab), but rcond() doesn't appear to be available by default:
ERROR: rcond not defined
I'd assume that rcond(), like the Matlab version is more efficient than 1/cond(). Is there such a function in Julia, perhaps using an add-on module?
Julia calculates the condition number using the ratio of maximum to the minimum of the eigenvalues (got to love open source, no more MATLAB black boxs!)
Julia doesn't have a rcond function in Base, and I'm unaware of one in any package. If it did, it'd just be the ratio of the maximum to the minimum instead. I'm not sure why its efficient in MATLAB, but its quite possible that whatever the reason is it doesn't carry though to Julia.
Matlab's rcond is an optimization based upon the fact that its an estimate of the condition number for square matrices. In my testing and given that its help mentions LAPACK's 1-norm estimator, it appears as though it uses LAPACK's dgecon.f. In fact, this is exactly what Julia does when you ask for the condition number of a square matrix with the 1- or Inf-norm.
So you can simply define
rcond(A::StridedMatrix) = 1/cond(A,1)
You can save Julia from twice-inverting LAPACK's results by manually combining cond(::StridedMatrix) and cond(::LU), but the savings here will almost certainly be immeasurable. Where there is a measurable savings, however, is that you can directly take the norm(A) instead of reconstructing a matrix similar to A through its LU factorization.
rcond(A::StridedMatrix) = LAPACK.gecon!('1', lufact(A).factors, norm(A, 1))
In my tests, this behaves identically to Matlab's rcond (2014b), and provides a decent speedup.

Optimization in R with arbitrary constraints

I have done it in Excel but need to run a proper simulation in R.
I need to minimize function F(x) (x is a vector) while having constraints that sum(x)=1, all values in x are [0,1] and another function G(x) > G_0.
I have tried it with optim and constrOptim. None of them give you this option.
The problem you are referring to is (presumably) a non-linear optimization with non-linear constraints. This is one of the most general optimization problems.
The package I have used for these purposes is called nloptr: see here. From my experience, it is both versatile and fast. You can specify both equality and inequality constaints by setting eval_g_eq and eval_g_ineq, correspondingly. If the jacobians are known explicitly (can be derived analytically), specify them for faster convergence; otherwise, a numerical approximation is used.
Use this list as a general reference to optimization problems.
Write the set of equations using the Lagrange multiplier, then solve using the R command nlm.
You can do this in the OpenMx Package (currently host at the site listed below. Aiming for 2.0 relase on cran this year)
It is a general purpose package mostly used for Structural Equation Modelling, but handling nonlinear constraints.
FOr your case, make an mxModel() with your algebras expressed in mxAlgebras() and the constraints in mxConstraints()
When you mxRun() the model, the algebras will be solved within the constraints, if possible.
http://openmx.psyc.virginia.edu/

In what situation would a taylor series for a polynomial be necessary?

I'm having a hard time understanding why it would be useful to use the Taylor series for a function in order to gain an approximation of a function, instead of just using the function itself when programming. If I can tell my computer to compute e^(.1) and it will give me an exact value, why would I take an approximation instead?
Taylor series are generally not used to approximate functions. Usually, some form of minimax polynomial is used.
Taylor series converge slowly (it takes many terms to get the accuracy desired) and are inefficient (they are more accurate near the point around which they are centered and less accurate away from it). The largest use of Taylor series is likely in mathematics classes and papers, where they are useful for examining the properties of functions and for learning about calculus.
To approximate functions, minimax polynomials are often used. A minimax polynomial has the minimum possible maximum error for a particular situation (interval over which a function is to be approximated, degree available for the polynomial). There is usually no analytical solution to finding a minimax polynomial. They are found numerically, using the Remez algorithm. Minimax polynomials can be tailored to suit particular needs, such as minimizing relative error or absolute error, approximating a function over a particular interval, and so on. Minimax polynomials need fewer terms than Taylor series to get acceptable results, and they “spread” the error over the interval instead of being better in the center and worse at the ends.
When you call the exp function to compute ex, you are likely using a minimax polynomial, because somebody has done the work for you and constructed a library routine that evaluates the polynomial. For the most part, the only arithmetic computer processors can do is addition, subtraction, multiplication, and division. So other functions have to be constructed from those operations. The first three give you polynomials, and polynomials are sufficient to approximate many functions, such as sine, cosine, logarithm, and exponentiation (with some additional operations of moving things into and out of the exponent field of floating-point values). Division adds rational functions, which is useful for functions like arctangent.
For two reasons. First and foremost - most processors do not have hardware implementations of complex operations like exponentials, logarithms, etc... In such cases the programming language may provide a library function for computing those - in other words, someone used a taylor series or other approximation for you.
Second, you may have a function that not even the language supports.
I recently wanted to use lookup tables with interpolation to get an angle and then compute the sin() and cos() of that angle. Trouble is that it's a DSP with no floating point and no trigonometric functions so those two functions are really slow (software implementation). Instead I put sin(x) in the table instead of x and then used the taylor series for y=sqrt(1-x*x) to compute the cos(x) from that. This taylor series is accurate over the range I needed with only 5 terms (denominators are all powers of two!) and can be implemented in fixed point using plain C and generates code that is faster than any other approach I could think of.

Inverse Laplace transform in R

I am trying to do some computations using Laplace transforms in R. I used the
continued fractions approach to compute Laplace transform of a birth-death
process as described in Abate 1999. But I cannot find a simple numerical routine to compute the inverse Laplace transform (evaluated at 0 in my case). Does anyone have ideas on how to do this in R?
Computing inverse Laplace transforms numerically is tricky. I remember seeing some relatively recent results on the ACM. Googling around a bit, I found some
Python code implementing one of these algorithms. Maybe you can adapt it to your purposes.

Resources