Newbie to OpenCL here. I'm trying to convert a numerical method I've written to OpenCL for acceleration. I'm using the PyOpenCL package as I've written this once in Python already and as far as I can tell there's no compelling reason to use the C version. I'm all ears if I'm wrong on this, though.
I've managed to translate over most of the functionality I need in to OpenCL kernels. My question is on how to (properly) tell OpenCL to ignore my boundary/ghost cells. The reason I need to do this is that my method (for example) for point i accesses cells at [i-2:i+2], so if i=1, I'll run off the end of the array. So - I add some extra points that serve to prevent this, and then just tell my algorithm to only run on points [2:nPts-2]. It's easy to see how to do this with a for loop, but I'm a little more unclear on the 'right' way to do this for a kernel.
Is it sufficient to do, for example (pseudocode)
__kernel void myMethod(...) {
gid = get_global_id(0);
if (gid < nGhostCells || gid > nPts-nGhostCells) {
retVal[gid] = 0;
}
// Otherwise perform my calculations
}
or is there another/more appropriate way to enforce this constraint?
It looks sufficient.
Branching is same for nPts-nGhostCells*2 number of points and it is predictable if nPts and nGhostCells are compile-time constants. Even if it is not predictable, sufficiently large nPts vs nGhostCells (1024 vs 3) should not be distinctively slower than zero-branching version, except the latency of "or" operation. Even that "or" latency must be hidden behind array access latency, thanks to thread level parallelism.
At those "break" points, mostly 16 or 32 threads would lose some performance and only for several clock cycles because of the lock-step running of SIMD-like architectures.
If you happen to code some chaotic branching, like data-driven code path, then you should split them into different kernels(for different regions) or sort them before the kernel so that average branching between neighboring threads are minimized.
Related
I try to use this code.
But kernel exits after executing cycle only once.
If I remove "while(...)" line - cycle works, but results of course are mess.
If I state "volatile __global uint *g_barrier" it freezes a PC with black screen for a while and then program deadlocks.
__kernel void Some_Kernel(__global uint *g_barrier)
{
uint i, t;
for (i = 1; i < MAX; i++) {
// some useful code here
barrier(CLK_GLOBAL_MEM_FENCE);
if (get_local_id(0) == 0) atomic_add(g_barrier, 1);
t = i*get_num_groups(0);
while(*g_barrier < t); // try to sync it all
}
}
You seem to be expecting all work groups to be scheduled to run in parallel. OpenCL does not guarantee this to happen. Some work groups may not start until some other work groups have entirely completed running the kernel.
Moreover, barriers only synchronise within a work group. Atomic operations on global memory are atomic with regard to other work groups too, but there is no guarantee about order.
If you need other work groups to complete some code before running some other code, you will need to enqueue each of those chunks of work separately on a serial command queue (or appropriately connect them using events on an out-of-order queue). So for your example code, you need to remove your for and while loops, and enqueue your kernel MAX-1 times and pass i as a kernel argument.
Depending on the capabilities of your device and the size of your data set, your other option is to submit only one large work group, though this is unlikely to give you good performance unless you have a lot of such smaller tasks which are independent from one another.
(I will point out that there is a good chance your question suffers from the XY problem - you have not stated the overall problem your code is trying to solve. So there may be better solutions than the ones I have suggested.)
I'm new in OpenCL and I'm trying to implement power iteration method (described over here)
matrix sizes over 100000x100000!
Actually I have no idea how to implement this.
It's because workgroup have restriction CL_DEVICE_MAX_WORK_GROUP_SIZE (so I can't make one workgoup with 1000000 work-items)
But on each step of iterating I need to synchronize and normalize vector.
1) So is it possible to make all calculations inside one kernel? (I think that answer is no if matrix sizes is more than CL_DEVICE_MAX_WORK_GROUP_SIZE)
2) Can I make "while" loop in the host code? and is it still profitable to use GPU in this case?
something like:
while (condition)
{
kernel calling
synchronization
}
2: Yes, you can make a while loop in host code. Whether this is still profitable in terms of performance depends on whether the kernel that is called achieves a good speedup. My personal preference is not to pack too much logic into a single kernel, because smaller kernels are easier to maintain and sometimes easier to optimize. But of course, invoking a kernel has a (small) overhead that has to be taken into account. And whether combining to kernels into one can bring a speedup (or new potential for optimizations) depends on what the kernels are actually doing. But in this case (Matrix Multiplation and Vector Normalization) I'd personally start with two different kernels that are invoked from the host in a while-loop.
1: Since a 100000x100000 matrix with float values will take at least 40GB of memory, you'll have to think about the approach in general anyhow. There is a vast amount of literature on Matrix operations, their parallelization, and the corresponding implementations on the GPU. One important aspect from the "high level" point of view is whether the matrices are dense or sparse ( http://en.wikipedia.org/wiki/Sparse_matrix ). Depending on the sparsity, it might even be possible to handle 100000x100000 matrices in main memory. Apart from that, you might consider having a look at a library for matrix operations (e.g. http://viennacl.sourceforge.net/ ) because implementing an efficient matrix multiplication is challenging, particularly for sparse matrices. But if you want to go the whole way on your own: Good luck ;-) and ... the CL_DEVICE_MAX_WORK_GROUP_SIZE imposes no limitation on the problem size. In fact, the problem size (that is, the total number of work-items) in OpenCL is virtually infinitely large. If your CL_DEVICE_MAX_WORK_GROUP_SIZE is 256, and you want to handle 10000000000 elements, then you create 10000000000/256 work groups and let OpenCL care about how they are actually dispatched and executed. For matrix operations, the CL_DEVICE_MAX_WORK_GROUP_SIZE is primarily relevant when you want to use local memory (and you will have to, in order to achieve good performance): The size of the work groups thus implicitly defines how large your chunks of local memory may be.
I have a very large kernel which uses ~1000 temporary variables to compute ~1000 equations. So it is safe to assume that all of the temporary variables will be put in private off-chip memory aka CUDA __local memory (i know it's bad, but there is no other way).
My question is if common subexpressions are eliminated between neighboring lines like these:
const float t747 = t472*t28*t26*t715*t30*t11;
const float t748 = t472*t28*t717*t26*t30*t11;
As you can see the only difference is variable t717 versus t715. The question is if those two lines translate into 7 or 12 global loads?
Because if the target compiler (Nvidia Kepler GPU in my case) does not use registers to cache common subexpressions between lines i'm gonna need to implement it myself.
Note: All code is generated automatically, so manual tuning won't be possible.
EDIT: All t0-t999 variables are declared as "const float".
The compilers translate all the global reads as direct reads. So, in your case 12 reads.
This is due to the fact that the global memory is considered as volatile memory, and caching is not possible. However, if you simply do this: (I think you know it, but anyway...)
const float temp = t472*t28*t26*t30*t11;
const float t747 = temp*t715;
const float t748 = temp*t717;
The compiler will translate that into 7 global reads.
NOTE: At least this was valid with old arquitectures, I dunno if there is some new compiler/arquitecture that can cleverly detect these cases and optimize them.
I'm taking my first steps in OpenCL (and CUDA) for my internship. All nice and well, I now have working OpenCL code, but the computation times are way too high, I think. My guess is that I'm doing too much I/O, but I don't know where that could be.
The code is for the main: http://pastebin.com/i4A6kPfn, and for the kernel: http://pastebin.com/Wefrqifh I'm starting to measure time after segmentPunten(segmentArray, begin, eind); has returned, and I end measuring time after the last clEnqueueReadBuffer.
Computation time on a Nvidia GT440 is 38.6 seconds, on a GT555M 35.5, on a Athlon II X4 5.6 seconds, and on a Intel P8600 6 seconds.
Can someone explain this to me? Why are the computation times are so high, and what solutions are there for this?
What is it supposed to do: (short version) to calculate how much noiseload there is made by an airplane that is passing by.
long version: there are several Observer Points (OP) wich are the points in wich sound is measured from an airplane thas is passing by. The flightpath is being segmented in 10.000 segments, this is done at the function segmentPunten. The double for loop in the main gives OPs a coordinate. There are two kernels. The first one calculates the distance from a single OP to a single segment. This is then saved in the array "afstanden". The second kernel calculates the sound load in an OP, from all the segments.
Just eyeballing your kernel, I see this:
kernel void SEL(global const float *afstanden, global double *totaalSEL,
const int aantalSegmenten)
{
// ...
for(i = 0; i < aantalSegmenten; i++) {
double distance = afstanden[threadID * aantalSegmenten + i];
// ...
}
// ...
}
It looks like aantalSegmenten is being set to 1000. You have a loop in each
kernel that accesses global memory 1000 times. Without crawling though the code,
I'm guessing that many of these accesses overlap when considering your
computation as a whole. It this the case? Will two work items access the same
global memory? If this is the case, you will see a potentially huge win on the
GPU from rewriting your algorithm to partition the work such that you can read
from a specific global memory only once, saving it in local memory. After that,
each work item in the work group that needs that location can read it quickly.
As an aside, the CL specification allows you to omit the leading __ from CL
keywords like global and kernel. I don't think many newcomers to CL realize
that.
Before optimizing further, you should first get an understanding of what is taking all that time. Is it the kernel compiles, data transfer, or actual kernel execution?
As mentioned above, you can get rid of the kernel compiles by caching the results. I believe some OpenCL implementations (the Apple one at least) already do this automatically. With other, you may need to do the caching manually. Here's instructions for the caching.
If the performance bottle neck is the kernel itself, you can probably get a major speed-up by organizing the 'afstanden' array lookups differently. Currently when a block of threads performs a read from the memory, the addresses are spread out through the memory, which is a real killer for GPU performance. You'd ideally want to index array with something like afstanden[ndx*NUM_THREADS + threadID], which would make accesses from a work group to load a contiguous block of memory. This is much faster than the current, essentially random, memory lookup.
First of all you are measuring not the computation time but the whole kernel read-in/compile/execute mumbo-jumbo. To do a fair comparison measure the computation time from the first "non-static" part of your program. (For example from between the first clSetKernelArgs to the last clEnqueueReadBuffer.)
If the execution time is still too high, then you can use some kind of profiler (such as VisualProfiler from NVidia), and read the OpenCL Best Practices guid which is included in the CUDA Toolkit documentation.
To the raw kernel execution time: Consider (and measure) that do you really need the double precision for your calculation, because the double precision calculations are artificially slowed down on the consumer grade NVidia cards.
I'm trying to write a histogram kernel in OpenCL to compute 256 bin R, G, and B histograms of an RGBA32F input image. My kernel looks like this:
const sampler_t mSampler = CLK_NORMALIZED_COORDS_FALSE |
CLK_ADDRESS_CLAMP|
CLK_FILTER_NEAREST;
__kernel void computeHistogram(read_only image2d_t input, __global int* rOutput,
__global int* gOutput, __global int* bOutput)
{
int2 coords = {get_global_id(0), get_global_id(1)};
float4 sample = read_imagef(input, mSampler, coords);
uchar rbin = floor(sample.x * 255.0f);
uchar gbin = floor(sample.y * 255.0f);
uchar bbin = floor(sample.z * 255.0f);
rOutput[rbin]++;
gOutput[gbin]++;
bOutput[bbin]++;
}
When I run it on an 2100 x 894 image (1,877,400 pixels) i tend to only see in or around 1,870,000 total values being recorded when I sum up the histogram values for each channel. It's also a different number each time. I did expect this since once in a while two kernels probably grab the same value from the output array and increment it, effectively cancelling out one increment operation (I'm assuming?).
The 1,870,000 output is for a {1,1} workgroup size (which is what seems to get set by default if I don't specify otherwise). If I force a larger workgroup size like {10,6}, I get a drastically smaller sum in my histogram (proportional to the change in workgroup size). This seemed strange to me, but I'm guessing what happens is that all of the work items in the group increment the output array value at the same time, and so it just counts as a single increment?
Anyways, I've read in the spec that OpenCL has no global memory syncronization, only syncronization within local workgroups using their __local memory. The histogram example by nVidia breaks up the histogram workload into a bunch of subproblems of a specific size, computes their partial histograms, then merges the results into a single histogram after. This doesn't seem like it'll work all that well for images of arbitrary size. I suppose I could pad the image data out with dummy values...
Being new to OpenCL, I guess I'm wondering if there's a more straightforward way to do this (since it seems like it should be a relatively straightforward GPGPU problem).
Thanks!
As stated before, you write into a shared memory unsynchronized and non atomic. This leads to errors. If the picture is big enough, I have a suggestion:
Split your work group into a one dimensional one for cols or rows. Use each kernel to sum up the histogram for the col or row and afterwards sum it globally with atomic atom_inc. This brings the most sum ups in private memory which is much faster and reduces atomic ops.
If you work in two dimensions you can do it on parts of the picture.
[EDIT:]
I think, I have a better answer: ;-)
Have a look to: http://developer.download.nvidia.com/compute/opencl/sdk/website/samples.html#oclHistogram
They have an interesting implementation there...
Yes, you're writing to a shared memory from many work-items at the same time, so you will lose elements if you don't do the updates in a safe way (or worse ? Just don't do it). The increase in group size actually increases the utilization of your compute device, which in turn increases the likelihood of conflicts. So you end up losing more updates.
However, you seem to be confusing synchronization (ordering thread execution order) and shared memory updates (which typically require either atomic operations, or code synchronization and memory barriers, to make sure the memory updates are visible to other threads that are synchronized).
the synchronization+barrier is not particularly useful for your case (and as you noted is not available for global synchronization anyways. Reason is, 2 thread-groups may never run concurrently so trying to synchronize them is nonsensical). It's typically used when all threads start working on generating a common data-set, and then all start to consume that data-set with a different access pattern.
In your case, you can use atomic operations (e.g. atom_inc, see http://www.cmsoft.com.br/index.php?option=com_content&view=category&layout=blog&id=113&Itemid=168). However, note that updating a highly contended memory address (say, because you have thousands of threads trying all to write to only 256 ints) is likely to yield poor performance. All the hoops typical histogram code goes through are there to reduce the contention on the histogram data.
You can check
The histogram example from AMD Accelerated Parallel Processing (APP) SDK.
Chapter 14 - Image Histogram of OpenCL Programming Guide book (ISBN-13: 978-0-321-74964-2).
GPU Histogram - Sample code from Apple