Using CVXOPT to run mean variance optimisation - cvxopt

I see this question has been asked abc 4 years ago, but I still struggled with the answer, so reposting it. The codes are pasted below
if say hypothetically I was to make sure that asset 1 range is between 20% and 40% and asset 2 range is <30%, and say asset 2 is 10-15%, what changes do I make to G and h? i.e. what will be values for G and h in the code.
The rest is easy to understand but struggling a bit with the quadratic optimiser. Appreciate any help!
thanks,
PK
import numpy as np
import pandas as pd
from scipy import optimize
import cvxopt as opt
from cvxopt import blas, solvers
import matplotlib.pyplot as plt
np.random.seed(123)
# Turn off progress printing
solvers.options['show_progress'] = False
# Number of assets
n_assets = 4
# Number of observations
n_obs = 2000
## Generating random returns for our 4 securities
return_vec = np.random.randn(n_assets, n_obs)
def rand_weights(n):
'''
Produces n random weights that sum to 1
'''
k = np.random.rand(n)
return k / sum(k)
def random_portfolio(returns):
'''
Returns the mean and standard deviation of returns for a random portfolio
'''
p = np.asmatrix(np.mean(returns, axis=1))
w = np.asmatrix(rand_weights(returns.shape[0]))
C = np.asmatrix(np.cov(returns))
mu = w * p.T
sigma = np.sqrt(w * C * w.T)
# This recursion reduces outliers to keep plots pretty
if sigma > 2:
return random_portfolio(returns)
return mu, sigma
def optimal_portfolios(returns):
n = len(returns)
returns = np.asmatrix(returns)
N = 50000
# Creating a list of returns to optimize the risk for
mus = [10 ** (5.0 * t / N - 1.0) for t in range(N)]
# Convert to cvxopt matrices
S = opt.matrix(np.cov(returns))
pbar = opt.matrix(np.mean(returns, axis=1))
# Create constraint matrices
G = -opt.matrix(np.eye(n)) # negative n x n identity matrix
h = opt.matrix(0.0, (n, 1))
A = opt.matrix(1.0, (1, n))
b = opt.matrix(1.0)
# Calculate efficient frontier weights using quadratic programming
portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x']
for mu in mus]
## Calculate the risk and returns of the frontier
returns = [blas.dot(pbar, x) for x in portfolios]
risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]
return returns, risks
n_portfolios = 25000
means, stds = np.column_stack([random_portfolio(return_vec) for x in range(n_portfolios)])
returns, risks = optimal_portfolios(return_vec)

Well the constraint part does not work like that;
In this case G Mat should be 4 X 4 and h should be 1 X 4 as below
If a minimum threshold is required, one can input in "h" matrix as in my example below (20%) in this case. Yet, I could not manage to add max constraint.
G = matrix([[-1.0, 0.0, 0.0, 0.0],
[0.0, -1.0, 0.0, 0.0],
[0.0, 0.0, -1.0, 0.0],
[0.0, 0.0, 0.0, -1.0]])
h = matrix([-0.2, 0.0, 0.0, 0.0])

Related

Solve a system of N equations with N unknowns using Julia

I have :
a set of N locations which can be workplace or residence
a vector of observed workers L_i, with i in N
a vector of observed residents R_n, with n in N
a matrix of distance observed between all pair residence n and workplace i
a shape parameter epsilon
Setting N=3, epsilon=5, and
d = [1 1.5 3 ; 1.5 1 1.5 ; 3 1.5 1] #distance matrix
L_i = [13 69 18] #vector of workers in each workplace
R_n = [27; 63; 10]
I want to find the vector of wages (size N) that solve this system of N equations,
with l all the workplaces.
Do I need to implement an iterative algorithm on the vectors of workers and wages? Or is it possible to directly solve this system ?
I tried this,
w_i = [1 ; 1 ; 1]
er=1
n =1
while er>1e-3
L_i = ( (w_i ./ d).^ϵ ) ./ sum( ( (w_i ./ d).^ϵ), dims=1) * R
er = maximum(abs.(L .- L_i))
w_i = 0.7.*w_i + 0.3.*w_i.*((L .- L_i) ./ L_i)
n = n+1
end
If L and R are given (i.e., do not depend on w_i), you should set up a non-linear search to get (a vector of) wages from that gravity equation (subject to normalising one w_i, of course).
Here's a minimal example. I hope it helps.
# Call Packages
using Random, NLsolve, LinearAlgebra
# Set seeds
Random.seed!(1704)
# Variables and parameters
N = 10
R = rand(N)
L = rand(N) * 0.5
d = ones(N, N) .+ Symmetric(rand(N, N)) / 10.0
d[diagind(d)] .= 1.0
ε = -3.0
# Define objective function
function obj_fun(x, d, R, L, ε)
# Find shares
S_mat = (x ./ d).^ε
den = sum(S_mat, dims = 1)
s = S_mat ./ den
# Normalize last wage
x[end] = 1.0
# Define loss function
loss = L .- s * R
# Return
return loss
end
# Run optimization
x₀ = ones(N)
res = nlsolve(x -> obj_fun(x, d, R, L, ε), x₀, show_trace = true)
# Equilibrium vector of wages
w = res.zero

Does Julia's column-major order have any impact while calling CVXPY through PyCall?

I'm using CVXPY through Julia, a language where multidimentional arrays are stored in memory using column-major order. However CVXPY is written in Python and accepts Numpy style arrays (which are row-major by default) to be used as constants.
I want to know if I should care about ordering, e.g. with matrix A, when translating Python code like this:
import cvxpy as cp
import numpy as np
m = 30
n = 20
A = np.random.randn(m, n)
b = np.random.randn(m)
# Construct the problem.
x = cp.Variable(n)
objective = cp.Minimize(cp.sum_squares(A*x - b))
constraints = [0 <= x, x <= 1]
prob = cp.Problem(objective, constraints)
to Julia:
using Random, PyCall
cp = pyimport("cvxpy")
m = 30
n = 20
A = randn(m, n)
b = randn(m)
# Construct the problem.
x = cp.Variable(n)
objective = cp.Minimize(cp.sum_squares(cp.matmul(A,x) - b))
constraints = [0 <= x, x <= 1]
prob = cp.Problem(objective, constraints)
I've seen exactly this done, and not seen any special handling from want I recall.
So no, it doesn't cause any issues

Can't get performant Julia Turing model

I've tried to reproduce the model from a PYMC3 and Stan comparison. But it seems to run slowly and when I look at #code_warntype there are some things -- K and N I think -- which the compiler seemingly calls Any.
I've tried adding types -- though I can't add types to turing_model's arguments and things are complicated within turing_model because it's using autodiff variables and not the usuals. I put all the code into the function do_it to avoid globals, because they say that globals can slow things down. (It actually seems slower, though.)
Any suggestions as to what's causing the problem? The turing_model code is what's iterating, so that should make the most difference.
using Turing, StatsPlots, Random
sigmoid(x) = 1.0 / (1.0 + exp(-x))
function scale(w0::Float64, w1::Array{Float64,1})
scale = √(w0^2 + sum(w1 .^ 2))
return w0 / scale, w1 ./ scale
end
function do_it(iterations::Int64)::Chains
K = 10 # predictor dimension
N = 1000 # number of data samples
X = rand(N, K) # predictors (1000, 10)
w1 = rand(K) # weights (10,)
w0 = -median(X * w1) # 50% of elements for each class (number)
w0, w1 = scale(w0, w1) # unit length (euclidean)
w_true = [w0, w1...]
y = (w0 .+ (X * w1)) .> 0.0 # labels
y = [Float64(x) for x in y]
σ = 5.0
σm = [x == y ? σ : 0.0 for x in 1:K, y in 1:K]
#model turing_model(X, y, σ, σm) = begin
w0_pred ~ Normal(0.0, σ)
w1_pred ~ MvNormal(σm)
p = sigmoid.(w0_pred .+ (X * w1_pred))
#inbounds for n in 1:length(y)
y[n] ~ Bernoulli(p[n])
end
end
#time chain = sample(turing_model(X, y, σ, σm), NUTS(iterations, 200, 0.65));
# ϵ = 0.5
# τ = 10
# #time chain = sample(turing_model(X, y, σ), HMC(iterations, ϵ, τ));
return (w_true=w_true, chains=chain::Chains)
end
chain = do_it(1000)

2D curve fitting in Julia

I have an array Z in Julia which represents an image of a 2D Gaussian function. I.e. Z[i,j] is the height of the Gaussian at pixel i,j. I would like to determine the parameters of the Gaussian (mean and covariance), presumably by some sort of curve fitting.
I've looked into various methods for fitting Z: I first tried the Distributions package, but it is designed for a somewhat different situation (randomly selected points). Then I tried the LsqFit package, but it seems to be tailored for 1D fitting, as it is throwing errors when I try to fit 2D data, and there is no documentation I can find to lead me to a solution.
How can I fit a Gaussian to a 2D array in Julia?
The simplest approach is to use Optim.jl. Here is an example code (it was not optimized for speed, but it should show you how you can handle the problem):
using Distributions, Optim
# generate some sample data
true_d = MvNormal([1.0, 0.0], [2.0 1.0; 1.0 3.0])
const xr = -3:0.1:3
const yr = -3:0.1:3
const s = 5.0
const m = [s * pdf(true_d, [x, y]) for x in xr, y in yr]
decode(x) = (mu=x[1:2], sig=[x[3] x[4]; x[4] x[5]], s=x[6])
function objective(x)
mu, sig, s = decode(x)
try # sig might be infeasible so we have to handle this case
est_d = MvNormal(mu, sig)
ref_m = [s * pdf(est_d, [x, y]) for x in xr, y in yr]
sum((a-b)^2 for (a,b) in zip(ref_m, m))
catch
sum(m)
end
end
# test for an example starting point
result = optimize(objective, [1.0, 0.0, 1.0, 0.0, 1.0, 1.0])
decode(result.minimizer)
Alternatively you could use constrained optimization e.g. like this:
using Distributions, JuMP, NLopt
true_d = MvNormal([1.0, 0.0], [2.0 1.0; 1.0 3.0])
const xr = -3:0.1:3
const yr = -3:0.1:3
const s = 5.0
const Z = [s * pdf(true_d, [x, y]) for x in xr, y in yr]
m = Model(solver=NLoptSolver(algorithm=:LD_MMA))
#variable(m, m1)
#variable(m, m2)
#variable(m, sig11 >= 0.001)
#variable(m, sig12)
#variable(m, sig22 >= 0.001)
#variable(m, sc >= 0.001)
function obj(m1, m2, sig11, sig12, sig22, sc)
est_d = MvNormal([m1, m2], [sig11 sig12; sig12 sig22])
ref_Z = [sc * pdf(est_d, [x, y]) for x in xr, y in yr]
sum((a-b)^2 for (a,b) in zip(ref_Z, Z))
end
JuMP.register(m, :obj, 6, obj, autodiff=true)
#NLobjective(m, Min, obj(m1, m2, sig11, sig12, sig22, sc))
#NLconstraint(m, sig12*sig12 + 0.001 <= sig11*sig22)
setvalue(m1, 0.0)
setvalue(m2, 0.0)
setvalue(sig11, 1.0)
setvalue(sig12, 0.0)
setvalue(sig22, 1.0)
setvalue(sc, 1.0)
status = solve(m)
getvalue.([m1, m2, sig11, sig12, sig22, sc])
In principle, you have a loss function
loss(μ, Σ) = sum(dist(Z[i,j], N([x(i), y(j)], μ, Σ)) for i in Ri, j in Rj)
where x and y convert your indices to points on the axes (for which you need to know the grid distance and offset positions), and Ri and Rj the ranges of the indices. dist is the distance measure you use, eg. squared difference.
You should be able to pass this into an optimizer by packing μ and Σ into a single vector:
pack(μ, Σ) = [μ; vec(Σ)]
unpack(v) = #views v[1:N], reshape(v[N+1:end], N, N)
loss_packed(v) = loss(unpack(v)...)
where in your case N = 2. (Maybe the unpacking deserves some optimization to get rid of unnecessary copying.)
Another thing is that we have to ensure that Σ is positive semidifinite (and hence also symmetric). One way to do that is to parametrize the packed loss function differently, and optimize over some lower triangular matrix L, such that Σ = L * L'. In the case N = 2, we can write this as
unpack(v) = v[1:2], LowerTriangular([v[3] zero(v[3]); v[4] v[5]])
loss_packed(v) = let (μ, L) = unpack(v)
loss(μ, L * L')
end
(This is of course prone to further optimization, such as expanding the multiplication directly in to loss). A different way is to specify the condition as constraints into the optimizer.
For the optimzer to work you probably have to get the derivative of loss_packed. Either have to find the manually calculate it (by a good choice of dist), or maybe more easily by using a log transformation (if you're lucky, you find a way to reduce it to a linear problem...). Alternatively you could try to find an optimizer that does automatic differentiation.

Super-ellipse Point Picking

https://en.wikipedia.org/wiki/Superellipse
I have read the SO questions on how to point-pick from a circle and an ellipse.
How would one uniformly select random points from the interior of a super-ellipse?
More generally, how would one uniformly select random points from the interior of the curve described by an arbitrary super-formula?
https://en.wikipedia.org/wiki/Superformula
The discarding method is not considered a solution, as it is mathematically unenlightening.
In order to sample the superellipse, let's assume without loss of generality that a = b = 1. The general case can be then obtained by rescaling the corresponding axis.
The points in the first quadrant (positive x-coordinate and positive y-coordinate) can be then parametrized as:
x = r * ( cos(t) )^(2/n)
y = r * ( sin(t) )^(2/n)
with 0 <= r <= 1 and 0 <= t <= pi/2:
Now, we need to sample in r, t so that the sampling transformed into x, y is uniform. To this end, let's calculate the Jacobian of this transform:
dx*dy = (2/n) * r * (sin(2*t)/2)^(2/n - 1) dr*dt
= (1/n) * d(r^2) * d(f(t))
Here, we see that as for the variable r, it is sufficient to sample uniformly the value of r^2 and then transform back with a square root. The dependency on t is a bit more complicated. However, with some effort, one gets
f(t) = -(n/2) * 2F1(1/n, (n-1)/n, 1 + 1/n, cos(t)^2) * cos(t)^(2/n)
where 2F1 is the hypergeometric function.
In order to obtain uniform sampling in x,y, we need now to sample uniformly the range of f(t) for t in [0, pi/2] and then find the t which corresponds to this sampled value, i.e., to solve for t the equation u = f(t) where u is a uniform random variable sampled from [f(0), f(pi/2)]. This is essentially the same method as for r, nevertheless in that case one can calculate the inverse directly.
One small issue with this approach is that the function f is not that well-behaved near zero - the infinite slope makes it quite challenging to find a root of u = f(t). To circumvent this, we can sample only the "upper part" of the first quadrant (i.e., area between lines x=y and x=0) and then obtain all the other points by symmetry (not only in the first quadrant but also for all the other ones).
An implementation of this method in Python could look like:
import numpy as np
from numpy.random import uniform, randint, seed
from scipy.optimize import brenth, ridder, bisect, newton
from scipy.special import gamma, hyp2f1
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
seed(100)
def superellipse_area(n):
#https://en.wikipedia.org/wiki/Superellipse#Mathematical_properties
inv_n = 1. / n
return 4 * ( gamma(1 + inv_n)**2 ) / gamma(1 + 2*inv_n)
def sample_superellipse(n, num_of_points = 2000):
def f(n, x):
inv_n = 1. / n
return -(n/2)*hyp2f1(inv_n, 1 - inv_n, 1 + inv_n, x)*(x**inv_n)
lb = f(n, 0.5)
ub = f(n, 0.0)
points = [None for idx in range(num_of_points)]
for idx in range(num_of_points):
r = np.sqrt(uniform())
v = uniform(lb, ub)
w = bisect(lambda w: f(n, w**n) - v, 0.0, 0.5**(1/n))
z = w**n
x = r * z**(1/n)
y = r * (1 - z)**(1/n)
if uniform(-1, 1) < 0:
y, x = x, y
x = (2*randint(0, 2) - 1)*x
y = (2*randint(0, 2) - 1)*y
points[idx] = [x, y]
return points
def plot_superellipse(ax, n, points):
coords_x = [p[0] for p in points]
coords_y = [p[1] for p in points]
ax.set_xlim(-1.25, 1.25)
ax.set_ylim(-1.25, 1.25)
ax.text(-1.1, 1, '{n:.1f}'.format(n = n), fontsize = 12)
ax.scatter(coords_x, coords_y, s = 0.6)
params = np.array([[0.5, 1], [2, 4]])
fig = plt.figure(figsize = (6, 6))
gs = gridspec.GridSpec(*params.shape, wspace = 1/32., hspace = 1/32.)
n_rows, n_cols = params.shape
for i in range(n_rows):
for j in range(n_cols):
n = params[i, j]
ax = plt.subplot(gs[i, j])
if i == n_rows-1:
ax.set_xticks([-1, 0, 1])
else:
ax.set_xticks([])
if j == 0:
ax.set_yticks([-1, 0, 1])
else:
ax.set_yticks([])
#ensure that the ellipses have similar point density
num_of_points = int(superellipse_area(n) / superellipse_area(2) * 4000)
points = sample_superellipse(n, num_of_points)
plot_superellipse(ax, n, points)
fig.savefig('fig.png')
This produces:

Resources